
Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Fe

br
ua

ry
 2

01
5.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 1
0:

23
:4

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
A model for agin
Department of Chemical Engineering, Indian

208016, India. E-mail: joshi@iitk.ac.in

† Electronic supplementary informa
10.1039/c5sm00217f

Cite this: Soft Matter, 2015, 11, 3198

Received 26th January 2015
Accepted 23rd February 2015

DOI: 10.1039/c5sm00217f

www.rsc.org/softmatter

3198 | Soft Matter, 2015, 11, 3198–3214
g under deformation field, residual
stresses and strains in soft glassy materials†

Yogesh M. Joshi*

A model is proposed that considers aging and rejuvenation in a soft glassy material as, respectively, a

decrease and an increase in free energy. The aging term is weighted by an inverse of characteristic

relaxation time suggesting that greater mobility of the constituents induces faster aging in a material. A

dependence of relaxation time on free energy is proposed, which under quiescent conditions leads to a

power law dependence of relaxation time on waiting time as observed experimentally. The model

considers two cases, namely, a constant modulus when aging is entropy controlled and a time

dependent modulus. In the former and the latter cases the model has, respectively, two and three

experimentally measurable parameters that are physically meaningful. Overall, the model predicts how

the material undergoes aging and approaches a rejuvenated state under the application of a deformation

field. In particular, the model proposes distinctions between various kinds of rheological effects for

different combinations of parameters. Interestingly, when the relaxation time evolution is stronger than

linear, the model predicts various features observed in soft glassy materials such as thixotropic and

constant yield stress, thixotropic shear banding, and the presence of residual stress and strain.
I. Introduction

Glassy so materials such as concentrated suspensions and
emulsions, foams, colloidal gels and a variety of different pastes
are routinely used in industry as well as in everyday life. In this
class of materials either the crowding of constituting entities
and/or inter-particle attractive/repulsive interactions kinetically
restrict the same from achieving equilibrium structures.1–3

However, microscopic mobility of the constituents arising from
the thermal energy induces slow but steady structural evolution
to form progressively more stable structures. This process of
structural recovery is also known as physical aging,3 wherein the
free energy of a material decreases as a function of time. If such
a material is subjected to a deformation eld, the structure
evolved during aging gets altered, which usually causes the
reversal of physical aging.4 The corresponding process is termed
as rejuvenation. The rheological behavior of so glassy mate-
rials (SGMs) is determined by competition between aging and
rejuvenation for a given deformation eld, which leads to many
unusual and sometimes opposite effects such as time depen-
dent yield stress,5–8 viscosity bifurcation,9,10 shear banding,5,11–14

delayed yielding,15,16 delayed solidication,17,18 overaging,19–21

presence of residual stresses22 and strains,23,24 etc. In this paper
we present a model that accounts for aging and rejuvenation in
Institute of Technology Kanpur, Kanpur

tion (ESI) available. See DOI:
terms of evolution of free energy inuenced by the deformation
eld. In addition to describing many of the above mentioned
experimental behavior, the model prescribes a criterion for
their occurrence based on the behavior under quiescent
conditions.

In the process of physical aging the relaxation time and
sometimes elastic modulus of a glassy material evolve as a
function of time while attaining progressively lower free energy
states.24–29 As a result the solid-like character of a glassy material
increases gradually as a function of time. Application of a
deformation eld attenuates the rate of evolution of relaxation
time and eventually causes a decrease in relaxation time. In the
limit of a sufficiently strong deformation eld, the time evolu-
tion of the material stops and the material (shear) melts to form
a liquid.15,24,27 Subsequent to the shear melting the physical
aging reinitiates in a material. In the rheology literature this
phenomenon is represented as thixotropy.30 SGMs also
demonstrate yield stress; and depending on whether the yield
stress evolves with time or remains constant, the materials are
termed as thixotropic and simple yield stress materials,
respectively.5 While the recent literature indeed proposes the
existence of real yield stress in both thixotropic and simple yield
stress materials, it has long been argued in the rheology liter-
ature that the existence of real yield stress is a myth and in
reality a material only undergoes transition from a weak owing
regime to a strong owing regime leading to so called engi-
neering yield stress.7

SGMs have also been observed to demonstrate shear band-
ing.31 In thixotropic yield stress materials, constitutionally the
This journal is © The Royal Society of Chemistry 2015
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stress does not exist for strain rates below the critical value.5,13

Consequently, the imposition of a strain rate below the critical
value leads to banding, wherein one band ows with the critical
strain rate while the other does not ow. The relative width of
each band depends on the values of imposed and critical strain
rates. The existence of thixotropic yield stress also leads to
viscosity bifurcation wherein the application of stress below the
threshold value cannot stop the divergence of viscosity.9 On the
other hand, the application of stress above the threshold causes
the viscosity to achieve a nite value as a function of time.
Rather than showing viscosity bifurcation, somematerials show
delayed solidication or delayed yielding. In the former, the
application of stress, no matter how large it is, leads to either
constant viscosity or a decrease in viscosity for a prolonged
period before showing sudden enhancement.17 In delayed
yielding, on the other hand, the application of stress cannot
restrict enhancement in viscosity as a function of time in the
initial period. However, in the limit of long times, the material
undergoes sudden yielding thereby inducing uidity.15,16

Under the application of a strong deformation eld a mate-
rial rejuvenates, and consequently the material is in a liquid
state. The aging of a material subsequent to rejuvenation can be
monitored by applying no stress or constant strain. In the
former case of no stress, strain recovers as a function of time.
Interestingly, however, if a material is subjected to creep during
the period of strain recovery, the resultant strain may show a
non-monotonic dependence on time, causing an apparent
paradox as observed experimentally.23,24,32 Instead, if the strain
is kept constant subsequent to the rejuvenation, the stress
relaxes. However, depending on the characteristic feature of an
SGM, the stress may show complete relaxation, power law
dependence on time or a non-zero plateau (residual stress) in
the limit of long times.22 However, the effect of aging on both of
the phenomena, stress relaxation as well as strain recovery, has
not been studied theoretically.

Various models that capture the rheological behavior of
thixotropic materials have been proposed in the rheology liter-
ature.33 According to Mewis and Wagner,30 there are three
aspects common in such modeling approaches. The rst one is
the evolution equation of the empirical structure parameter
(usually represented by l), which indicates the instantaneous
state of a material. The second aspect is a relationship between
l and the rheological properties; while the third aspect is a
constitutive equation that relates stress, strain and their deriv-
atives through the rheological properties. The evolution equa-
tion of l essentially contains two terms: a buildup term and a
destruction term representing aging and rejuvenation, respec-
tively. A comprehensive list of various expressions representing
the build up and destruction terms along with the constitutive
equations have been reported in the literature.30,33 Coussot
proposed that the models in this class can be represented by a
simple evolution expression for an arbitrary structure param-
eter l, given by:34

dl

dt
¼ 1

T0

�QðlÞg: : (1)
This journal is © The Royal Society of Chemistry 2015
This expression suggests that the structure builds up with a
constant timescale T0, while the destruction term is propor-
tional to the strain rate _g with a prefactor Q that grows with l.
Coussot and coworkers9 showed that steady state stress and
strain rate show a non-monotonic relation for a suitable choice
of Q(l) and viscosity (h(l)). A class of models has also been
proposed by representing l as a uidity that is an inverse of
characteristic relaxation time.35,36 By considering various func-
tional forms for the decrease in uidity as a function of time
(aging) and increase in the same as a function of deformation
eld (rejuvenation), Derec et al.35 and Picard et al.36 proposed
different kinds of relationships between steady state stress and
strain rate, including non-monotonic, which lead to variety of
rheological phenomena shown by SGMs. Particularly the non-
monotonic relation between steady state stress and strain rate
leads to the qualitative prediction of various important types of
rheological behavior reported for SGMs such as viscosity
bifurcation, thixotropic yield stress and shear banding.

While thixotropy/uidity models tend to capture the essence
of the physics associated with so glassy dynamics, more
rigorous models such as the so glassy rheology (SGR) model
and mode coupling theory (MCT) have been developed to study
so glassy dynamics. MCT is developed, in principle, for
colloidal glasses wherein cage diffusion is known to become
progressively sluggish as the particle concentration increases.37

MCT considers that since the cages are nothing but the
surrounding particles, whose diffusion is also similarly affected,
there exists a forward feedback mechanism that impedes
relaxation of the uctuations in density. Consequently, at a
certain concentration the relaxation time diverges causing glass
transition. MCT predicts the onset of glass transition well, and
has been modied to include the effect of deformation eld.6

The present versions of MCT, however, do not demonstrate any
physical aging. The SGR model,38 on the other hand, is
primarily based on aging dynamics considered in Bouchaud's
trap model.39 The SGR model divides a material into meso-
scopic domains and tracks the evolution of each as a function of
time for a given deformation eld. The effect of deformation
eld in the SGR model is considered through strain and is
modeled as an activated process. The relaxation time of an
individual mesoscopic element directly depends on strain as:

s ¼ s0 exp
��

E � 1
2
kg2
��

x
�
; where E is the depth of the

energy well in which an element is trapped, s0 is the inverse of

attempt frequency and
1
2
kg2 is the energy gained by the

element due to strain g. The noise temperature x suggests the
energy available for activation, and in a normalized form x ¼ 1
is a point of glass transition below which the material shows
physical aging. Upon cage diffusion elements get trapped in a
new cage whose depth is obtained from a prior distribution. For
a given deformation eld and at any point in time, the distri-
bution of energy well depths, in which elements are trapped, is
related to stress which gives the constitutive equation. Both
MCT and the SGR model demonstrate many experimentally
observed rheological behaviors of SGMs;1 and although they are
mathematically and computationally demanding, these models
Soft Matter, 2015, 11, 3198–3214 | 3199
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render microscopic insight into the glassy dynamics inter-
cepted by the deformation eld.

Physical aging takes place not just in SGMs but also in
polymer glasses, wherein enthalpy decreases as a function of
time.40,41 Aging in polymer glasses is usually modelled by
considering the decrease in specic enthalpy to be a rst order
process.41–43 Typically, the departure from equilibrium is
dened as: dh ¼ h � hN, where h is the specic enthalpy at any
instance, while hN represents the specic enthalpy at equilib-
rium. Under isothermal conditions, Kovacs, Aklonis, Hutch-
inson and Ramos (KAHR) in their seminal contribution
proposed that:42,44,45

ddh

dt
¼ � dh

sðdhÞ ; (2)

where s is the relaxation time which depends on departure from
equilibrium dh. If s is small, the time taken to establish equi-
librium is also small. The dependence: s ¼ s(dh) is obtained
from Adam–Gibbs theory and is given by46,47

s ¼ B exp(C/Tsc), (3)

where B and C are constants, T is temperature and sc is the
congurational entropy, which can be obtained by knowing the
difference in the heat capacity of a material in the crystal and
liquid states. Interestingly this simple model, which considers
aging to be a rst order process, allows excellent prediction of
the time dependent physical behavior of a variety of amorphous
polymers at different temperatures and upon step up and down
temperature jumps.45,47 As the material ages sc decreases, which
causes an increase in s. As a result, the decrease in dh becomes
increasingly sluggish as aging progresses. Similar to specic
enthalpy, the specic volume of a glassy material decreases
upon aging. Consequently, an equivalent model has been
developed by KAHR45 by expressing the departure from equi-
librium in terms of the specic volume and replacing eqn (3) by
the empirical relation proposed by Doolittle,48 which relates
relaxation time to the free volume.
II. Model

SGMs are thermodynamically out-of-equilibrium materials.
Every material which is not at thermodynamic equilibrium has
a natural tendency to approach the thermodynamic equilibrium
state.49 However, in order to facilitate such an approach, the
microscopic constituents of the SGMs need to be sufficiently
mobile (thermal energy). Typically, the so materials are
exposed to constant P (pressure) and constant (controlled) T
conditions. In addition, by virtue of the incompressible nature
of the same, these materials also do not undergo any change in
y (specic volume) as a function of time. Under such conditions,
the equilibrium state in these materials can be characterized by
the minimization of either the Gibbs (g) or Helmholtz (a) free
energy.49 Since g ¼ a + Py, when P and y are constants, the
minimization of g and a are equivalent. Therefore, in the
analysis below we discuss this scenario only in terms of free
energy. In the process of aging, under quiescent conditions, the
3200 | Soft Matter, 2015, 11, 3198–3214
structure of an arrested so material undergoes spontaneous
evolution such that it progressively attains lower free energy as a
function of time.

Typically in SGMs solid to liquid transition occurs upon
application of a strong deformation eld, a process typically
known as rejuvenation or shear melting. The completely shear
melted samples, immediately aer the shear melting is
stopped, can be considered to possess the highest free energy:
g0. On the other hand, the minimum value of free energy is
associated with that of the thermodynamic equilibrium state
and is given by: gN. If the decrease in free energy (g) with respect
to time is assumed to be a rst order process, we get:

df

d~t
¼ � f

~sðfÞ ; (4)

where f is the normalized excess free energy dened as: f¼ (g�
gN)/(g0 � gN). Furthermore,~t ¼ t/s0 is dimensionless time and ~s
¼ s/s0 is dimensionless relaxation time, where s0 is the relaxa-
tion time of a so glassy material in its completely rejuvenated
state (f ¼ 1). In eqn (4), we assume that the rate of change in
free energy is proportional to the excess free energy divided by
the time scale of structural rearrangement [~s(f)] in a material.
This time scale is equivalent to the relaxation time of a material,
which is suggestive of the mobility of the constituents in a
material at any given f. As mentioned before, any material
which is out of thermodynamic equilibrium, aspires to achieve
the thermodynamic equilibrium. However, a material can be
driven out of thermodynamic equilibrium in a trivial sense by
perturbing an equilibrium material to high energy states. The
consequent response that establishes equilibrium is merely
transient and not physical aging if the relaxation time is
constant. As suggested by Fielding and coworkers,38 for any
process to qualify as physical aging, its relaxation time must
increase during the time over which the relaxation takes place.
Consequently, ~s(f) must be a decreasing function of f. In SGMs,
while physical aging indeed causes a decrease in free energy as a
function of time, we cannot associate any thermodynamically
measurable variable with a decrease in free energy. Further-
more, SGMs have a variety of different microstructures that
demonstrate remarkably similar forms of the dependence of
relaxation time on aging time. It is therefore no surprise that no
empirical or other relation is available in the literature to relate
the structure to free energy and in turn to the relaxation time in
SGMs.

In particulate suspensions, an increase in the volume frac-
tion (4) of the suspended particles, which curbs the mobility of
the same, is also known to cause an increase in relaxation time
(s). The corresponding relation between s and 4 was proposed
by Krieger and Dougherty,50 which has been extensively used in
the literature and has been experimentally validated for a variety
of suspension systems.37 Furthermore, mode coupling theory
(MCT), which predicts the onset of glass transition in colloidal
glasses well, also employs an identical functional form to that of
Krieger and Dougherty.37 In both the forms s of suspension
diverges according to a power law (s � [1 � (4/4*)]�B) as 4

approaches a certain threshold 4* associated with random close
packing. On the other hand, in aging glassy materials, under a
This journal is © The Royal Society of Chemistry 2015
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constant concentration of constituents, the mobility decreases
continuously due to a decrease in free energy. In this work, we
therefore propose a relation between relaxation time and free
energy, which has an equivalent functional form to that
proposed by Krieger–Dougherty or in MCT. In the case of some
SGMs, including suspensions of particles with hard sphere
interactions, the relaxation time may diverge for values of free
energy above the minimum (nonzero values of f). If such values
of free energy are denoted by f* (at which the constituents do
not possess mobility to facilitate relaxation), a generic form of
the proposed expression is given by:

~s ¼
�
1� f ðfÞ

f ðf*Þ
��b

; (5)

where b is a parameter. In this expression, we use f(f) since the
exact relation between the microstructure and f is not known.
However, f(f) must obey the following two constraints: (1) f(f)
must be a monotonically increasing function of f, and (2) in
order to satisfy ~s ¼ 1 at f ¼ 1, f(f) ¼ 0 at f ¼ 1. Eqn (4) can be
solved using eqn (5) to yield:

d

d~t
~sðb�1Þ=b� � ¼ ðb� 1Þf

f ðf*Þ
df

df
: (6)

For various values of b, and for any arbitrary functional form
of f(f) that satises the above two conditions, ~s is expected to
show a stronger than linear, weaker than linear or linear
dependence on ~t according to eqn (6). Eqn (4) suggests that
when ~s is stronger than linear, ~smust diverge before the system
reaches the equilibrium state (f* > 0). On the other hand, for a
linear or weaker relationship the system must approach the
equilibrium state in the limit: ~t / N. Eqn (6), therefore,
suggests that the value of b is directly related to the strength of
evolution of ~s as a function of time, which in turn controls f*.
Furthermore, the above discussion imposes another constraint
on f(f): (3) at f ¼ 0, f(f), f* and b should assume values such
that ~s / N in that limit (it is well known that for many SGMs
including a suspension of concentrated monodispersed parti-
cles, the lowest free energy state is a crystal state for which the
relaxation time is N. Therefore, for all those materials wherein
aging results in acquiring the lowest free energy state, ~s diverges
as the equilibrium state is approached: ~s / N in the limit of
f ¼ 0). We propose the following functional form that satises
all of the above constraints given by:

f(f) ¼ ln f. (7)

The proposed expression of relaxation time given by eqn (5) and
(7) can now be used to solve differential eqn (6) to obtain the
dependence of ~s on ~t under quiescent conditions.

The initial condition to solve eqn (6) can be represented as:
f¼ fsm (or ~s¼ ~s(fsm)) at~t¼ 0, that is themoment shear melting
is stopped (in principle, if shear melting tends to rejuvenate the
material completely, fsm ¼ 1 (or ~s ¼ 1); however as shown below
such a possibility exists only if shear melting is carried out at
shear rates _g/N). Assuming A ¼ (1 � b)/ln f*, the solution of
eqn (6) for a mentioned initial condition is given by:
This journal is © The Royal Society of Chemistry 2015
~s ¼ [~s(fsm) + A~t]m, (8)

where m¼ b/(b� 1). When the material is shear melted by using
a strong ow eld for which fsm z 1, eqn (8) can be further
simplied in the limit of long times (A~t [ 1), to give:

~s z (A~t )m, A~t [ 1. (9)

In dimensional form eqn (9) is represented by: sz Ams0(t/s0)
m.

Interestingly, the relaxation times of many glassy materials,
which include so, molecular and spin glasses, demonstrate a
power law dependence on time given by eqn (9).24,28,38,41,51,52 It is
therefore interesting to see that the proposed relation between ~s
and f given by eqn (5) with an assumption of eqn (7) leads to an
experimentally observed power law dependence. It should be
noted that values of m < 1 represent sub-aging, m > 1 represent
hyper-aging, while m ¼ 1 represents a full aging scenario.1,2

Eqn (5) can be rewritten in terms of m and A as:

~s ¼
�
1� ln f

ln f*

� m

ð1�mÞ
m. 1; (10)

~s ¼ ½1þ ðm� 1ÞA ln f�
m

ð1�mÞ m\1; and (11)

~s ¼ f�A, m ¼ 1. (12)

Eqn (12) is obtained by solving eqn (10) or (11) in the limit of
m/ 1. It can be seen that for hyper-aging (m > 1), ~s/N as f/

f*, where f* is given by:

f* ¼ exp(1/A(1 � m)) for m > 1, (13)

indicating divergence of the relaxation time before the equi-
librium state is reached (f* > 0). In the case of hyper-aging,
owing to a lack of mobility (s / N), a material remains frozen
in a high free energy state.

Among various power law dependencies represented by eqn
(10)–(12), the linear dependence of relaxation time on waiting time
(m ¼ 1) has important practical signicance. Firstly, the linear
dependence is observed experimentally for a very broad class of
SGMs in the absence of a deformation eld. Such a dependence is
also observed for molecular as well as spin glasses.41,52 In addition,
from a scaling point of view it is oen argued that in the absence of
any externally dominating time scale, which is a typical case in
glassy materials, the only naturally available imposed time scale is
the waiting time, which is the time elapsed since either thermal
quench (molecular glasses) or mechanical quench/shear melting
(SGMs).19 Consequently the relaxation time scales as the waiting
time. In the literature, however, various SGMs have been reported
to show sub-aging (m < 1) or hyper-aging (m > 1) behavior.26,29 Such
behavior can originate from the imposition of another eld on a
material, which tends to increase or decrease the characteristic
timescale of a material beyond that which can be achieved by
merely a physical aging process. In the case where the process of
time dependent decrease in free energy is not entirely physical, but
partly chemical so that it is irreversible, the material tends to show
hyper-aging dynamics.29,53
Soft Matter, 2015, 11, 3198–3214 | 3201
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It is usually observed that in an aging process, the modulus
of the glassy material either remains constant or increases as a
function of time. However, even in the latter case, the
enhancement in the modulus is usually not as spectacular as
that of the relaxation time. The scaling argument suggests that
if E is the average depth of the energy wells in which the
constituents of a so glass are arrested, the modulus can be
represented as the energy density: G ¼ cE/b3, where b is the
characteristic length-scale (such as average inter-particle
distance or network length) associated with a material and c is
the constant of proportionality.46 Consequently, if E remains
constant throughout the aging process, the modulus of a
material will remain constant even if the relaxation time shows
an increase as per eqn (9). Such a possibility arises if the aging
behavior of a system is purely entropic. Such a scenario is
observed for particulate colloidal glasses with hard sphere
interactions, wherein the energy is identical for all of the states,
and aging is controlled by maximization of entropy (s). Such a
case can also be equivalently represented by minimization of
the free energy as: g ¼ h � Ts, as for entropic systems h is
constant throughout the aging process under isothermal and
isobaric conditions. Therefore, for purely entropy controlled
aging systems the modulus can be represented as:

~G ¼ 1, (14)

where ~G ¼ G/G0 is the dimensionless modulus and G0 is the
constant modulus.

For materials wherein the constituents share energetic
interactions with each other, the mean energy well depth E
increases as a function of time. In the limit of either equilib-
rium state (f/ 0) or high free energy ‘frozen’ state (f/ f*), E
saturates to a constant value E*. In the regime where E increases
as a function of time, we assume that the mean relaxation time
has an Arrhenius dependence on E, given by: s ¼ sm exp(E/kBT),
where sm is themicroscopic relaxation time.38However as f/ f*

or f / 0, the relaxation time no longer obeys an Arrhenius
relationship, as even though ~s / N, E saturates to a nite value
E*. Such behavior is oen observed for molecular glasses,
wherein the relaxation time dependence deviates from Arrhenius-
to-MCT-to-Vogel–Fulcher as the glass transition is approached.37

Consequently, in a limit where the Arrhenius relation is obeyed
(for f > f* $ 0), the dependence of the modulus on relaxation is
easily obtained as:

~G ¼ 1� ln ~s
ln ~sm

for f.f*; (15)

where ~sm ¼ sm/s0 (it should be noted that ~sm < 1 as discussed
below, while ~s $ 1), ~G ¼ G/G0 is the dimensionless modulus
where G0 is the modulus associated with the state: f ¼ 1, and is
given by: G0 ¼ �(ckBT/b

3)ln ~sm. However, as the frozen state is
approached (f / f*), the modulus saturates to a nite value
while ~s / N.

Application of the deformation eld increases f. We assume
that the rate of increase of f is directly proportional to the rate
of strain ( _gV) associated with the viscous (dissipative) ow
weighted by 1 � f. Here _gV is the second invariant of the rate of
3202 | Soft Matter, 2015, 11, 3198–3214
strain tensor _gV associated with the viscous ow, given by:

g
:
V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
:
V: g

: †
V

�
=2

q
:54 Consequently, eqn (4) can be modied for

evolution under the application of a deformation eld as:

df

d~t
¼ � f

~sðfÞ þ ð1� fÞ~g: V; (16)

where ~g
:
V ¼ s0g

:
V is the strain rate in a dimensionless form. Eqn

(16) is the evolution equation for f under the application of a
deformation eld. The strain rate associated with viscous ow
can be directly related to the stress tensor as: s ¼ h _gV. Viscosity
h ¼ Gs is a product of the relaxation time and modulus, which
can be represented by eqn (10)–(12) and eqn (14) or (15),
respectively. For a simple shear ow eld eqn (16) can therefore
be modied to:

df

d~t
¼ � f

~sðfÞ þ ð1� fÞ
�

~s

~s ~G

�
; (17)

where ~s ¼ s/G0 is the dimensionless shear stress.
Usually so glassy materials are viscoelastic in nature. We

can, therefore, use a single mode Maxwell model, which is the
simplest constitutive equation for a viscoelastic material. For a
time dependent modulus and viscosity a single mode Maxwell
model is given by:

g
: ¼ g

:
V þ g

:
E ¼ s

h
þ d

dt

hs
G

i
: (18)

Here s is the stress tensor and G and h are the time dependent
modulus and viscosity of a material, respectively. In eqn (18) the
rst and the second terms are the viscous and the elastic
contributions to the strain rate, respectively. It is important to
note here that in eqn (16) it is assumed that f is affected only by
the viscous component of the strain rate. This is because the
energy associated with elastic strain remains stored in a mate-
rial and therefore the corresponding rate does not cause reju-
venation. We also show in the next section that even though
stress is applied to a material in one direction (positive) or the
applied stress is zero, there could be strain rate in the spring
( _gE) in the opposite direction (negative) due to an increase in
the modulus or due to recovery. In this case, although _gE has a
negative sign (assuming s to be positive or zero) its second
invariant will always have a positive sign. However, physically
such a reverse strain rate cannot cause rejuvenation in a
material, further justifying the usage of only the viscous
component of the strain rate in eqn (16).

Eqn (16) in a rate controlled form, or eqn (17) in a stress
controlled form, is the proposed expression for the evolution of f.
On the other hand, eqn (18) is the constitutive equation associated
with themodel. Furthermore, we assume that the relation: ~s¼ ~s(f)
represented by eqn (10)–(12) is intrinsic in nature and is inde-
pendent of the nature and the strength of the deformation eld.
Therefore, the deformation eld affects the evolution of relaxation
time only through its dependence on f. As discussed before, under
quiescent conditions (no deformation eld), ~s of a material shows
a power law dependence on ~t as observed experimentally. Under
the application of a deformation eld, however, f is expected to
decrease or increase leading to an increase or decrease in ~s.
This journal is © The Royal Society of Chemistry 2015
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Fig. 1 Relationship between ~sss and (a) ~g
:
ss, (b) f given by eqn (19) and

(20) for different values of m for A ¼ 10 and ~sm ¼ 0.1. From bottom to
top m¼ 1, 2, 3, 4 and 5. In the inset of (b) ~sss is plotted against f for m¼ 2
and different values of A and ~sm; while for a dotted line: ~sm¼ 0.001 and
A ¼ 0.9. For full lines from top to bottom: ~sm ¼ 0.1 and A ¼ 30, 10, 2.5,
1.5, and 0.9. In all of the plots the part of the curves having a negative
slope is an unstable region. The non-dimensional strain rate, stress and
free energy associated with the minimum of the curve are represented
by ~g

:
c, ~sc and fc, respectively.
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Interestingly, the evolution of f expressed by eqn (16) can be
transformed into a generic functional form given by eqn (1)
proposed by Coussot.34 Multiplying eqn (16) by ~s/f leads to eqn
(1) with l ¼ Ð

(~s/f)df and Q ¼ ~s(1 � f)/f. However, unlike
various previous approaches that employ arbitrary functional
forms for Q ¼ Q(l) and h ¼ h(l), the present model only needs
the expression of ~s given by eqn (5), which has been derived
from physical arguments and complies with the experimental
observations under quiescent conditions. For systems whose
modulus increases with ~t, the present model has three param-
eters in a dimensionless form that are physically meaningful.
The rst is the rate of aging m, the second is the constant A
(which is equal to [(1 � m)ln f*]�1), and the third is sm.
However, if the modulus is constant the model needs only the
rst two parameters: m and A, which are the characteristics
features of an SGM that depend upon the microstructure of the
same. Most importantly m and A can be estimated experimen-
tally by knowing the dependence of the relaxation time on aging
time and have the following constraints: m $ 0 and A > 0. Such
dependence can be very easily obtained by carrying out creep or
stress relaxation experiments at different aging times as dis-
cussed in the literature.15,24,27,51,55 In the present model, the
microscopic relaxation time (sm) determines the rate at which
the modulus evolves with time. Eqn (15) suggests that the
smaller the value of sm is, the weaker is the evolution of ~G. In the
limit of f¼ 1, if the mean depth of the energy wells occupied by
the constituents of SGM is E0, an Arrhenius relation leads to a
relaxation time of that state as: s0 ¼ sm exp(E0/kBT), which leads
to: ~sm ¼ exp(�E0/kBT). Although E0 is the shallowest mean
energy depth possible for f ¼ 1, it is always positive. Conse-
quently, ~sm must vary in the limit: 0 < ~sm < 1. (It is important to
note that even though as per eqn (15) it appears that in the limit
of sm¼ 0 the modulus remains constant, such a limit exists only
if there is no aging. This is because the microscopic relaxation
time sm is a unit of time at which a material ages. Even for a
material wherein aging is purely entropic, the modulus is
constant and sm is nonzero. This is because in such a case the
relaxation time does not depend on the energy well depth.)

III. Results

To begin with we shall discuss the results associated with the
steady state predictions. In the limit of steady state, since _gE ¼
0, eqn (16) leads to expressions for the steady state strain rate
given by:

~g
:
ss ¼

fss

~sssð1� fssÞ
: (19)

On the other hand, eqn (17) leads to the expression for steady
state shear stress:

~sss ¼ ~Gss

fss

ð1� fssÞ
: (20)

In both of the expressions, subscript ss represents the steady
state values of the respective variables (including ~sss ¼ ~s(fss)
given by eqn (10)–(12) and ~Gss ¼ ~Gss(fss)). As expected, the

steady state relationship between ~s and ~g
:
is simply:
This journal is © The Royal Society of Chemistry 2015
~sss ¼ ~sss ~Gss
~g
:
ss; (21)

where the constant of proportionality is the dimensionless
viscosity ~h¼ ~sss~Gss. In Fig. 1(a) we plot ~sss as a function of ~g

:
ss for

materials that show an enhancement in modulus as a function
of time for different values of m at A ¼ 10 and ~sm ¼ 0.1. It can be
seen that the dependence of ~sss on

~g
:
ss is monotonic for m ¼ 1

over an explored region, however it becomes non-monotonic
with the presence of a minima for the higher values of m. The
region where ~sss decreases with an increase in ~g

:
ss is known to

be unstable.56 In Fig. 1(b) we also plot ~sss with respect to f by
solving eqn (20) for A¼ 10 and ~sm ¼ 0.1 for different values of m,
which also show non-monotonic relationships except for m ¼ 1.
In the inset of Fig. 1(b) we plot the relation between ~sss and f for
m¼ 2 but different values of A and ~sm. It can be seen that with an
increase in m and A, the curves shi to greater values of ~sss and
also shi fc (the value of fss associated with the minimum in
~sss) and f* (according to eqn (13)) to higher values. The inset
also shows the behavior of the steady state curve at two values of
~sm ¼ 0.1 and 0.001. The increase in ~sm shis the location of the
minima as well as the curve to higher values of ~sss. As is
apparent from eqn (19)–(21), the qualitative dependence of ~sss
on ~g

:
ss is similar to that between ~sss and fss with the minimum

in ~sss in the former relation coinciding with that of the latter.
In order to obtain the values of the parameters m, A and ~sm

for which ow curves become non-monotonic we solve
d~sss=d

~g
:
ss ¼ 0 by differentiating eqn (21) by ~g

:
ss leading to:

1

1� fc

þ d ln ~G

d ln f

����
f¼fc

¼ 0: (22)

For a material with a time dependent modulus, the numer-
ical solution of eqn (22) gives fc from which ~g

:
c and ~sc (pre-

sented in Fig. 1) can be obtained by using eqn (19) and (20),
respectively, for fss¼ fc. In Fig. 2(a) and (b) we plot ~g

:
c, ~sc and fc

as a function of m for various values of A and ~sm for a time
dependent modulus given by eqn (15). It can be seen that,
irrespective of the values of A and ~sm, all the three variables:

~g
:
c,

fc and ~sc decrease with a decrease in m; and tend to zero as m
Soft Matter, 2015, 11, 3198–3214 | 3203
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approaches 1. An increase in A as well as ~sm, on the other hand,
shis all of the curves to higher values of the respective ordi-
nates. In Fig. 2(b) we also plot f*, which is the minimum
attainable value of f (presented in Fig. 1) given by eqn (13) with
respect to m for different values of A. There is no steady state
associated with the values of f in the range f*# f < fc as it is an
unstable branch. It can be seen that the width of the unstable
region represented by fc � f* decreases with an increase in A as
well as m (in the limit of m / 1, both fc and f* approach zero).
Furthermore, eqn (13) clearly shows that f* is independent of ~sm.
Fig. 2(b) also shows that with a decrease in ~sm, fc decreases, and it
can be shown from eqn (15) and (22) that in the limit of ~sm � 1,
fc / f*. Importantly Fig. 2 clearly indicates that the steady state
stress–strain rate relationship is monotonic for m # 1.

Now we consider a case when ~G ¼ 1 during aging, for which

eqn (22) clearly indicates that the dependence of ~sss on
~g
:
ss does

not show a minimum (fc does not exist in the range: 0# f# 1).

Consequently, for m# 1 the dependence of ~sss on
~g
:
ss must show

a monotonic increase. For m > 1, according to eqn (10) and (13),

~s / N as f / f*. As a result as ~g
:
ss/0 in the limit of ~s / N,

stress must show a plateau at:
Fig. 2 (a) Dimensionless critical strain rate

~g: c� and stress (~sc) (shown

in inset) are plotted as a function of m. The full lines represent different
values of A (from top to bottom: 30, 10, 2.5, 1.5, and 0.9.) and ~sm ¼ 0.1.
In (b) fc (full lines) and f* (dashed lines) [eqn (13)] are plotted as a
function of m. From top to bottom A ¼ 30, 10, 2.5, 1.5, and 0.9. The
dotted line in both the figures is for A ¼ 0.9 and ~sm ¼ 0.001.

3204 | Soft Matter, 2015, 11, 3198–3214
~sy ¼ f*

1� f*
¼ 1

expð1=Aðm� 1ÞÞ � 1
for ~G ¼ 1 and m. 1;

(23)

where ~sy is the yield stress. In Fig. 3 we plot ~sss as a function of
~g
:
ss for different values of m and A at ~G ¼ 1. An observed plateau

in ~sss in the limit of ~g
:
ss/0 indicates the presence of permanent

yield stress that is independent of time (non-thixotropic yield
stress). As shown in Fig. 3, ~sy can be seen to be increasing with m

as well as A as per eqn (23).
The presence of yield stress is also characterized by a non-

monotonic ow curve, such as that shown in Fig. 1, as there are
no steady state values of strain rate ~g

:
ss associated with stresses

smaller than that corresponding to the minimum represented
by ~sc. This concept is described by Fig. 4, wherein we plot ~sss as
a function of ~g

:
ss for A ¼ 10, ~sm ¼ 0.1 and two values of m: m ¼ 1

(Fig. 4(a)) and m ¼ 2 (Fig. 4(b)). We also plot the corresponding
values of fss on the abscissa. Let us consider a case wherein
subsequent to complete shear melting (f ¼ 1), a material is
allowed to evolve without applying stress (~s¼ 0). Such evolution
is carried out, wherein f decreases as a function of time
(according to eqn (16) with ~g

:
V ¼ 0), until it reaches a certain

value of f ¼ fi (initial value of f) at which stress is applied. In
Fig. 4(a), we consider a case wherein ~s ¼ 6 is applied to a
material. Consequently, if fi is in region II, where df/d~t < 0, f
will continue to decrease until it reaches the steady state value
associated with the intersection of ~sss ¼ 6 and the ow curve. If
fi is in region I, where df/d~t > 0, f will increase until it reaches
the steady state value associated with ~sss ¼ 6. However, since
the ow curve is monotonic, a material will ow irrespective of
the value of applied stress (the scenario for a material with
constant modulus will be similar to that discussed for Fig. 4(a)
as the curves shown in Fig. 3 are also monotonic apart from the
fact that they depict a plateau associated with permanent yield
stress).

For Fig. 4(b), let us assume the applied stress is ~s ¼ 40. In
this case the steady state value of f is the one associated with
Fig. 3 Relationship between ~sss and
~g
:
ss given by eqn (19) and (20) for

different values of m (from top to bottom m¼ 4, 3, 2 and 1) for A¼ 10 for
a case when the modulus remains constant ~G ¼ 1. It can be seen that
for m > 1, ~sss shows a plateau in the limit of ~g

:
ss/0 demonstrating the

presence of constant yield stress. In the inset ~sss is plotted against ~g
:
ss

for m ¼ 2 and different values of A (from top to bottom, A ¼ 30, 10, 3
and 1). It can be seen that the yield stress increases with m and A
according to eqn (23).

This journal is © The Royal Society of Chemistry 2015
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Fig. 4 Steady state flow curves are shown for (a) A¼ 10, ~sm¼ 0.1 and m

¼ 1 and (b) A ¼ 10, ~sm ¼ 0.1 and m ¼ 2. The corresponding values of fss

are also shown on the inside part of an abscissa. For a monotonic flow
curve a material will yield irrespective of the value of stress. For a non-
monotonic flow curve, the application of stress sc on a material will
cause yielding (flow) only if fi > fc. In addition, if fi is in the range f* < fi

< fc, the application of stress will cause flow only if df/d~t, given by eqn
(17), is positive. Both the figures are discussed in detail in the text.

Fig. 5 Evolution of dimensionless yield stress is plotted as a function
of time for various values of m for A ¼ 10 and ~sm ¼ 0.1. The dashed line
is for m¼ 2 and ~sm¼ 0.001. The inset shows evolution of ~sy for different
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the intersection of ~sss ¼ 40 and the increasing part of the ow
curve. If fi is in region III, where df/d~t < 0, f will continue to
decrease until it reaches the steady state value. If fi is in region
II, where df/d~t > 0, f will increase until it reaches the steady
state value. Therefore, for a given applied stress greater than ~sc,
if fi lies in regions II and III, a material will eventually attain a
steady state. However, if fi is in region I where df/d~t < 0, f will
continue to decrease even under application of the stress eld
until it attains the minimum possible value of f*. Consequently
a material will not attain the steady state.

The presence of a non-monotonic ow curve as shown in
Fig. 4(b) therefore leads to a natural dependence of yield stress
on f given by:

~sy ¼ ~sc for fi $ fc (24)

~sy ¼ fi

ð1� fiÞ
ln½~sðfiÞ=~sm�
ln½1=~sm� for f*\fi\fc: (25)

Since fi decreases with time, the yield stress ~sy will rst
remain constant for fi $ fc as shown by eqn (24), and then
increase with time for f* < fi < fc as per eqn (25). In Fig. 5 we
plot variation of ~sy with ~t for different values of A, ~sm and m. It
can be seen that ~sy is constant at short times and subsequently
shows a logarithmic dependence on ~t. In addition, the depen-
dence of ~sy on ~t becomes stronger with an increase in all of the
This journal is © The Royal Society of Chemistry 2015
three variables: A, ~sm and m. As explained in Fig. 4(b) and as
described by eqn (17) and (25), we can propose a thixotropic
yielding criterion: upon application of stress s on amaterial in a
momentary state fi, if f continues to decrease towards f* the
material will not yield. On the other hand, if the application of
stress causes evolution (increase or decrease) of f so that it
stabilizes at a value equal to or above fc, the material will yield.

As described by eqn (17), whether a material yields or not,
physical aging is affected by the strength of the stress eld.
Time evolution of relaxation time under a stress eld can be
obtained by manipulating eqn (10)–(12) and (16), and is given
by:

mt ¼
d ln ~s
d ln ~t

¼ m
A~t

~s1=m

�
1�


ð1� fÞ
f ~G

�
~s

�
; (26)

which clearly shows that for ~s ¼ 0, relaxation time dependence
described by eqn (8) is recovered (mt ¼ m). As discussed before,
let us consider a case wherein a material is allowed to age
without applying stress, such that f spontaneously decreases as
per eqn (4), and at f¼ fi stress is applied to the material. If fi$

fc, the term in braces is simply the reciprocal of ~sss(fss ¼ f)
(obtained by replacing fss in eqn (20) by f). Therefore, eqn (26)
can be expressed in a simpler format:

mt ¼
d ln ~s
d ln ~t

¼ m
A~t

~s1=m

�
1� ~s

~sssðfÞ
�

for fi $fc: (27)

Consequently, if fi $ fc and ~s > ~sc, with an increase in
time ~sss tends to ~s so that mt must approach zero, enabling a
material to achieve steady state. For the various values of
parameters for which fc does not exist according to eqn (22),
the evolution of relaxation time is given by either eqn (26) or
(27). We present the former case in Fig. 6(a) wherein we plot ~s
and mt as a function of time for m ¼ 1, fi ¼ 0.96 (corre-
sponding ~sss ¼ 28.3) for different values of ~s. It can be seen
that for ~s ¼ 0, ~s shows a continuous increase and corre-
spondingly mt approaches 1 in the limit of long times.
Furthermore, for nonzero stresses, if ~s < ~sss the evolution of ~s
weakens from the point of application of ~s leading to a step
decrease in mt. The corresponding evolution of ~s, however,
eventually plateaus out to a constant value causing mt to
values of A at m ¼ 1.5 and ~sm ¼ 0.1.

Soft Matter, 2015, 11, 3198–3214 | 3205
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Fig. 6 The temporal evolution of ~s and mt is plotted for different values
of ~s for (a) A ¼ 10, ~sm ¼ 0.1, and m ¼ 1 (the stress is applied when fi ¼
0.96 for which sss ¼ 28.3). (b) The evolution of ~s and mt is plotted for a
system with ~G ¼ 1, A ¼ 10, m ¼ 2, and permanent yield stress ~sy ¼ 9.5
(the stress is applied when fi ¼ 0.906). The values of stress are shown
in the legend. In part (c) the same variables are plotted for A¼ 10, ~sm ¼
0.1 and m ¼ 2 (the stress is applied when fi ¼ 0.906 for which ~sy ¼
46.1). The corresponding positions of fi for (a) and (c) are described in
Fig. 3(a) and (b), respectively, by dotted lines.
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approach 0 aer showing a maximum. If ~s > ~sss, ~s decreases
eventually leading to a plateau value and demonstrating
negative values of mt before mt / 0. In Fig. 6(b) we also
explore the evolution of ~s and mt for a system with a constant
modulus (~G ¼ 1), m ¼ 2, and fi ¼ 0.906 (correspondingly ~sy ¼
9.5, which is constant) for different values of ~s by solving eqn
(8) and (27). For ~s ¼ 0, the evolution of ~s, as per eqn (8) with
fsm ¼ 1, attains mt ¼ 2 in the limit of long times. However, for
~s < ~sy, ~s increases with time but with a weaker dependence
and the corresponding mt approaches m in the limit of long
times. Furthermore, since the ow curve for ~G ¼ 1 is mono-
tonic, for ~sy < ~s < ~sss the behavior of ~s and mt with respect to ~t
is expected to be qualitatively similar to that shown in
Fig. 6(a) for ~s < ~sss. For ~s > ~sss > ~sy, mt continues to decrease
and shows a minimum before approaching a steady state
value of 0.
3206 | Soft Matter, 2015, 11, 3198–3214
For m > 1 and ~G in eqn (15), the ow curve is non-monotonic.
For such a case if fi is such that: f* < fi < fc, eqn (25) suggests
that the term in braces is essentially ~sy(f). Consequently, eqn
(26) can be rewritten as:

mt ¼
d ln ~s
d ln ~t

¼ m
A~t

~s1=m

�
1� ~s

~syðfÞ
�

for f*\fi\fc: (28)

We represent this scenario in Fig. 6(c) wherein the time
dependent evolution of ~s and mt is plotted for m ¼ 2, fi ¼ 0.906
(corresponding ~sy ¼ 46.1) for different values of ~s. If ~s $ ~sy(fi),
~sy(f) / ~s causing mt / 0 enabling the material to attain a
steady state. For ~s < ~sy(fi), ~s continues to increase but with
weaker dependence. The corresponding mt shows a step
decrease at the point of application of stress, but increases
subsequently. Very interestingly at moderately high times mt

increases beyond m ¼ 2, and shows a maximum. Such behavior
can be attributed to a decrease in f as a function of time which
leads to ~s/~sy(f) / 0 in the limit of long times. However, owing
to impeded increase in s due to applied ~s, A~t/~s1/m increases
beyond unity causing mt to increase beyond m. Nonetheless as
f / f*, A~t/~s1/m again decreases gradually.

The presence of yield stress in thixotropic materials (m > 1),
as shown in Fig. 4(c), on the one hand leads to the continuation
of aging for ~s < ~sy. On the other hand, for ~s $ ~sy the material
eventually undergoes rejuvenation producing a liquid phase.
For such conditions, we plot the evolution of strain (g) under
the application of ~s for fi in the domain f* < fi < fc in the inset
of Fig. 1S of the ESI.† It can be seen that for ~s < ~sy, g increases
but eventually reaches a plateau. However, for ~s$ ~sy, g shows a
sharp increase with time. Application of ~s in the vicinity of ~sy
but slightly larger and smaller than ~sy, can be seen to be
following a very similar evolution to g for a signicant period of
time. However, in the limit of very long times, g bifurcates. This
phenomenon is popularly known as viscosity bifurcation in the
literature. For strain curves associated with ~s $ ~sy, we can
dene the time at the point of ination d2g/d~t2 ¼ 0 as the time
to yield (~tdy). In Fig. 1S of the ESI† we plot~tdy as a function of ~sy.
It can be seen that time ~tdy rapidly increases as ~s � ~sy / 0. On
the other hand, for ~s [ ~sy, ~tdy decreases weakly with an
increase in ~s.

In Fig. 2S of the ESI,† we plot the evolution of g at constant ~s
but at different fi. This plot is therefore equivalent to carrying
out creep experiments at different waiting times aer stopping
the shear melting. It can be seen that for fi smaller than fss

associated with ~s¼ ~sss(fss), the system is in region I of Fig. 4(b),
consequently the strain eventually reaches a plateau (the
plateau is not apparent in Fig. 2S† as it occurs aer a very long
time). However, if fi is larger than fss, the application of ~s ¼
~sss(fss) causes yielding, wherein strain can be seen to be rapidly
increasing with time.

Another important characteristic feature of glassy materials
in general and SGMs specically is the presence of residual
stresses. Typically SGMs are shear melted by applying a
constant shear rate of sufficiently large magnitude prior to
carrying out any rheological study. During shear melting a
This journal is © The Royal Society of Chemistry 2015
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steady state is reached ð~g: ss ¼ ~g
:
smÞ and the corresponding ~sss

and fss are given by eqn (19) and (20). Subsequent to the
cessation of shear melting if the strain is kept constant, a decay
in stress can be easily estimated by simultaneously solving eqn
(16) and (18) with ~s given by eqn (10)–(12) and initial conditions

of ~s ¼ ~sss and f ¼ fi ¼ fssj~g: ss¼~g
:
sm

at ~t ¼ 0, where ~g
:
sm is the

dimensionless shear rate associated with shear melting. It
should be noted that even though strain is kept constant
resulting in _g ¼ 0, _gE and _gV may not be constant leading to:
_gE ¼ � _gV. As stress relaxes, the spring in the Maxwell model
contracts, giving rise to: _gV ¼ ~s(t)/~G, where ~s(t) is an instanta-
neous stress remaining in a material as it relaxes. In Fig. 7 we
plot ~s as a function of ~t for a material with a constant modulus
(~G¼ 1) with A¼ 10 and m¼ 1.1, 1 and 0.9 for various values of fi

in the range 0.95 and 0.65. It can be seen that the higher the
value of fi is, the greater is the plateau value of ~s in the limit of
~t / 0. Furthermore, this value is independent of m as per eqn
(20). Fig. 7 shows that for m¼ 0.9 stress decays to 0, while for m¼
1 stress shows a power law decay. For m ¼ 1.1, on the other
hand, stress shows a plateau in the limit of high times
describing the presence of residual stress. The most prominent
feature of Fig. 7 is that irrespective of the initial value of stress,
in the limit of long times all of the stress relaxation curves
coincide for a given value of m. Consequently, according to the
present model, the residual stress is independent of the initial
stress or state of a material.

In addition to the relaxation time, if the modulus of a
material also shows an increase, the relaxation of stress shows
some further interesting features. It is well known that an
increase in the modulus of a spring having constant strain
increases the stress induced in the same. Consequently, an
increase in the modulus as a function of time impedes the
relaxation of stress. In Fig. 8 we plot the relaxation of stress for
Fig. 7 Relaxation of stress subsequent to cessation of shear melting
for a material with a constant modulus (~G ¼ 1) for different values of
shear melting shear rates _gsm (expressed in terms of fi) and m for A ¼
10. For a given value of m, ~s in the limit of ~t / 0 only depends on fi. In
that limit, from top to bottom: fi ¼ 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, and
0.65. The corresponding _gsm depends on m and can be obtained from
eqn (19). In the limit of ~t / N, stress shows a plateau for m > 1, stress
undergoes a power law relaxation for m¼ 1, while stress decays to 0 for
m < 1. In the inset ~s is plotted as a function of~t for m¼ 1.1 for two values
of fi ¼ 0.95 and 0.65. The inset shows that greater initial stress leads to
a faster relaxation of stress due to rejuvenation caused by dissipative
deformation of the dashpot as a result of the contracting spring.

This journal is © The Royal Society of Chemistry 2015
m ¼ 1.1, 1 and 0.9 for different values of fi. Various features of
the observed behavior are qualitatively identical to those for a
material with a constant modulus (shown in Fig. 7) for m # 1.
This suggests that irrespective of whether the modulus
increases or not, stress must decay completely for m # 1.
However, for m ¼ 1.1, at longer times the relaxation curves in
Fig. 8 are observed to demonstrate a minimum, which can be
attributed to a time dependent increase in the modulus.
Nonetheless, as mentioned before, as the relaxation time
diverges to N, the modulus must eventually reach a constant
value. Consequently, the residual stress must also reach a
constant value. In the inset of Fig. 8, we present a schematic
wherein possible scenarios are described. Depending upon
when the modulus becomes constant in relation to the increase
in relaxation time, stress may or may not show a minimum
before reaching a residual stress plateau in the limit of long
times. In the limit of very short times, if the modulus shows
enhancement, stress may also show an increase in that limit
before beginning to relax. Although to best of our knowledge an
increase in stress during stress relaxation of aging SGMs has not
been reported in the literature, the present work clearly predicts
such a possibility, particularly for thosematerials that show very
a prominent increase in modulus as a function of time.

Subsequent to the cessation of shear melting, instead of
keeping the strain constant, if stress is removed (~s ¼ 0) the
material will undergo strain recovery. It is known that upon the
removal of stress a single mode Maxwell model undergoes an
instantaneous recovery.57 However, in real viscoelastic
(including so glassy) materials recovery occurs over a nite
(and sometimes a prolonged) period of time. The period over
which recovery takes place is controlled by the retardation
timescale associated with a material. Therefore, in order to
solve the strain recovery problem, we consider a dashpot (with
Fig. 8 Stress is plotted as a function of time for a material with a time
dependent modulus given by eqn (15) for various model parameters as
mentioned. For a given value of m, ~s in the limit of ~t / 0 only depends
on fi whose values are same as those mentioned in Fig. 7. It can be
seen that since the modulus increases with time, the residual stress in
the material with m > 1 may show an increase at very long times.
However, as shown in the inset since the modulus always remains
finite, in the limit of long times the stress must show a plateau in that
limit even if it shows an increase over a certain period. The inset also
shows the possibility that at very early times for ~t � ~s(~t) a possible
increase in modulus may show an early increase in stress.

Soft Matter, 2015, 11, 3198–3214 | 3207
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Fig. 9 Evolution of (g � gsm)/gsm is plotted for various values of m and
fi. In the inset identical data is plotted for the elastic strain present in a
material as a function of time. It can be seen that for m # 1 the entire
elastic strain is recovered in the limit of long times, however for m > 1
residual elastic strain remains in a material.

Fig. 10 Elastic strain present in a material is plotted as a function of
time for different values of a. It can be seen that an increase in a

increases the rate at which strain is recovered. In the inset normalized
ultimate elastic strain (residual strain) is plotted as a function of m,
which shows that gN increases with both a and m.
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viscosity hd) in parallel with the spring. Consequently, the cor-
responding Voigt element (spring and dashpot in parallel) will
have a retardation time given by: sd ¼ G/hd, where G is the
modulus associated with the spring. It should be noted that in
addition to the Voigt element there also exists a dashpot with
viscosity h in series (same as that of the Maxwell model), by
virtue of which the system also has a relaxation time (s ¼ G/h).
However, this series dashpot does not play any role during
recovery as the deformation of the same is always permanent,

consequently
~
g
c
V ¼ 0. We assume that sd represents the average

retardation time of a material, whose average relaxation time is
s. However, if the relaxation time undergoes a time dependent
evolution according to eqn (8), causality demands that the
retardation time must also show an identical time depen-
dence.53 As a result, the mean retardation time is given by:53

~sd ¼ a~s, (29)

where a is a constant and ~sd ¼ sd/s0. The elastic strain recovery
upon the removal of stress subsequent to the cessation of shear
melting with initial conditions: at ~t ¼ 0, g ¼ gsm ¼ ~sss/~Gss and
f ¼ fi ¼ fssj~g: ss¼~g

:
sm

is given by:

ln

�
g

gsm

�
¼ lnðfi=f*Þ

a

"�
1þ

�
ln f*

lnðf*=fiÞ
� 1
1�m

A~t

�1�m

� 1

#
m. 1;

(30)

g ¼ gss

�
1þ A~t

fi
�A

�� 1
aA

m ¼ 1; and (31)

ln

�
g

gsm

�
¼ ð1� mÞA ln fi � 1

aAð1� mÞ

�
2
4 1þ A~t

ð1� ð1� mÞA ln fiÞ1=ð1�mÞ

!1�m

� 1

3
5 m\1:

(32)

The ultimate recovered strain (gN) can be obtained from eqn
(30)–(32) in the limit of ~t / N and is given by:

ln

�
gN

gsm

�
¼ ln



f*
�
fi

�
a

¼ 1� ð1� mÞA ln fi

aAð1� mÞ m. 1

gN ¼ 0 m# 1: (33)

In Fig. 9 we plot (g � gsm)/gsm as a function of ~t for three
values of m and two values of fi as represented by eqn (30)–(32).
In the inset we plot identical data in terms of the time depen-
dent recovery of g. It can be seen that for m # 1 the total elastic
strain gsm indeed gets recovered in the limit of long times.
However for m > 1 only part of the elastic strain gets recovered
leading to the presence of residual elastic strain in a material.
This is because; owing to aging, the average retardation time of
a material diverges converting the dashpot, which is in parallel
with the spring, into a rigid rod preventing any further recovery
3208 | Soft Matter, 2015, 11, 3198–3214
of the spring. In Fig. 10 we plot the effect of average retardation
time, by varying factor a, on the recovery behavior. It can be
seen that a decrease in a, which corresponds to a decrease in
retardation time at any xed aging time, causes the magnitude
as well as the rate of recovery to increase. In the inset we plot
gN/gsm as a function of m, which clearly shows that the larger
the value of m or a is, the smaller is the ultimate recovered strain
(gN). Interestingly in the limit of a/ 0 all of the elastic strain is
expected to undergo an instantaneous recovery irrespective of
the value of m.
IV. Discussion

The most prominent result of the proposed model is that for a
material with a time dependent modulus for m > 1, the steady
state relation between stress and strain rate is non-monotonic.
On the other hand, for a constant modulus with m > 1 a material
shows a plateau of constant stress in the limit of small strain
rate, while for m # 1 the steady state ow curve is always
monotonic. We believe that these results are not limited only to
the power law dependence of the relaxation time on waiting
time. Any dependence between the relaxation time and waiting
time, which is stronger than linear, must show a behavior
This journal is © The Royal Society of Chemistry 2015
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similar to that observed for m > 1. Conversely, any dependence
which is weaker than linear should result in monotonic
dependence between the steady state stress and strain rate. The
non-monotonic relation between stress and strain rate for the
present model gives rise to thixotropic yield stress. As described
in Fig. 5, the yield stress remains constant until fi becomes
larger than fc, below which it shows a logarithmic dependence
on time. Recently Negi and Osuji58 measured the yield stress
and yield strain of a 4 day old 3.5 weight % aqueous suspension
of Laponite. They observed that the yield stress indeed showed a
constant value for a certain period of time beyond which it
showed a logarithmic increase with time. Interestingly, the
relaxation time of the studied Laponite suspension showed an
exponential dependence on waiting time over the same period
for which constant yield stress was observed. At higher times
the Laponite suspension showed a power law dependence on
waiting time with mz 1.8. The yield stress in the corresponding
regime showed a logarithmic increase with respect to waiting
time. According to the present model it appears that for the
Laponite suspension studied by Negi and Osuji,58 the relaxation
time followed two different dependencies on f: for f > fc, s ¼
s(f) leads to s� exp(t/s0), while for f < fc, s¼ s(f) leads to s� (t/
sm)

m. Consequently, similar to the results shown in Fig. 5, the
model is indeed expected to predict a constant value of yield
stress for f > fc followed by a logarithmic increase. It is
important to note that the logarithmic increase in the modulus
during aging as predicted by the present model using a scaling
relation, which in turn is responsible for the logarithmic
increase in yield stress, has been observed for many SGMs.32,51,59

Negi and Osuji58 also observed that the yield strain decreases
in the regime where yield stress is observed to be constant (for
short times). On the other hand, the yield strain is observed to
be constant in the limit of long times when the yield stress is
observed to increase logarithmically. In the present model,
considering the yield strain to be: gy ¼ ~sy/~G, its dependence on~t
can be directly written as:

gy ¼
~sc lnð1=~smÞ

lnð1=~smÞ þ m ln
h
½~sðfsmÞ�1=m þ A~t

i
for fi $fc or ~t# ~t

��
f¼fc

(34)

gy ¼
fi

ð1� fiÞ
¼ exp

n
1�

h
½~sðfsmÞ�1=m þ A~t

i1�mo
Aðm� 1Þ

0
B@

1
CA� 1

2
64

3
75

�1

for f*\fi\fc or ~t. ~t
��
f¼fc

:

(35)

Eqn (34) very clearly suggests that for fi $ fc (short times) gy

should decrease with an increase in~t. On the other hand, for f*
< fi < fc, in the limit of long times the term in the braces in eqn
(35) tends to 1, leading to a constant value of gy. Overall, the
present model explains the yielding behavior of the Laponite
suspension reported by Negi and Osuji58 very well.

It is well known that any material that possesses yield stress
shows shear banding in a ow eld with a gradient of shear
stress. The axial ow of yield stress uid in a pipe is a classic
This journal is © The Royal Society of Chemistry 2015
textbook example of shear banding.54 However, even in the
absence of a shear stress gradient, a material with a non-
monotonic steady state relationship between sss and _gss, which
is observed for m > 1, demonstrates (thixotropic) shear banding
if the imposed shear rate is less than _gc (refer to Fig. 4(b)). This
is because a negative slope of sss � _gss dependence is consti-
tutionally untenable, consequently _gss does not exist below _gc.
Let us consider a case of simple shear ow in between parallel
plates separated by distance H. If the top plate velocity V is such
that V/H < _gc, shear banding will take place so that a band (or
bands) having a (total) thickness h ¼ V/ _gc will ow with _gc. On
the other hand, a band (or bands) with a total thickness H � h
will remain stationary. An increase in V will decrease the width
of the stationary band(s) and in the limit of V/H ¼ _gc, the entire
sample will ow with a shear rate _gc. The present model very
clearly suggests that thixotropic shear banding is possible only
when m > 1 and ~G increases sufficiently strongly so that the
solution of eqn (22) causes fc to lie in the range: f* < fc < 1.
Remarkably, it is indeed observed that a simple concentrated
emulsion which shows negligible enhancement in the modulus
does not show thixotropic shear banding, but a clay loaded
emulsion which shows signicant enhancement in the
modulus does show thixotropic shear banding13 as suggested by
the present model. Interestingly Bécu et al.60 suggested that in a
simple concentrated emulsion, if attractive interactions are
induced, it shows thixotropic shear banding. Although Bécu
et al.60 did not measure the modulus, we believe that attractive
interactions will indeed induce evolution of the modulus in
accordance with the present model. Experimentally such
behavior has also been observed for a variety of SGMs such as
suspensions of charged particles including smectite clay61–63

and cement paste,63 for which not only m is expected to be
greater than unity but the modulus also shows prominent
increase as a function of time. The present work therefore also
suggests that polymeric materials undergoing crosslinking
reactions, wherein the relaxation time shows a stronger that
linear dependence on time and themodulus shows a prominent
increase,53 should also demonstrate shear banding.

The very fact that the steady state relation between stress and
strain rate is monotonic for m # 1 implies an absence of
thixotropic yield stress. Consequently, a material with m # 1
must yield for any value of applied stress. However, as is
apparent from Fig. 6(a), even with m# 1, the smaller the stress is
the longer time it takes to stop the enhancement of relaxation
time. In practice, the yield stress is estimated by applying a
linear or oscillatory stress ramp. Since stress increases from a
small value to a large value over a nite time, at a certain stress a
material shows a sudden enhancement in strain. As a result, the
material shows an apparent yield stress, which is greater than
zero. This behavior, therefore, may manifest itself as under-
going weak ow below a certain stress and strong ow above a
certain stress, thereby resulting in so called “engineering yield
stress.” Furthermore, engineering yield stress is expected to
decrease with a decrease in the rate at which stress is increased.
The presence of such engineering yield stress has indeed been
reported by Derec et al.51 for a moderate concentration (36 to 44
volume %) suspension of 100 nm silica particles with m ¼ 0.55.
Soft Matter, 2015, 11, 3198–3214 | 3209
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The application of stress also affects the rate of evolution of
relaxation time (mt). In the literature, mt has been experimentally
estimated as a function of stress for a so microgel paste24 and
an aqueous suspension of Laponite.27 It has been observed that
in the limit of small stresses mt / m, while in the limit of large
stresses mt / 0. As shown in Fig. 6, the model predicts this
behavior very well. Fig. 6 also shows negative values of mt.
Experimentally it is indeed observed that the application of
stress not only decreases the rate of change of relaxation time
but also the relaxation time itself, thereby justifying the pres-
ence of negative values of mt as predicted by the model.

Viscosity bifurcation has been observed for many SGMs such
as Laponite suspensions, bentonite suspensions, mustard, hair
gel, mayonnaise, foam, quick sand (mixture of ne sand, clay
and salt water), physical gels with polymeric backbones,
etc.9,10,32,64,65 While for some of these materials the value of the
power law exponent m is not reported, for others it is around or
above 1. Strictly speaking the present model predicts viscosity
bifurcation for m > 1. However, the time taken by the material to
undergo substantial or noticeable ow is very long. Conse-
quently, even for m less than but close to 1 the effect of viscosity
bifurcation can be observed experimentally.

Another rheological behavior closely related to viscosity
bifurcation is delayed yielding, which can occur for two cases.
For m# 1, the smaller the stress is, the more delayed will be the
strain induced in a material (apparent yielding). On the other
hand, for m > 1 yielding will get delayed as the yield stress is
approached from higher values as shown in Fig. 1S.† Sprakel
and coworkers16 studied thermo-reversible stearylated silica
gels, and a weak depleted gel of polystyrene particles and
observed delayed yielding no matter how small the stress was.
Although Sprakel and coworkers16 do not measure the value of
m, since yielding is observed for all of the studied stresses, it
could be possible that it is below 1. Sprakel also observed that
with a decrease in stress, the time to yield increases faster at
small stresses and is slower at large stresses. Interestingly,
Fig. 1S† qualitatively captures this behavior. Baldewa and
Joshi15 also observed delayed yielding for an around 80 day old
aqueous Laponite suspension for which m under quiescent
conditions is observed to be slightly below 1 in agreement with
the present model.

In the present model we employ only a single mode, and
competition between aging and rejuvenation of the same leads
to a decrease and increase in free energy, respectively. As a
result, all the rheological effects for which consideration of only
a single mode is sufficient can be explained by the model
proposed in this work. On the other hand, there are many other
important effects that depend strongly on how the shape of the
relaxation time spectrum is affected by the competition between
the aging and rejuvenating modes. Consequently, effects such
as viscosity bifurcation, presence of engineering yield stress,
shear banding, which can in principle be explained by a single
mode model, are strongly inuenced by dynamically changing
the relaxation time spectrum. Many SGMs have also been
observed to show overaging,20,21 wherein the application of a
moderate magnitude of deformation eld increases the
3210 | Soft Matter, 2015, 11, 3198–3214
relaxation time rather than decreasing it. This effect has also
been attributed to alteration of the relaxation time
distribution.19

It is known that perfectly crystalline materials (or perfect
solids) do not relax over any timescale. Consequently, upon the
application of step strain, stress induced in the same remains
unrelaxed for an indenite period of time. It is therefore no
surprise that the glassy materials including so glasses, which
are in an apparent solid state, cannot relax the induced stress
completely over practically measurable time scales. Very
recently, Ballauff and coworkers22 studied stress relaxation
subsequent to shear melting by using MCT and molecular
dynamics simulations as well as by carrying out experiments on
two types of SGMs: particulate colloidal glasses with hard
sphere interactions and a PS–PNiPAM core shell suspension.
They observed that below a certain threshold volume fraction
(or above a temperature for MD simulations), stress decays
completely while at high volume fractions the materials indeed
demonstrate the presence of residual stresses. They observed
that for the volume fractions for which the residual stress is
observed, stress relaxes by about a factor of ten or less before
plateauing out. Importantly, MCT, which does not account for
aging, shows residual stress above a certain concentration.
However, for such cases, the stress directly attains a plateau
without undergoing any relaxation, thereby showing a partial
disagreement with the experimental data.

Such residual stress can originate from two factors. It is
possible that immediately aer shear melting is stopped the
particles get arrested in such a fashion that faster modes
associated with smaller length-scales are nite but slower
modes associated with larger length-scales are practically
innite. However, there is no time dependent evolution of the
relaxation modes. Under such a case a material relaxes only up
to such an extent allowed by nite modes. The other possibility
is that immediately aer the cessation of shearmelting all of the
timescales are nite, which age as a function of time. Eventual
divergence of such relaxation timescales over nite time does
not allow complete relaxation of stress.

The present model can, in principle, represent both the
possibilities, however the match is qualitative since the model
is limited by a single mode. The present model can express the
rst possibility by considering m [ 1, wherein the relaxation
time diverges soon aer shear melting is stopped. However, in
this case owing to the consideration of only a single mode, the
relaxation of stress will not be very signicant as is the case with
MCT. However, since the relaxation modulus is given by: G(t) ¼
SGi e

�t/si, the consideration of additional nite relaxation
modes may represent the decay of stress before it plateaus out.
The second case is presented in Fig. 9, wherein a single mode
with m > 1 can be seen to predict the right magnitude of decay.
Furthermore, Ballauff and coworkers22 observe that the greater
the stress (or shear rate) induced during shear melting, the
faster is the relaxation of stress. In the inset of Fig. 9, we plot two
relaxation curves subsequent to shear melting at different
rejuvenation stresses (or shear rates). The model indeed
predicts that the relaxation is faster when the shear melting
stress is higher. This is because higher shear stress at the time
This journal is © The Royal Society of Chemistry 2015
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Fig. 11 Stress response to switch on and off strain profiles shown in
the lower inset of (a) for a material having ~G ¼ 1. For m ¼ 0.9, ~s / 0 in
the limit~t/N as shown in part (a), while for m¼ 1.1, |~s| > 0 in the limit
~t / N. In both of the figures the top inset describes |~s| plotted on a
logarithmic scale. This figure therefore suggests that for m # 1 a
material shows a weak long term memory, while for m > 1 a material
shows a strong long term memory.
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of cessation of shear melting induces greater
~
g
c
V in the dashpot

(in the opposite direction), which causes partial rejuvenation
leading to a slower increase in relaxation time. This facilitates
greater relaxation of stress at early times as shown in the inset of
Fig. 9. However, in the limit of long times all of the relaxation
curves, irrespective of shear melting stress/strain rate for a given
m, superpose. Consequently, the present model shows that
residual stress (or stress in the limit of very long times) is
independent of the applied shear melting shear rate. The
experiments of Ballauff and coworkers22 show that residual
stress shows a weak increase with an increase in the shear
melting shear rate, while those systems wherein stress decays
completely, stress in the limit of very long but at identical times
shows a decrease with a decrease in the shear melting shear
rate. We believe that this difference in the model prediction and
the experimental results is due to the consideration of only a
single mode.

Based on the stress relaxation behavior Fielding and
coworkers proposed a distinguishing criterion of weak and
strong long term memory for SGMs. They suggested an experi-
ment wherein a material is subjected to step strain at time t0,
which is switched off at time t1, and the relaxation of stress is
monitored for t > t1. According to their proposal if s / 0 in the
limit of t / N, it has a weak long term memory. On the other
hand, in that limit if the nite residual stress remains in a
material it has a strong long termmemory. We solve the present
model (with constant modulus) by subjecting it to the suggested
ow eld as shown in the lower inset of Fig. 11(a). The model
prediction for the two cases m < 1 and m > 1 is shown in Fig. 11(a)
and (b), respectively. The model clearly predicts that materials
with m # 1 have a weak long term memory while materials with
m > 1 have a strong long term memory.

The strain recovery behavior of many SGMs such as microgel
pastes,24 aging surfactant pastes,23 mustard,32 clay suspen-
sions,32 colloidal gels,32 etc., has also been studied in the liter-
ature. The qualitative nature of the strain recovery in these
systems is similar to that described in Fig. 9. The model also
predicts the presence of residual strain for materials with m > 1.
However, the experiments cannot report residual strain as it is
difficult to distinguish between residual strain and irrecover-
able strain due to ow (dissipation). In polymeric glasses,
residual strain is known to cause distortion (warpage) of the end
product.66,67 Usually so glassy commercial products are in a
macroscopically unstressed state, however, the presence of
residual strain may lead to local pockets of residual stress,
which may adversely affect the long time behavior of the
materials.

The results of the proposed model, though it uses only a
single mode, render insight into how variation in the relaxation
time (represented by m and A) and modulus (represented by ~sm)
affect various rheological behaviors. Among these parameters,
the value of m, which represents d ln s/d ln t, is primarily
responsible for determining the material behavior. Firstly m ¼
0 represents the material in an equilibrium state that does not
undergo any evolution as a function of time. If m# 1, the model
shows that the steady state stress–strain rate relationship (ow
curve) is monotonically increasing. Consequently, a material
This journal is © The Royal Society of Chemistry 2015
ows at all the stresses, and therefore does not demonstrate the
presence of true yield stress. However, owing to time depen-
dency a material does demonstrate thixotropy. Furthermore, as
m approaches unity from below, a material may show ‘engi-
neering yield stress’ or ‘apparent delayed yielding’ depending
upon the experimental conditions. For m > 1, the qualitative
behavior of the ow curve is different depending upon how the
modulus scales with time. For materials whose aging dynamics
are purely entropic themodulus remains constant during aging.
Under such conditions (constant modulus and m > 1) the ow
curve is monotonic but plateaus out as the strain rate decreases.
In this case the material shows thixotropy as well as true yield
stress, which is independent of time. If the inter-particle ener-
getic interactions affect the aging behavior, the modulus
increases as a function of time. Although the scaling relation
derived in this work suggests that the modulus follows eqn (15),
the nature of the ow curve can be predicted for any functional
form: ~G ¼ ~G(~t ). The key is the location of fc given by eqn (22)
with respect to the location of f* given by eqn (13). If f* > fc, the
ow curve would be qualitatively similar to that for a system
with a constant modulus. However, if f* < fc the ow curve will
be non-monotonic as shown in Fig. 4(b) leading to time
dependent (thixotropic) yield stress along with thixotropy. A
limit of m [ 1 represents an extremely fast evolution of relax-
ation time as a function of time. Consequently, the relaxation
time diverges very rapidly freezing the system kinetically in a
Soft Matter, 2015, 11, 3198–3214 | 3211
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high free energy state. An interesting example of such a limit of
m [ 1 is a system of dense granular materials. In this system,
subsequent to rejuvenation, particles get arrested in a random
close packing conguration which is a high free energy state.
The limit of m[ 1 is also observed during physical or chemical
gelation, wherein owing to bond formation the mobility of the
constituents rapidly decreases causing a divergence of relaxa-
tion time. Furthermore, even though the present model cannot
predict the behaviors such as delayed yielding with a minimum
in strain rate as observed by Sprakel et al.16 and delayed solid-
ication, it is expected that an increase in m would enhance the
possibility of delayed solidication while a decrease in m would
enhance the possibility of eventual yielding.

There are important differences between the present model
compared to the other models such as uidity/thixotropic, MCT
and SGR. Firstly the primary framework of the present model is
the evolution of free energy. Consequently, a material response
gets divided into two regimes. In the rst one, a material
eventually acquires the equilibrium state (m # 1) and in the
other it does not (m > 1). Importantly this demarcation is
physically intuitive and the parameter m can be experimentally
obtainable. In various uidity/thixotropic models the depen-
dence of viscosity on a structural parameter l is arbitrarily
assumed so as to demonstrate various rheological effects
including a non-monotonic steady state ow curve. The present
model, on the other hand, proposes a relation between the
relaxation time and free energy, which shows an experimentally
observed time dependence of relaxation time that in turn shows
various rheological effects as discussed. Very importantly, to the
best of our knowledge, the present model is the only model that
accounts for time dependence of the modulus. Moreover, we
actually attribute the non-monotonicity of the steady state ow
curve leading to various thixotropic effects to the time depen-
dency of the modulus as vindicated by experiments on many
different kinds of SGMs. Consequently, a material’s behavior, in
principle, can be guessed a priori simply based on the behavior
of relaxation time and modulus, which in our opinion is the
most prominent feature of the present model.

Models such as MCT and SGR, on the other hand, are
mathematically involved but give greater insight into the glassy
dynamics. Out of these models, MCT does not involve aging
dynamics, and consequently either shows a glass state or a
liquid state based on the concentration. As a result, stress in the
glass state does not relax at all as shown by Ballauff and
coworkers,22 contrary to experimental behavior, which shows
relaxation before plateauing out. While the SGR model is
primarily based on aging dynamics, rejuvenation is induced by
strain. Consequently, the application of a nite strain rate
causes complete rejuvenation in the SGR model. The present
framework, on the other hand, considers rejuvenation in terms
of strain rate and complete rejuvenation, therefore, is possible
only in the limit of innite strain rate. Furthermore, the SGR
model considers only a full aging scenario (m ¼ 1), unlike the
present model, that considers m as a parameter. Consequently,
the SGRmodel does not predict residual stress at all, which also
is the case with the present model for m ¼ 1. In addition, the
SGRmodel also does not predict various effects arising from the
3212 | Soft Matter, 2015, 11, 3198–3214
time dependent modulus. The most signicant feature of the
SGR model is the rigor involved in the analysis which leads to
consideration of the relaxation time spectrum and a realistic
prediction of alteration of the same under the application of
various kinds of deformation elds. The present model is based
on simple rst order kinetics leading to the evolution of a single
mode relaxation time, whose effect along with time dependent
modulus is considered through a Maxwell model. We feel that
these features of the model are an advantage, as it clearly
indicates rheological behaviors for which consideration of the
rst order kinetics and a single mode are sufficient.

V. Conclusion

SGMs are thermodynamically out of equilibrium materials.
Consequently, they undergo aging wherein the microstructure
progressively relaxes to attain low free energy structures as a
function of time. During rejuvenation, on the other hand, the
application of a deformation eld either slows down or reverses
the structural recovery. The rheological behavior of SGMs
therefore strongly depends on the competition between aging
and rejuvenation, which is responsible for many fascinating
effects. In this work we present a model that considers the rate
of change in free energy to be a rst order process and is
equated to the sum of decreasing (aging) and increasing (reju-
venation) contributions. The aging contribution is assumed to
be proportional to the excess free energy divided by the time-
scale associated with structural rearrangement or the relaxation
time (s). Consequently, at smaller s, due to the greater mobility
of the constituents, structural recovery is faster and vice a versa.
The rejuvenation term is considered to be proportional to the
viscous component (dissipative) of the rate of the applied
deformation eld. We propose a dependence of s on the free
energy, which has the same functional form as that proposed by
the Krieger–Dougherty equation or mode coupling theory for
the dependence of s on volume fraction in particulate suspen-
sions. Remarkably, the proposed relation leads to a power law
dependence of s on time with exponent m in the absence of any
external deformation eld as observed experimentally for a
variety of glassy materials. We consider two cases for the
modulus. In the rst case we consider the modulus to be
constant as observed for entropic aging systems. In the second
case, we derive an expression for the time dependence of the
modulus based on simple scaling arguments. The availability of
relaxation time and modulus scale naturally leads to consider-
ation of the single mode Maxwell model as a constitutive rela-
tion. The model has two and three parameters depending upon
whether the modulus remains constant or not, respectively. All
of the three parameters can be estimated experimentally.

Interestingly, for m > 1, it is observed that the steady state
relationship between the stress and strain rate is monotonic
with a low shear rate stress plateau when the modulus is
constant, while it is non-monotonic for a time dependent
modulus. The former scenario leads to thixotropy with true but
constant yield stress. On the other hand, non-the monotonic
relation implies the presence of a thixotropic (time dependent)
yield stress as well as shear banding. Irrespective of the nature
This journal is © The Royal Society of Chemistry 2015
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of the modulus, for m > 1, the model predicts the presence of a
residual stress as well as strain. For 0 < m# 1, on the other hand,
a material is observed to be merely thixotropic without thixo-
tropic yield stress. Interestingly, the model also predicts a
decrease in mt (value of d ln s/d ln t under deformation eld)
with an increase in applied stress at any given time as observed
experimentally, and how mt evolves under the application of
stress. Finally and importantly, the present model allows
differentiation of various kinds of thixotropic behaviors based
on different combinations of model parameters.
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