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Mechanical response of adherent giant liposomes
to indentation with a conical AFM-tip

Edith Schäfer, Marian Vache, Torben-Tobias Kliesch and Andreas Janshoff*

Indentation of giant liposomes with a conical indenter is described by means of a tension-based

membrane model. We found that nonlinear membrane theory neglecting the impact of bending

sufficiently describes the mechanical response of liposomes to indentation as measured by atomic force

microscopy. Giant vesicles are gently adsorbed on glassy surfaces via avidin–biotin linkages and indented

centrally using an atomic force microscope equipped with conventional sharp tips mounted on top of

an inverted microscope. Force indentation curves display a nonlinear response that allows to extract

pre-stress of the bilayer T0 and the area compressibility modulus KA by computing the contour of the

vesicle at a given force. The values for KA of fluid membranes correspond well to what is known from

micropipet suction experiments and inferred from membrane undulation monitoring. Assembly of actin

shells inside the liposome considerably stiffens the vesicles resulting in significantly larger area

compressibility modules. The analysis can be easily extended to different indenter geometries with

rotational symmetry.

1 Introduction

Cell mechanics plays a pivotal role in many biological processes
such as exo- and endo-cytosis, tether formation, cell adhesion,
growth, and migration. The cell’s mechanical response to external
deformation originates mainly from the plasma membrane firmly
attached to the contractile cortical cytoskeleton, which is composed
of cross-linked actin filaments as well as motor proteins such as
myosin II.1–7 It is therefore of great interest to understand how cells
respond to forces and how these forces are transduced into
biochemical signals to generate a biological response.1–3

In order to better understand the intricate nature of active
shells surrounding living cells, model membranes were frequently
employed to reduce complexity, while still mimicking the essential
physical properties of the plasma membrane connected to the
cytoskeleton.8,9 Among the different model membranes, giant uni-
lamellar vesicles (GUVs) are often employed for bottom-up strategies
to mimic and investigate the mechanical properties of cells.10,11 In
this context, mechanical properties of lipid bilayers were inferred
from micropipet suction experiments,12–14 flicker spectroscopy15–17

and atomic force microscopy.18 Depending on the used method
different aspects of membrane mechanics were accessible such as
area compressibility modules and lysis tension form micropipet
suction, bending rigidity from flicker spectroscopy or Young’s
modules and breakthrough forces obtained from indentation experi-
ments. In the context of mimicking eukaryotic cells it is also

desirable to assemble an actin-based cortex at the inner leaflet of a
giant liposome. Sackmann and coworkers pioneered in forming thin
actin shells inside giant lioposomes. Monitoring membrane undula-
tions allowed them to assess bending and area compressiblity
modules of the composite shell.15 Apart from the early work
of Sackmann, vesicles have successfully been coated with an
actin cortex by gentle hydration,19 electroformation,15 inkjet
electroformation,20,21 the inverted emulsion method22,23 and
hydration of lipids spread on an agarose hydrogel.24 Besides
passive actin networks also contractile actomyosin cortices
were successfully reconstituted in cell-sized vesicles.25

Generally, membrane mechanics compiles contributions
from pre-stress, area dilatation and bending elasticity. It is safe
to assume that vesicles can be described as fluid-filled capsules
with a thin wall and low water permeability. Therefore, stretch-
ing of the bilayer dominates at larger strains, while pre-stress
and bending prevail only at small deformations. This is due to
the small bending modules of lipid bilayer on the order of only
few kBT, while the area compressibility modulus is on the order
of 0.1 N m�1. Interestingly, however, in current literature
different ways exist to describe the mechanical properties of
liposomes often depending on the experimental technique that
is used to assess the mechanical parameters. While researchers
using atomic force microscopes to indent sessile liposomes
frequently rely on contact mechanics such as the generic Hertz
model to describe the deformation,26,27 micropipet suction
experiments and parallel plate compression of giant liposomes
are generally interpreted in terms of thin plate or shell theory in
conjunction with Young–Laplace’s equation.18,28 The Hertz or
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Sneddon approaches, which are often the model of choice to
describe cellular mechanics in the context of AFM experiments,
assume that the capsules behave like a solid, homogeneous
continuum and therefore provide a single parameter to describe
the mechanics of the material, the Young’s modulus.29,30

Although this is a convenient way to analyse the deformation
at low strain its underlying assumptions are clearly unfulfilled in
the context of membranes due to the shell-like structure of
liposomes and cells. Especially at larger strain conventional
contact mechanics models fail to match the experimental data
sufficiently well. Cells with a thick cortex might, however, be
successfully be described by models borrowed from contact
mechanics if the penetration depth is kept low.

However, also more realistic models exist describing, for
instance, point load forces exerted on surface bound capsules or
parallel plate compression.28,31–33 The corresponding theoretical
models employ shell mechanics showing that bending governs
the mechanical response at low strain smaller than the thickness
of the shell, while at larger strain nonlinear contributions from
area dilatation of the shell rule especially if the enclosed volume
is conserved. If the enclosed volume is variable bending at larger
strain adopts a square root dependence.31 The treatment of
these problems is often very involved since it is necessary to
compute the exact shape of the liposome during indentation,
which can be difficult due to the contact of the fluid membrane
with the indenter. Therefore, limiting cases such as point-load
forces or parallel plate compression are usually considered.28,32,33

In atomic force microscopy experiments, however, two main
indenter geometries dominate, spheres and tips with conical
or pyramidal shape. The latter ones are the most frequently
used ones since this geometry is also employed to image the
specimen by scanning the surface in conventional atomic force
microscopy experiments. It is therefore desirable to find a
solution that describes the indentation of a spherical liposome
with conical indenter in the context of a tension-based model
capturing the essential physics of lipid bilayers enclosing a
fixed volume.

Here, we present a straightforward numerical scheme that
allows to assess the exact shape of liposomes and the force
response upon indentation by solving the Young–Laplace equation.
We neglect bending contributions to the elastic response and
assume homogeneous tension and constant volume. Membrane
theory is used to describe the contour of the liposome as a function
of indention depth allowing us to generate a fitting function to
access both tension (pre-stress) T0 and area compressibility modulus
KA from experimental force indentation curves. We could largely
reproduce KA values of GUVs composed of fluid lipids such as DOPC
obtained from micropipet suction experiments and found that the
presence of an actin shell stiffens the composite membrane shell
considerably. The work is based on an earlier study using parallel
plates to compress the liposomes.28 This is, however, an experimen-
tally less convenient way to assess the mechanical properties of
liposomes. For one reason, it is difficult to realize exact parallel plate
conditions due to the inherent tilt of the cantilever necessary for
monitoring cantilever deflection by laser reflection. Secondly, it is
difficult to combine optical microscopy with AFM experiments due

to tilt compensation an impossible to image a sample with a tipless
cantilever.

2 Theoretical analysis

Fig. 1 illustrates the envisioned geometry of a spherical lipo-
some subject to indentation with a conical indenter. The shape
of the deformed vesicle should be axisymmetric and the initial
radius of the spherical vesicle prior to compression is Rv. The
contact region with the flat substrate extends from s0 - s1. The
free contour ranges from s1 - s4 with largest radius R0 at s2 and
largest height z at s3. The contour is parametrised by the angle b
between the surface normal and the z-direction.

The following treatment is partly based on the work of Yoneda,38

Evans and Skalak,39 Bando et al.33,40 and Sen et al.41 The goal is to
compute force indentation curves from the deformed shape. Central
assumptions are negligible bending stiffness, uniform tension and
constant volume.

2.1 Contour of the vesicle

The shape of the indented liposome can be computed under
the assumption that tension is uniform, the enclosed volume
fixed and pressure across the membrane conserved. In general,
pressure relates to tension T according to Young–Laplace’s law:

DP ¼ T
1

r1
þ 1

r2

� �
: (1)

1

r1
and

1

r2
denote the principal curvatures at each point of the

contour. Considering a small line element ds of the meridian at
an arbitrary point O(r,z) on the contour, in which dr is the
projection of ds on the r-axis (dr = ds cosb), we find that r =
r2 sinb and ds = r1db. Eliminating ds leads to

1

r1
¼ db

ds
¼ db

dr
cos b ¼ du

dr
: (2)

1

r2
¼ 1

r
sin b ¼ u

r
: (3)

Fig. 1 Schematic illustration and parametrisation of a liposome subject to
indentation with a conical indenter (red).
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with u = sin b. Small angles allow for sin db � db ¼ ds

r1
. There-

fore, eqn (1) can be written as

DP
T
¼ du

dr
þ u

r
: (4)

Since
DP
T

is constant we can integrate eqn (4) to obtain

uiðrÞ ¼ Airþ
Bi

r
: (5)

with i = 1, 2, 3 referring to the region of the free contour (s1 - s2

(i = 1), s2 - s3 (i = 2), s3 - s4 (i = 3)). Each region obeys different
boundary conditions applying to eqn (5). A1 and B1 can be
computed in the free region 1 from s1 - s2 by assuming the
following boundary conditions:

b ¼ p
2

at r ¼ R0 (6)

b = 0 at r = Ri. (7)

Ri denotes the contact radius with the flat base plate at the
bottom and R0 the equatorial radius (see Fig. 1). From eqn (5)–
(7) we obtain,

A1 ¼
R0

R0
2 � Ri

2
(8)

B1 ¼
�Ri

2R0

R0
2 � Ri

2
¼ �A1Ri

2: (9)

In region 2 (s2 - s3) the free contour is created from the
boundary conditions:41,42

b ¼ p
2

at r ¼ R0 (10)

b = 0 at r(s3). (11)

Hence,

A2 ¼
R0

R0
2 � r s3ð Þ2

(12)

B2 ¼
�r s3ð Þ2R0

R0
2 � r s3ð Þ2

¼ �A2r s3ð Þ2: (13)

Since the contour is continuous at R0 we find that r(s3) = Ri and
therefore A1 = A2 and B1 = B2. A3 and B3 for region 3 corresponding
to s3 - s4 up to the contact with the indenter with a half opening
angle of y are obtained from the following boundary conditions:

b = 0 at r = Ri (14)

b ¼ � p
2
� y

� �
at r ¼ R1; (15)

leading to

A3 ¼
R1 sin

p
2
� y

� �
Ri

2 � R1
2

(16)

B3 ¼ �A3R1
2 � R1 sin

p
2
� y

� �
: (17)

Continuity of solutions for eqn (5) in s3 requires

A3 ¼
�R1 sin

p
2
� y

� �
� B1 � A1Ri

2

R1
2 � Ri

2
(18)

B3 ¼ �A3R1
2 � R1 sin

p
2
� y

� �
: (19)

Once the radii R0, Ri, and R1 are found, the free contour can
be readily obtained from the following identity:

dz

dr
¼ tanb ¼ uðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� uðrÞ2
p : (20)

Integrating eqn (20) numerically in the corresponding
regions (s1 - s2 using u1(r), s2 - s3 using u2(r) = u1(r), and
s3 - s4 using u3(r)) results in the free contour z(r) of the vesicle
subject to indentation. The remaining contour is defined by the
boundaries, a flat substrate at the bottom and the conical
indenter at the top.

The goal is now to find expressions for R0, R1, and Ri as a
function of the distance between the tip of the indenter an the
flat base plate at the bottom. Three conditions apply to an
indented liposome, essentially allowing to compute the corre-
sponding force-indentation curve ( f (d)). These force-indentation
curves depend only on two mechanical parameters of the
membrane, pre-stress T0 and area compressibility modulus KA.
Fitting of these parameters to the experimental data permits to
estimate tension and area compressibility of giant liposomes.
The following section describes the three conditions, which are
needed to compute the free contour, i.e. to find a set of para-
meter R0, R1, and Ri at a given force.

2.2 Constraints and force balances

2.2.1 Constant volume. We assume that volume changes
during compression can be neglected supported by the fact that
no hysteresis is found in compression experiments (vide infra).
Permeability of water across the lipid bilayer is low compared to
the time scale (B1 s) of the force compression cycle.43 The
volume of the sphere prior to indentation is denoted as Vv and
the volume of the indented liposome Vind. Initially the volume
of the liposome is

Vv ¼
4

3
pRv

3 ¼ Vind: (21)

This is the first condition to solve the free contour. For
computing the volume of the indented liposome we divide it
into a top and bottom solid of revolution (see Fig. 1) leading to
Vind = V top

ind + V bottom
ind . Using the method of washers, we can

numerically compute the volume of the top part Vtop
ind from the

following sum:

V top
ind ¼

ðR0

Ri

u1ðrÞpr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u1ðrÞ2

p dz� pRi
2z Rið Þ

þ
ðRi

R1

u3ðrÞpr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u3ðrÞ2

p dz� pR1
3

3 tan y

(22)
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with z Rið Þ ¼
ÐR0

Ri

u1ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u1ðrÞ2

p dz. The volume of the bottom part

of the compressed liposome Vbottom
ind is:

Vbottom
ind ¼

ðR0

Ri

u3ðrÞpr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u3ðrÞ2

p dz: (23)

The following section provides the two additional conditions
that are required to calculate all three parameters R0, R1, and Ri

of the full contour at any given force.
2.2.2 Force balances. The restoring force of the liposome to

the applied indentation force f arises only due to in-plane

tension T ¼ T0 þ KA
DA
Av

. KA is the area compressibility mod-

ulus, DA = Aind � Av the difference between the actual area Aind

and the initial area prior to compression Av. T0 is the
membrane tension or pre-stress. The force balance of the top
part in the z-direction is:41

f ¼ DP
�
pR1

2 ¼ 2p R1 þ R1
2A3

� 	
T0 þ KA

Aind � Av

Av

� �
; (24)

which is the second condition, while force equilibrium at the
bottom part is the third condition:28

f ¼ DP
�
pRi

2 ¼ 2pA1 T0 þ KA
Aind � Av

Av

� �
(25)

The next task will be to find an expression for the actual
surface area Aind of the liposome as a function of indentation
depth d.

2.3 Actual surface area Aind of the vesicle

In order to account for the in-plane stretching of the membrane
during indentation the actual area needs to be calculated as a
function of indentation depth. The area Av prior to indentation
is 4pRv

2. The actual area Aind is divided again into the top Atop

and bottom part Abot of the liposome according to Fig. 1:

Abottom
ind ¼ pRi

2 þ 2p
ðR0

Ri

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u12

p dr (26)

Atop
ind ¼ 2p

ðR0

Ri

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u12

p drþ 2p
ðRi

R1

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u32

p drþ pR1
2

sinðyÞ: (27)

2.4 Indentation depth

The indentation depth in the center at r = 0 is readily obtained
from the contour, i.e. from integrating eqn (20) in two regions
of the free contour:

d ¼ 2Rv � 2

ðR0

Ri

u1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u12

p drþ
ðRi

R1

u3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u32

p dr� R1

tan y

 !
(28)

The contour in region s1 - s3 gives rise to the first integral,
while the contour along the path s3 - s4 produces the second
integral of eqn (28).

2.5 Procedure to compute shape and force response

The shape of the indented liposome and the corresponding
force indentation curves are now obtained from the following
procedure:40

(1) A value for the force f is assigned.
(2) Potential values for the radii R1, Ri, and R0 are guessed.
(3) The contour is calculated by numerically solving the

system of eqn (21), (24) and (25) for the three parameters R1,
Ri, and R0 to provide u1 = u2 and u3.

(4) The corresponding indentation depth d is calculated
from eqn (28).

(5) The force value is changed by a given increment using the
previous set of radii (R1, Ri, and R0) as new starting values. The
scheme is continued with item (3).

In essence, the three unknown parameters R1, Ri, and R0 are
obtained for a given force by solving the system of nonlinear
equations comprising force balances (eqn (24) and (25)) and volume
constraint (eqn (21)). Once the three parameters are estimated
using a minimization procedure such as the trust-region-dogleg or
Levenberg–Marquardt algorithm the corresponding indentation
depth can be calculated. Afterwards the force is changed by a small
increment and the procedure repeated. The numerical procedure is
more stable if starting with the highest load force.

2.6 Bending

The deformation of a liposome formed by a fluid lipid bilayer
can be either an in-plane stretching and shear or an out-of-
plane bending. Biological membranes are characterized by a
low resistance to bending and shearing so that stretching is
avoided and vesicles deform either in pure bending or in-plane
shear. Generally, in spherical shells stretching cannot be
avoided. Especially in biological systems the capsules are filled
with liquid and display only a limited permeability of the shell
material. The incompressibility of the fluid inside the capsule
requires volume conservation at all times during deformations.
As a consequence, conservation of the volume enclosed by the
capsule inevitably leads to in-plane stretching of the shell.
Stretching of the shell is by far more energy costly than bending
also mirrored in the elastic constants that are many orders of
magnitude apart (KA E 0.1 N m�1 vs. k E 10�19 N m). There-
fore, bending has been neglected in our analysis as an appreci-
able energy contribution since the volume constraint forces the
membrane to laterally dilate in order to maintain its enclosed
volume upon indentation. Here, we ignore the fact that at the
tip of the conical indenter at r = 0 curvature becomes infinite. In
reality the tip has a finite curvature around 20–60 nm (MLCT
cantilever). Stretching energy Estr relates to bending energy

Ebend for point load forces roughly as
Estr

Ebend
/ Rv

d

� �2

.31 The

bilayer is extremely thin d E 5 nm and the radius of the
liposome on the order of several micrometers. Therefore,
bending only plays a role at the tip of the cantilever where
the curvature is large. Since the tip of the cone is entirely
wrapped with a bilayer, which occurs already at low indentation
depth (few nm), the energy contribution due to bending
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decreases with increasing indentation depth since the cone widens.
Hence, bending is not the reason for the observed force indentation
curves showing a nonlinear increase of force with penetration depth.
Generally, since the bilayer is very thin, the bending module is rather
small kE 10�19 J so that at large indentation (dc d) the nonlinear
stretching term dominates as long as the volume constraint holds.
Moreover, it has been shown that ‘leaky’ capsules indented by a
point load force display a square root dependence on indentation
depth (F p d1/2), while stretching usually obeys a cubic dependency
on indention (F p d3) as found also in our experiments (vide infra).44

Local bending might play a role at very low strain, in the order of the
thickness of the bilayer, but pre-stress in the bilayer originating from
adhesion generates a capsule stiffness (E0.1 N m�1) orders
of magnitude larger than those predicted by Reissner theory
(E10�5 N m�1) assuming pure bending due to a point load force.31

3 Results and discussion

Fig. 2 shows simulated force indentation curves and contour
plots of a liposome subject to indention with a conical indenter as a
function of different parameter sets. The influence of the area
compressiblilty modulus KA on the force response of a liposome is
shown in Fig. 2A, while the impact of pre-stress T0 is displayed in
Fig. 2B. Clearly a rise in KA results in a steeper slope at large strain,
while increasing the pre-stress T0 leads to stiffening at low indenta-
tion depth. Fig. 2C shows how the two radii Ri and R1 increase with
indention depth. While Ri rapidly grows at low indention depth, R1

follows a linear trend as one would expect for wetting of a cone with
an unstressed membrane.

In Fig. 2D and F we show the influence of indenter geometry
on the expected force indention curves. A flat or blunt indenter
does not need to penetrate as deep as a sharp, needle-like
indenter to achieve the same force response from the liposome.
A blunt indenter, however, forces the liposome into a more
pancake-like geometry producing larger radii R0, Ri and R1,
while sharper indenters reach deep inside the vesicle. Fig. 2E
illustrates the shape of the liposome at different pre-set forces.
It becomes clear that both flattening of the shell and deeper
penetration takes place. Notably, rupture of membranes con-
sisting of two phospholipid leaflet occurs at an area dilatation
DA
A0

� �
of merely 2–5% corresponding roughly to the shape

shown in Fig. 2E for the largest indentation depth.
The experimental setup used for indentation experiments is

illustrated in Fig. 3A. We used a conventional atomic force
microscope with square-based pyramidal tips (MLCT) mounted
on an inverted optical microscope. Tip height was 2.5–8 mm, tip
radius in between 20–60 nm and the nominal spring constant
of the cantilver was 0.03 N m�1. We modeled the pyramidal tip
with a cone assumed a half opening angle of 181. Immobiliza-
tion of vesicles is achieved as previously described and detailed
in the experimental section (Fig. 3B). In brief, small amounts of
biotinylated phospholipids are used to link the liposome gently
to the surface functionalized with avidin and passivated with
casein to prevent spreading of the GUVs. Fig. 3C and D show

bright field and confocal images of an adhered vesicles demon-
strating that only a small contact zone is formed with the glassy
substrate. In Fig. 3C also the cantilever is visible and the tip
(arrow) is placed over the center of the liposome prior to
indentation experiment. Fig. 3D shows z-stacks of the sessile
liposome recorded with a confocal microscope (Olympus Fluo-
View, FV1000) placed under the AFM prior to indentation and
at 2 nN load force (overlay). Indentation or compression
experiments do not show a pronounced hysteresis, which
confirms our most important assumption that the volume does

Fig. 2 (A) Computed force indentation curves illustrating the impact of
the area compressibility modulus KA on the mechanical response of a GUV
to indentation with a conical indenter. The following parameters were
used: T0 = 0.1 mN m�1; Rv = 10 mm; y = 181. (B) Influence of pre-stress T0

on the force indentation curves using the same set of parameters and KA =
0.1 N m�1. (C) Change of radii R1 and Ri as a function of indentation depth
using the following parameters: T0 = 0.1 mN m�1; KA = 0.1 N m�1; Rv =
10 mm; y = 181. (D) Indenter geometry dependency of force indentation
curves. Variation of the half-opening angle of the conical indenter reveals
that the restoring force at a predefined indentation depth increases with
blunter tips. Parameters are identical to those used in (C). (E) Shape of the
GUVs as a function of applied force (0 nN, 10 nN, and 100 nN). The higher
the force the deeper the indenter compresses the GUV. Parameters as in
(C). (F) Vesicle shape at a constant force of F = 45 nN for two different half
opening angles of the cone, the contour in red is obtained from 801 and
the one in blue from 101. Note that the indentation depth at a preset force
decreases considerably as the opening angle of the cone increases, while
the liposome is forced into a more pancake-like shape with blunter tips.
Parameters: T0 = 0.1 mN m�1; KA = 0.1 N m�1; Rv = 10 mm.
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not change during indentation. Recently, we showed that giant
liposomes can be continuously compressed without loosing
volume.28 Fig. 4 shows in sparse data representation (one marker
every 70 data points) a typical force indentation curve (grey dots) of
a giant liposome. The red continuous line represents a fit (Simplex
algorithm followed by Levenberg–Marquardt) according to our
tension model providing an area compressibility modulus of about
KA = 0.026 � 0.001 N m�1 and a relatively high tension of T0 =
0.76 � 0.006 mN m�1. The mean area compressibility modulus
from 7 independent measurements was KA = 0.04 � 0.02 N m�1.

The area compressibility modulus KA of membranes deter-
mines the amount of elastic energy required to laterally stretch
or compress a lipid bilayer. It is an intrinsic property of the
lipid bilayer and is related to the surface tension g of the
interface between the aqueous phase and the aliphatic chains
of the phospholipids (KA E 4g). The bending modulus of the
bilayer k can also be inferred from the area compressibility
modulus through the thickness d of the bilayer (KA E kd�2).
Albeit the bending modulus of the bilayer is extremely small on
the order of few kBT, the associated area compressibility
modulus suggests a laterally almost inextensible material.
The pre-stress in the sessile liposome can be largely attributed
to adhesion and the associated area dilatation.23,28,45,46 Since
the liposomes change their shape from a sphere in solution to a
truncated sphere upon adhesion, their surface area increases in
order to keep the enclosed volume constant. This increase in
surface area essentially generates a finite membrane tension

T0 ¼ KA
Aad � Av

Av

� �
, the largest contribution to the pre-stress T0.

Generally, a number of error sources need to be considered
when extracting mechanical parameters from force indentation
experiments. Central indentation is mandatory otherwise the vesicle
has space to ‘escape’ the load exerted by the AFM cantilever.

This leads to systematical lower KA values. Moreover, adhesion
forces of the vesicle need to be as low as possible to ensure that
the central assumptions in Section 2 are not violated. Since we
could not obtain conical tips with a spherical base attached to
soft cantilevers for our experiments the use of cones with a
squared base also slightly changes the outcome compared to
those with a circular base. Indentation depth is limited by
the tip height (2.5–8 mm) and the lysis tension of the bilayer
(E10 mN m�1). Blunter tips allow to exert larger forces.

We also investigated what happens if the shell of the
liposome is reinforced with an inner layer of actin. The proce-
dure has previously been characterized in detail.28 In general,
the additional actin shell forms a composite with the outermost
membrane and by this might contribute to a stiffening of the
structure. Depending on the thickness of the shell and the
coupling to the bilayer this is detectable by force compression
experiments.28

Fig. 5 shows typical force indentation experiments with two
vesicles, one without actin (circles) and one with a clearly visible
actin shell (squares). The plots show force f as a function of the
dimensionless indentation d/Rv to account for the two different
radii of the two vesicles and thereby illustrate the substantial
stiffening due to the presence of actin in a single graph.

The red and green lines are fits according to the tension
model. The area compressibility modulus increases by a factor
of ten from 0.04 N m�1 to 0.4 N m�1 due to the presence of
the actin shell. On average the effect is less pronounced (KA =
0.34 � 0.3 N m�1 from n = 7 independent measurements) since
many liposomes that possess an actin cortex do not show an
altered elastic response compared to liposomes in the absence
of actin. This is probably due to variations in the thickness of
the artificial cortex. We attribute the increase in KA mainly to an
increase in shell thickness d (KA E EYd). The shell is, however, a
composite consisting of a thin incompressible layer attached to
network that is less resistible to lateral dilatation. Therefore,
the actin shell only stiffens the capsule if its sufficiently thick.15

Fig. 3 (A) and (B) Schemes illustrating the experimental setup used in this
study comprising a conventional AFM equipped with a cantilever and a
pyramidal tip. The GUVs are attached to the surface via biotin/avidin
linkages and can be lined with an actin cortex. Casein is used to minimize
non-specific adhesion to the surface. Vesicles are labeled with a red fluorophor
(Texas Red) tagged to a phospholipid. (C) Bright field image of a GUV in contact
with an AFM tip using an inverted microscope. (D) Confocal laser scanning
image of a sessile GUV without actin shell subject to indentation (f = 2 nN)
overlaid with the same vesicle prior to indentation.

Fig. 4 Experimental force indentation curve (filled circles) of a GUV
(DOPC, DOPE-biotin, TR-DHPE) subject to fitting of the tension-based
model (red line) resulting in T0 = 0.76 � 0.006 mN m�1 and KA = 0.026 �
0.001 N m�1. Fixed parameters: Rv = 11.4 mm; y = 181. The inset show the
contour of the indented vesicle at maximum force.
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Additionally, the area compressibility modulus of the membrane
itself might be strongly increased due to electrostatic inter-
actions leading to cross-linking of phospholipids at the interface
between the filaments and the inner leaflet. These cross-links
would lead to a larger apparent KA and thereby explain the
observed stiffening.

4 Conclusions

We describe how indentation experiments of giant liposomes
carried out with a conventional atomic force microscope can be
described in the framework of membrane theory. The absence
of volume changes during indentation forces the liposomes to
increase their surface area and thereby produce considerable
restoring forces. If compared with force indentation experi-
ments carried out on living epithelial cells, giant liposomes
display a larger pre-stress and also higher area compressibility
modulus because membrane reservoirs to buffer tension and to
create excess area are missing in artificial systems. It is there-
fore conceivable that the actomysin cortex of cells serves as a
scaffold for the plasma membrane to allow for excess
membrane area which can readily be sacrificed if needed for
compensating large tension as it happens if the cells change
their morphology during migration or division but also if they
experience osmotic stress.

5 Experimentals
5.1 Materials

1,2-Dioleoyl-sn-glycero-3-phospho-choline (DOPC), 1,2-dioleoyl-
sn-glycero-3-phospho-ethanolamine (DOPE), 1,2-dioleoyl-sn-
glycero-3-phospho-ethanolamine-N-(cap biotinyl) (DOPE-biotin)
were purchased from Avanti Polar Lipids (Alabaster, USA), the
ionophore A23187 was obtained from Sigma-Aldrich (Steinheim,
Germany). Membranes were labeled (0.5 mol%) with sulforhod-
amine-1,2-dihexanoyl-sn-glycero-3-phospho-ethanolamine (TR-
DHPE, Life Technology, Carlsbad, USA). Rabbit skeletal muscle
actin (495% pure) was obtained from Cytoskeleton (Denver,
USA) and labeled rabbit skeletal muscle Alexa Fluor488 actin

from Life Technology. Tris(hydroxymethyl) aminomethane hydro-
chloride (Tris-HCl), magnesium chloride (MgCl2), adenosine tri-
phosphate (ATP), dithiothreitol (DTT) were purchased from
Sigma-Aldrich, sucrose from ACROS Organics (Geel, Belgium)
and D-glucose from Carl Roth (Karlsruhe, Germany). For surface
functionalization avidin from Sigma-Aldrich and casein from
Merck Millipore (Darmstadt, Germany) were used. Water used
for preparation of buffers was filtered by a Millipore system
(Milli-Q System from Millipore, Molsheim, France; resistance
418 MO cm�1).

5.2 Methods

5.2.1 Vesicle preparation. Giant unilamellar vesicles (GUVs)
were created by electroformation as previously described.34,35 In
brief, 8 ml of 1 mg ml�1 lipid dissolved in chloroform (DOPC/
DOPE/A23187/DOPE-Bio/TR-DHPE (59.5 : 30 : 5 : 5 : 0.5)) were
deposited on indium tin oxide (ITO) slides and spread uniformly
on an area of 12 � 12 mm2. Afterwards, residual solvent was
removed using vacuum for at least 3 h at 55 1C. Subsequently,
two ITO slides covered with lipid films and a 1 mm thick square
silicon spacer between the slides were assembled to form a
sealed chamber. The chamber was filled with 300 ml of buffer
consisting of Tris-HCl (2 mM), MgCl2 (0.5 mM), ATP (0.2 mM),
DTT (0.25 mM), and sucrose (50 mM) (pH 7.5). For actin
containing vesicles 5–7 mM actin monomers and 0.5–1 mM Alexa
Fluor 488 actin were added additionally. The chamber was
connected to a waveform generator set to 70 Hz with a peak-to-
peak voltage of B2.4 V applied for 3 h at room temperature
(fluid membranes) or 55 1C (gel phase membranes), respectively.
Eventually, GUVs were transferred to a plastic vial and can be
stored at 4 1C for 2 days.

5.2.2 Sample preparation and surface functionalization.
Glass slides were activated in NH4OH/H2O2/H2O (1 : 1 : 5, v/v)
solution heated to 75 1C for 20 min resulting in formation of a
thin SiO2 layer. The hydrophilic surface was first incubated in an
avidin solution (1 mM) for 30 min followed by deposition of casein
(100 mM, wafer incubated for 30 min) in order to ensure full protein
coverage of the surface. Afterwards, the sample was washed with
G-buffer (Tris HCl: 2 mM, MgCl2: 0.5 mM, glucose: 50 mM, pH 7.5)
and 40 ml vesicle solution was added. After approximately 10 min,

Fig. 5 (A) Typical experimental force indentation curve of GUVs with an actin shell (filled squares) subject to fitting of the tension-based model (green
line) resulting in T0 = 0.53� 0.02 mN m�1 and KA = 0.434� 0.008 N m�1. For comparison, the force indentation curve shown in Fig. 4 corresponding to a
GUV in the absence of actin is displayed. Fixed parameters for modeling the actin-filled GUV: Rv = 10.25 mm; y = 181. (B) CLSM image of a GUV with an
actin shell (green dye: Alexa Fluor 488 actin). (C) Scheme illustrating the envisioned actin shell assembled inside the vesicle.
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the Mg2+ ion concentration was increased at least to 2 mM to
achieve a better fixation of the vesicles on the surface and to initiate
actin polymerization.15

5.2.3 Atomic force microscopy (AFM). Force indentaton
curves were recorded using a JPK NanoWizard2 or NanoWizard3
atomic force microscope (JPK Instruments, Berlin, Germany).
Silicon nitride AFM probes (MLCT) purchased from Bruker AFM
Probes (Mannheim, Germany) with nominal spring constants of
0.03 N m�1 were used. The spring constant of each cantilever
was calibrated prior to experiment using the thermal noise
method according to Hutter and Bechhoefer, refined by Butt
and Jaschke.36,37 The calibration factor (inverted optical lever
sensitivity) is obtained from a force curve recorded on a rigid
substrate (glass slide). Cantilever velocity was set to 1 mm s�1.
The AFM was placed on an inverse fluorescence microscope
(IX 81) equipped with a CCD-camera (XM 10) and a 40� objective
(LUCPLFLN) (all from Olympus, Tokyo, Japan). Data reduction was
carried out with a self-written Matlab script. Fitting of experimental
data was accomplished with a Simplex algorithm followed by a
Levenberg–Marquardt algorithm for better convergence.

5.2.4 Confocal laser scanning microsope (CLSM). CLSM
images were obtained with an AXIO LSM 710 (Zeiss, Jena, Germany)
using a W Plan Apochromat 63� objective (Zeiss) and an argon laser
(Lasos Lasertechnik, Jena, Germany) to excite the Alexa Fluor488
actin dye (488 nm) and the membrane label TR-DHPE (592 nm).
Alternatively, an Olympus FluoView FV1000 was mounted under the
AFM to obtain z-stacks of the indented liposomes.
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