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Self-assembly of active attractive spheres†

Vasileios Prymidis,* Harmen Sielcken and Laura Filion

We study the self-assembly of a system of self-propelled, Lennard-Jones particles using Brownian

dynamics simulations. We examine the state diagrams of the system for different rotational diffusion

coefficients of the self-propelled motion of the particles. For fast rotational diffusion, the state diagram

exhibits a strong similarity to that of the equilibrium Lennard-Jones fluid. As we decrease the rotational

diffusion coefficient, the state diagram is slowly transformed. Specifically, the liquid–gas coexistence

region is gradually replaced by a highly dynamic percolating network state. We find significant local

alignment of the particles in the percolating network state despite the absence of aligning interactions,

and propose a simple mechanism to justify the formation of this novel state.

I. Introduction

In recent years a significant amount of research has been focused
on active matter systems, whose individual units are able to convert
internal energy or energy from the local environment into their own
motion (see ref. 1–4 for recent reviews). This focus was boosted by
important experimental advances in the synthesis of artificial
swimmers and walkers on the colloidal and granular scale,5–14

and the possible link between the behaviour of these man-made
systems and the collective motion of living organisms (for example
swimming cells or bacteria).15,16 Active systems show a plethora
of exotic phenomena such as giant density fluctuations,9,17

vortex formation,11,18 and swarming.11 Moreover, they may play
an important role in useful future applications such as targeted
cargo delivery and novel types of materials.19–21

However, even though experimentalists gain increasingly
better control over the realization of active systems, the physics
community lacks a fundamental understanding of the laws that
govern their collective behavior. Thus, it comes as no surprise
that a substantial amount of research is devoted to seemingly
simple theoretical models of active particles, with the Viscek
model being possibly the most studied one.22,23 Another much
studied example, more related to the colloidal world, is the
system of self-propelled, hard or purely repulsive disks.24 Computer
simulations and continuum models have established that this
active fluid phase-separates into a dense and a dilute region for
sufficiently fast swimming velocities.24–28 Even though the
phase-separation of self-propelled disks can partially be linked

with the clustering of particles reported in many experiments,13,29,30

there has not yet been a satisfying explanation for the latter
phenomenon, as the interactions between the colloids are more
complex than simple steric interactions.31

A simple step towards complexity is the addition of attractive
interactions between the particles, which was shown to also
lead to clustering of particles. Specifically, Palacci et al. showed in a
numerical study that phoretic attraction between self-propelled
hard disks gives qualitative agreement between the clustering
properties of their model and their experiments.13 A more
elaborate numerical study on the interplay between attraction
and self-propulsion was done by Redner et al.32 The authors
studied a two-dimensional ensemble of self-propelled particles
that interact via Lennard-Jones interactions. By varying the
strength of the attraction and the swimming velocity of the
particles, they showed that the self-propulsion can have two
opposing effects for a given strength of attraction – for slow
swimmers it can break aggregations caused by the attractive
force, while it can induce aggregation for fast enough swimmers.
For intermediate swimming velocities, the steady state of the
system was identified as a homogeneous fluid phase. A first
study of a similar model in three dimensions has been done by
Mognetti et al.33 The focus of this work was mainly on the
clustering properties of the system – as the strength of attraction
is increased, the system passes from a homogeneous state to a
clustered state caused by the attractive interactions. A state of
rotating clusters has also been reported in ref. 34 for active
attractive dumbbells.

However, the transition from homogeneity to clustering in
active attractive systems has not yet been clearly linked with the
known phase behaviour of the corresponding equilibrium
systems. Moreover, structural properties of the clustered state
have not been examined and compared to the well-studied gas–
liquid phase separation.
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In the present work we study a three-dimensional model of
self-propelled Brownian particles that interact via a Lennard-
Jones potential. The choice of the potential qualitatively
accounts for the steric repulsion and the short range attraction
that are present in many colloidal systems. By tuning the rotational
diffusion rate of the particles, we are able to continuously move the
system from the regime of fast rotational diffusion, where strong
similarities with the equilibrium behavior are expected,35 to small
values of the diffusion rate where non-equilibrium features arise.
Thus, we are able to construct a series of state diagrams that evolve
from a diagram similar to the well-established Lennard-Jones phase
diagram to diagrams with novel properties.

Moreover, we find that the interplay between attraction and
self-propulsive motion in three dimensions gives rise to a
highly dynamic, percolating network. As we will show in this
paper, this percolating network has many similarities to living
clusters, observed in ref. 33. It is, however, a system spanning
structure. This new state is accompanied by an unexpected
result – the emergence of local alignment of the axes of self-
propulsion of the particles despite the absence of an aligning
mechanism.

In Section II we describe the model, the dynamics implemented
for our simulations and the analysis methods used in the
subsequent parts of the article. In Section IIIA we present the
state diagrams of the system, and in IIIB we focus on properties
of the percolating network state. Lastly, we compare our work
with the results of ref. 33 in Section IIIC and give a short
discussion of our results in Section IV.

II. Methods
A. Model

In this paper we examine the behaviour of self-propelled,
attractive particles immersed in a solvent. We consider a
three-dimensional system, consisting of spherical particles
(colloids) in a periodic cubic box of length L. The position of
the center of mass of the ith particle at time t is given by the
vector -

ri(t). To each particle i, we associate a three-dimensional
unit vector p̂i(t) that identifies the direction in which the self-
propelling force propels the particle at a given time. The particles
interact with each other via a Lennard-Jones potential

bU rij
� �

¼ 4be
s
rij

� �12

� s
rij

� �6
" #

; (1)

truncated and shifted at 2.5s, where s is the particle length
scale, rij = |-rj �

-
ri|, e is the strength of the interaction and

b ¼ 1

kBT
is the inverse temperature of the system, with kB the

Boltzmann constant and T the temperature.

B. Dynamics

We do not model the solvent explicitly, but rather only include
it implicitly. We use two distinct expressions to describe the
translational motion of the individual colloidal particles inside

the solvent, namely the underdamped and overdamped Langevin
equations. The underdamped Langevin equation is given by

m
d2~ri
dt2
¼ �

X
jai

@U rij
� �
@~ri

�mg
d~ri
dt
þ Fpp̂i þ

ffiffiffiffiffiffiffiffiffi
2mg
b

s
~Ltr

i ; (2)

where m is the particle’s mass, g is the damping coefficient and Fp

denotes the magnitude of the self-propelling force. Note that ~Ltr
i is

a unit-variance random vector, with mean value and variation

~Ltr
i ðtÞ

D E
¼ 0 (3)

~Ltr
i ðtÞ~Ltr

j ðt 0Þ
D E

¼ I3dijdðt� t 0Þ; (4)

where I3 is the unit matrix in three dimensions. The forces that
appear on the right-hand side of eqn (2) are, from left to right, the
force due to particle interactions, the drag force, the self-propelling
force and a stochastic force. The drag and stochastic forces account
for the constant collisions between the colloidal particles and the
molecules of the solvent.

In the regime of low Reynolds numbers (typical of a colloidal
system) one can neglect the inertial term, and thus the transla-
tional motion of each particle follows from the overdamped
Langevin equation

d~ri
dt
¼ bDtr �

X
jai

@U rij
� �
@~ri

þ Fpp̂i

" #
þ

ffiffiffiffiffiffiffiffiffi
2Dtr

p
~Ltr

i ; (5)

where the translational diffusion coefficient is given by the
Einstein–Smoluchowski relation Dtr = 1/(bmg). We define the
unit of time t = s2Dtr

�1.
The axis of self-propulsion is subject to rotational diffusion

and in our simulations its motion always obeys the overdamped
rotational Langevin equation

dp̂i
dt
¼

ffiffiffiffiffiffiffiffi
2Dr

p
p̂i � ~Lr

i

� �
; (6)

where Dr denotes the rotational diffusion coefficient and the

random vector ~Lr
i satisfies relations analogous to eqn (3) and

(4). For spherical particles in the low-Reynolds number regime,
the translational and rotational diffusion coefficients are linked
via the Stokes–Einstein relation Dr = 3Dtr/s

2. Nevertheless, the
rotational diffusion coefficient is considered as an independent
parameter in our study, similar to previous theoretical work.35–37

The reason for this extra degree of freedom is that individual
particles in experimental active systems, such as bacterial colonies,15

are often subject to athermal rotational diffusion.
In order to implement the aforementioned equations of

motion eqn (5) and (6) we used the Euler–Maruyama integration
scheme.38 To implement the underdamped Langevin eqn (2),
we employed the integration scheme proposed by Grønbech-
Jensen and Farago.39 We have verified that simulations in the
overdamped regime give indistinguishable results with ones
in the highly viscous underdamped regime. A time step of
dt = 3� 10�5t was used for the numeric integration of the equations
of motion and the simulations ran for at least 106t, so that we get
sufficient statistics for the system.
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The behavior of the system was probed as the following
dimensionless parameters were systematically varied: the
strength of the Lennard-Jones potential ~e = be, the magnitude of
the propulsion force F̃ = bFps, the rotational diffusion coefficient

Drt and the density of the system rs3 ¼ Ns3

L3
. In the case of the

underdamped system, we also varied the (dimensionless) damping
coefficient ~g = bmgs2/t. Following ref. 33, we quantified the
ratio between the strength of attraction and the magnitude of
self-propulsion by the aggregation propensity

Pagg ¼
~e
~F
¼ e

Fs
: (7)

The number of particles for all simulations in the underdamped
regime was 1728, in order to compare directly our results with
ref. 33, while for the overdamped regime it was 4917, unless
stated otherwise. The effects of the finite size of the system on
our results are discussed, when considered relevant, in the next
section.

C. Steady state and initial configurations

Due to the self-propelling force there is constant energy input
in the system. Nevertheless, by following the evolution of the
total potential energy of the system with time, we observed that
after a short transient period there was no energy drift. After
this period the potential energy of the system fluctuated around
a mean value. We identified this regime of quasi-constant
energy with the steady state of the system. For our measure-
ments we considered configurations from the steady state only.
Furthermore, for each point in the parameter space, a mini-
mum of two simulations was performed, starting from two
different initial configurations: one where the particles were on
a cubic lattice that spanned the entire system, and one where
all the particles were part of a dense liquid slab. These two
initial conditions were chosen in order to study any possible
effect the starting configuration could have on the steady state
of the system. We found that after the transient period, the
average potential energy in both simulations converged to the
same value, which indicates that the system indeed relaxed at
the same state and we can safely identify the regime of quasi-
constant potential energy with the steady state. For a limited
number of simulations we also looked at the time evolution of
the degree of clustering and the local density histograms, both
of which are described in detail later in this paper, and we
found that in the regime of quasi-constant energy these struc-
tural functions were also only subject to fluctuations and there
were no major changes. Once again the results obtained for
different initial configurations coincided. All the above ensure
that potential energy is a reasonable indicator of when the
system reaches the steady state.

For sets of parameters where the system is close to crystal-
lization, the system was additionally initialized from a gaseous
state that contains a large (face-centered-cubic) crystalline
cluster. The cluster contained approximately 25% of the system’s
particles. We observed high crystallization and melting barriers
in many cases, which caused difficulties in identifying the true

state of the system, as the simulations would have to run for a
very long time. We found that these difficulties were enhanced
by finite size effects. Nevertheless, the results obtained for the
parameter space points presented in this article have been
thoroughly verified.

D. Analysis methods

We used a Voronoi construction to construct local density
histograms of the system.40 By calculating the volume of the
Voronoi cells we were able to estimate the local density of
particles. Furthermore, the identification of surface particles
was performed by means of the cone algorithm.41

In order to distinguish the percolating network state from the
bulk gas–liquid coexistence region we used the following criterion.
First, we considered two particles as clustered when their center of
mass distance was less than 1.2s. Note that in our system, the first
minimum in the radial distribution function is typically between
1.3s and 1.6s. We chose 1.2s as the cutoff distance in order to both
be consistent with that used in ref. 33 and ensure that we did not
overestimate the amount of connectedness in our system.

Second, we calculated the probability of having a cluster
percolating simultaneously in all three dimensions in the
system. To determine whether a cluster percolates in a given
direction we duplicated the system in that direction, doubling
the number of particles. If the number of particles in the cluster
doubled as well, then the cluster percolated. When the probability
of percolation was found higher than a certain threshold that was
density-dependent, we identified the system as being in the
percolating cluster state. This threshold was used for the necessary
distinction between strong fluctuations of the liquid phase that can
temporarily percolate in three dimensions and the percolating
network structure. The probability threshold was set at 35%,
90% and 95% for total densities rs3 = 0.191, 0.382 and 0.445
accordingly. However, for a total density higher than rs3 = 0.5
this criterion failed as the liquid cluster always percolated.

III. Results
A. State diagrams

Passive Lennard-Jones particles have been extensively studied
and their phase behaviour is well-characterized (see e.g. ref. 42).
At high temperatures, Lennard-Jones systems exhibit a single
first-order phase transition from a fluid to a face-centered-cubic
crystal as the density of the system is increased. Upon lowering
the temperature, a critical temperature is reached where a
second phase transition appears separating the fluid phase
into gas and liquid phases. At even lower temperatures a triple
point appears below which the liquid phase disappears and
only the gas and crystal remain.

When the passive particles are replaced by active particles by
introducing self-propulsion, deviations from the equilibrium
behaviour are expected. To explore these deviations, we study
the behaviour of the system as a function of the rotational
diffusion coefficient Drt while keeping the self-propulsion force
and temperature fixed. Note that in the limit of fast rotational
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diffusion, Drt-N, the persistence length of the particles goes
to zero and the active force acts effectively as translational
diffusion.35 As a result, we expect the behaviour in this limit to
coincide with the behaviour in the equilibrium (passive) system, but
with a modified interaction strength. However, as Drt is decreased,
the non-equilibrium effects should become more evident.

In this section we use overdamped Brownian dynamics
simulations to explore the behaviour of systems with Drt between
0.3 and 30 and densities rs3 between 0.191 and 0.764. In all cases,
the magnitude of the self-propelling force is fixed at F̃ = 50.

For all values of Drt we consider, we find that the system
forms a homogeneous fluid for a sufficiently low value of ~e (see
Fig. 1(a)). As the strength of the attraction is increased, the
particles tend to aggregate. The structure of the aggregate
depends strongly on the rotational diffusion coefficient. For a
high rotational diffusion coefficient, the aggregated phase
appears as the liquid in a classical liquid–gas phase separation,
namely, the liquid phase is organized such that the surface of
the cluster is minimal (Fig. 1(b)). However, for slower rotational
diffusion, the aggregated phase is much less compact as shown
in Fig. 1(c), and frequently spans the entire system or forms
‘‘living’’ clusters as described in ref. 33.

In order to better quantify the aggregation of particles, we
obtained density histograms for the systems we examined. We
found that in most cases the density histograms transitioned
from a unimodal to a bimodal curve as the strength of attrac-
tion is increased, a transition that indicates passing from a
homogeneous state into a coexistence state. Examples of such
histograms are presented in Fig. 2. We subsequently used the
local maxima of the density histograms, which we identified as
the local densities of the coexisting phases rl, to construct the
state diagram of the system for different rotational diffusion
coefficients, see Fig. 3. Note that in Fig. 2 some of the peaks in

the gas phase are very low compared to the peaks of the liquid
phase, indicating that only a small fraction of our system
consisted of gas particles. We identified as fluid the state where
only a single peak is visible in the local density histogram.
States which exhibited two peaks but showed no signs of global
phase separation were identified as percolating network states,
and states which exhibited a clear phase separation were
marked are either gas–liquid or gas–crystal, depending on
whether the high density phase is crystalline. Note that we
have not probed the exact positions of the critical or triple
points in any of the diagrams presented in Fig. 3. Additionally,
the boundaries presented in black dashed lines are simply
approximate state boundaries.

As shown in Fig. 3(a), for a rotational diffusion coefficient
Drt = 30 (ten times larger than the value dictated by the Stokes–
Einstein relation), the behaviour of the system is very similar to
the phase diagram seen for passive systems. The system
transitions with increasing attractive strength ~e from a homo-
geneous fluid state to a gas–liquid coexistence state and even-
tually to a gas–crystal coexistence state. Moreover, the binodal
envelope is similar to that of the equilibrium system, in the
sense that the value of attraction alone dictates the densities of
the two coexisting phases. The low-density curves do not fall
exactly on top of each other for high values of attraction due to
surface effects that are discussed at the end of this section.

Decreasing the rotational diffusion to Drt = 9 (Fig. 3(b)) results
in the emergence of a new state, which we refer to as a percolating
network. This new state consists of a dynamic network of clustered
particles coexisting with a gas phase and in static images resembles
an equilibrium system which has undergone spinodal decomposi-
tion (see the ESI† Movie S1). However, in contrast to such a state,
the percolating network we observe is clearly not kinetically trapped
(see the ESI† Movie S2). From Fig. 3(b) we see that the system
now transitions with increasing strength of attraction from a
homogeneous fluid state to a percolating network and then to a
gas–liquid coexistence state.

Fig. 1 Snapshots of different states of the system. In (a) the system is in a
homogeneous fluid state, in (b) there is liquid–gas coexistence, in (c) a
percolating network state is found, and in (d) a crystal coexists with a gas.
Particles that belong to different clusters have different colours. The values
of the parameters are rs3 = 0.191, F̃ = 50, ~e = 5, for (a) and 12.5 for (b)–(d)
and Drt = 30, 4.2, 0.01, and 30 for (a)–(d) respectively.

Fig. 2 Local density histograms for a system with total density rs3 = 0.381
and magnitude of self-propulsion F̃ = 50. P(rs3) denotes the probability to
find a particle with local density rs3. The subfigures (a)–(d) correspond to
different rotational diffusion coefficients as indicated.
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Setting the rotational diffusion coefficient equal to the value
dictated by the Stokes–Einstein relation, namely Drt = 3, results
in the state diagram shown in Fig. 3(c). Here, we find that the
region where the percolating network state occurs is increased
at the expense of the gas–liquid coexistence region. Additionally, in
the percolating network region, attraction does not solely dictate
the densities of the coexisting states anymore. In contrast, the
peaks in the local density histograms also depend on the total
density of the system. We note that this non-collapse was validated
for various system sizes as described below.

For very low rotational diffusion (Drt = 0.3), the state diagram
continues to evolve (Fig. 3(d)). The percolating network has now
completely replaced the gas–liquid region – according to our
simulations, the system transitions directly from the percolating
network state to a gas–crystal coexistence state.

Interestingly, the stability domain of the percolating network
increases monotonously with decreasing rotational diffusion
coefficient. In all investigated cases, it appears first at 1/~e E
0.15, with the value increasing slightly with decreasing Drt.

We conclude this section by commenting on finite size
effects. In order to ensure that the behaviour we observed in
Fig. 3 was robust with respect to the system size, we simulated a
few state points for larger and smaller systems, consisting of
N = 21 952 and 2197 particles respectively. First of all, we found
that the identification of the states does not change, e.g. we
observe fluid, liquid–gas, crystal and the percolating network
independent of system size. Additionally, the density of the
dense phase (percolating network of liquid clusters, liquid or
crystal) was only slightly affected by the system size. Substantial

deviations occurred only for the low-density phase. These
deviations are expected, since the first peak of the local density
histogram is complicated by the presence of surface particles in
addition to the gas particles. Nevertheless, this effect does not
affect the conclusions drawn above.

B. Percolating cluster state

One of the most striking differences between a gas–liquid
coexistence state and the novel percolating network state is
the compactness of the dense clusters. In a gas–liquid coexistence
state, the system evolves in order to minimize the surface area of
the cluster, resulting in compact spherical or cylindrical geome-
tries. In the percolating network, the active system appears to
almost attempt to maximize the surface area, resulting in a highly
branched network. One way to characterize this difference is by
looking at the ratio of surface to volume of these large aggregates.
In Fig. 4 we plot the average ratio NS/NV of surface particles over the
total number of particles for the largest cluster, as a function of the
rotational diffusion coefficient. In all cases, the density rs3 = 0.191,
self-propelling force F̃ = 50 and interaction strength ~e = 12.5 are
chosen such that nearly all particles are part of one large cluster
(490%). We have found that for the parameters used in Fig. 4 the
fluctuations of the number of particles in the biggest cluster NV as
well as of the ratio NS/NV are small. Thus, the size of the largest
cluster does not fluctuate significantly, and the dynamic changes in
the shape of the percolating network do not seem to affect the
presented results.

In the fast rotational diffusion regime, the liquid cluster is
indeed compact, resulting in a small surface-to-volume ratio,

Fig. 3 (a)–(d) State diagrams of the active Lennard-Jones system with rotational diffusion coefficients Drt = 30, 9, 3, and 0.3 respectively. On the y-axis
1/~e = kBT/e denotes the inverse attraction strength of the system and Pagg = ~e/F̃ is the aggregation propensity. Data points correspond to local maxima of
density histograms, which we identify as the local densities rl of the coexisting phases. Different symbols correspond to different overall densities of the
system. The black dashed lines indicate approximate state boundaries. Labels are as follows: F indicates the fluid, G–L gas–liquid coexistence, G–X gas–
crystal coexistence and PN the percolating network state.
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which decreases further with increasing system size, as
expected. On the other hand, for low rotational diffusion, i.e.
in the percolating network state, we observe a much larger
fraction of surface particles, which is independent of the
system size. For the system parameters studied in Fig. 4 we
find that the transition between the network state and the gas–
liquid separation occurs at a rotational diffusion of around Drt
B 2. Note that this transition becomes sharper with increasing
system size, characteristic of a phase transition.

To gain further insight into the properties of the percolating
network state, we study the pairwise correlations between
particles. In Fig. 5(a), we plot the radial distribution function
g(r) for four different values of Drt, at the same density and
interaction strength as was used for Fig. 4. For the highest value
of Drt, the system exhibits a gas–crystal phase separation, and
the radial distribution function shows sharp peaks characteristic
of the crystalline order. For Drt = 9 and 3, the system forms a
gas–liquid separation, resulting in much weaker peaks in g(r).
Finally, for Drt = 0.3, we observe the percolating network state,
for which the radial distribution function looks essentially the
same as that of the gas–liquid separation.

Additionally, we calculate the normalized orientation corre-
lation function C1(r), defined as

C1ðrÞ ¼

PN
i¼1

PN
j¼1

0d r� rij
� �

p̂i � p̂j

* +

PN
i¼1

PN
j¼1

0d r� rij
� �* + ; (8)

where the prime on the summation sign indicates the terms for
which i = j are not included. The angular brackets indicate a
configurational average. This function is equal to unity if all the
axes of self-propulsion of particles are aligned, and equal to
zero if all particle orientations are uncorrelated. We plot C1(r) in
Fig. 5(b). In all cases, we see that for r o s, there is a negative
correlation between the orientations of the particles. This is
expected, as the only way for particles to be significantly closer
than r = s is for them to be pushing towards each other.
Additionally, as expected, the crystalline state shows significant

statistical noise, due to small values of the denominator in
eqn (8). The most important result in Fig. 5 is the strong local
alignment of particles in the percolating state in comparison to
the other states. As there is no explicit aligning torque in the
model, this is surprising, and indicates that particles with
similar orientations tend to stay in closer proximity in the
percolating network.

In light of the above conclusions, we propose here a possible
mechanism that accounts for the formation of the percolating
network state. Consider a dilute system of self-propelled particles
with an attraction strength at least strong enough to cause gas–
liquid phase separation in the absence of self-propulsion. Now
assume that the magnitude of self-propulsion is stronger than the
attractions F̃ 4 ~e, and that the axis of self-propulsion associated
with each particle is pointing in a fixed, random direction (Drt = 0).
When two particles collide there are two possible scenarios – if their
axes of self-propulsion are pointing in a similar direction, then
the attraction will cause them to aggregate and travel together.
In contrast, if the axes of self-propulsion are pointing in
sufficiently different directions, the particles will overcome
the attraction and move away from each other. After a large

Fig. 4 Average ratio of the number of surface particles NS over the number of
particles NV in the biggest cluster of the system, as a function of the rotational
diffusion coefficient Drt. For all points, F̃ = 50, ~e = 12.5, and rs3 = 0.191. The
insets show snapshots of the system for the corresponding values of Drt.
Particles that belong to different clusters have different colours.

Fig. 5 Radial distribution function g(r) (a), and normalized orientation
correlation function C1(r) (b) for different values of the rotational diffusion
coefficient. All curves correspond to values of the parameters rs3 = 0.191,
F̃ = 50, and ~e = 12.5. For Drt = 30, the crystal and the gas coexist, for Drt = 9
and 3, the liquid and the gas coexist and for Drt = 0.3, the system is in the
percolating network state. Note that in figure (a) the radial distribution
functions are offset for clarity.
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number of collisions, this process will ultimately create a
collection of clusters, with each cluster containing particles
with similar orientations. By performing a small number of
simulations (not shown in the present article) in very low
densities rs3 = 0.001–0.01 and for F̃ 4 ~e 4 1, we have indeed
verified that the above process creates a collection of small
clusters in which particle orientations are highly correlated.

Now, if we increase the system density and instead of a fixed
direction of self-propulsion we allow the particles to slowly
rotate (corresponding to a low rotational diffusion coefficient),
then this argument should continue to hold, e.g. particles that
are in similar orientations aggregate more easily than particles
pointing in opposite directions. This results in highly dynamic
aggregates with groups of particles frequently attaching and
detaching, and neighbouring particles displaying high degrees
of orientational correlation as seen in Fig. 5. For sufficiently high
density (such as those studied in this paper), these aggregates
become completely system spanning, and the majority of particles
are connected to a single network, as seen in our simulations. This
picture agrees well with movies from our simulations (see ESI†
Movies S1 and S2) and accounts for both the local alignment of
particles (Fig. 5) and the lack of system size dependence of the
structural properties of the percolating network (Fig. 4).

As Drt increases, the persistence length of the self-propelled
motion of the particles decreases. In this case, the attractive
force is able to aggregate particles with larger differences in the
orientation of the axes of self-propulsion. This process ultimately
leads to a transition to the (bulk) gas–liquid phase coexistence
region (Fig. 4). A similar transition from the percolating network
state to a gas–liquid coexistence state can take place by fixing the
persistence length of the particles and increasing the attraction
(Fig. 3(b) and (c)).

C. Clustering properties

In a recent publication, Mognetti et al.33 showed that the
aggregation, i.e. clustering, in a system of self-propelled attrac-
tive particles depended only on the ratio Pagg = ~e/F̃. To examine
whether this collapse also occurs in our system, we calculated
the degree of clustering Y, introduced in ref. 33, as

Y ¼ 1� Nclustersh i
N

; (9)

where hNclustersi is the average number of clusters in the system.
We considered particles clustered when their center of mass
distance is less than 1.2s.33 Thus, Y - 0 when the system is in

the dilute gas phase where hNclustersiC N, while Y ¼ 1� 1

N
’ 1

when all particles belong to the same cluster. The results are
plotted in Fig. 6.

In Fig. 6(a) we plot the degree of clustering Y as a function
of the rotational diffusion coefficient Drt at constant Pagg near
the percolating network to gas–liquid transition. We do not see
a collapse in the degree of clustering here. Similarly, in Fig. 6(b)
we do not see a collapse when plotting Y as a function of Pagg at
fixed rotational diffusion Drt for a wider range of state points.
Finally, we checked to see if the collapse would occur if we use
underdamped dynamics in place of overdamped dynamics for
the translational degrees of freedom. As shown in Fig. 6(c), we
also do not find a value of the damping parameter ~g for which a
collapse occurred. We conclude that the data collapse found by
Mognetti et al.33 does not occur in our system. We attribute this
discrepancy to the difference in the applied dynamics, and
more specifically to the different mechanisms that rotate the
particles in the two different systems.

IV. Conclusions and outlook

In the present work, we employed computer simulations to
study the self-assembly of a system of self-propelled Brownian
particles that interact via the truncated and shifted Lennard-
Jones potential.

We determined state diagrams of the overdamped system for
various rates of rotational diffusion of the self-propelled motion of
the particles. We found that for fast rotational diffusion, the
properties of the state diagram bore strong similarities to the
phase diagram of the equilibrium Lennard-Jones system. However,
as the rotational diffusion was decreased, new features arose due
to the interplay between self-propulsion and attraction. That is, a
new state was observed between the fluid phase and gas–liquid
coexistence, which we identified as a highly dynamic, percolating
network state. That state consisted of interconnected but mobile
clusters that created a system-spanning network. Finally, for slow
rotational diffusion the (bulk) gas–liquid coexistence disappeared

Fig. 6 Degree of clustering Y as a function of (a) the rotational diffusion coefficient Drt for different values of F̃ and ~e, but at a constant ratio Pagg = 0.25,
(b) Pagg for different values of F̃, and fixed Drt = 3 and (c) the dimensionless damping parameter ~g for different values of F̃ and ~e, but at a constant ratio
Pagg = 0.20 and constant Drt = 3. The density of the system is rs3 = 0.191, same as in ref. 33.
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and the system transitioned from the percolating network state
directly to gas–crystal coexistence.

We subsequently discussed the unique properties of the
percolating state, and presented evidence of a transition from
gas–liquid to a percolating network with decreasing rotational
diffusion. By examining the correlations between the orientations
of the axes of self-propulsion of the particles, we found significant
local alignment in the percolating state. A possible mechanism
was proposed in order to explain the formation of the percolating
network.

Finally, we noted that the ratio of the strength of attraction
over the magnitude of self-propulsion does not solely characterize
our system. This is in contrast to what was found in ref. 33, and
may be due to differences in the applied dynamics.

We would like to comment here on the significance of the
percolating network state. First, we note once more that this
state is caused by the synergy between attraction and self-
propulsion, so we expect it to be present in three dimensional
systems for a wide variety of attractive potentials and propulsion
mechanisms. Moreover, our simulations suggest that this novel
state is present for low density systems and experimentally
relevant rotational diffusion, so a search for this state in real
colloidal systems is feasible. As earlier work has shown, hydro-
dynamic interactions may also cause local alignment of particles,
an effect that may enhance the formation of the percolating
network state in experimental systems.43

Last but not least, as demonstrated in Section IIIC, the exact
dynamics of a theoretical model are of importance not only for
the quantitative but also for the qualitative results it generates.
Detailed comparisons between different theoretical models, as
well as actual experimental systems, such as ref. 31, are thus
extremely valuable and needed, in order to deepen our under-
standing of active matter systems.
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