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The standard models of solid mechanics were developed to
describe the behavior of stiff materials. Our recent experiments
have shown that the Johnson—Kendall-Roberts theory of
adhesion, Young—Dupre relation of wetting, and Eshelby theory
of composites each fail when elastic moduli drop below a
size-dependent scale. In all cases, surface tension drives new
phenomena. In this Soft Matter paper, we reformulate Eshelby’s
theory of composites to account for surface tension.
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Eshelby's theory of inclusions has wide-reaching implications across the mechanics of materials and
structures including the theories of composites, fracture, and plasticity. However, it does not include the
effects of surface stress, which has recently been shown to control many processes in soft materials
such as gels, elastomers and biological tissue. To extend Eshelby's theory of inclusions to soft materials,
we consider liquid inclusions within an isotropic, compressible, linear-elastic solid. We solve for the
displacement and stress fields around individual stretched inclusions, accounting for the bulk elasticity of
the solid and the surface tension (i.e. isotropic strain-independent surface stress) of the solid-liquid
interface. Surface tension significantly alters the inclusion's shape and stiffness as well as its near- and
far-field stress fields. These phenomena depend strongly on the ratio of the inclusion radius, R, to an
elastocapillary length, L. Surface tension is significant whenever inclusions are smaller than 100L. While

Eshelby theory predicts that liquid inclusions generically reduce the stiffness of an elastic solid, our
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Accepted 1st December 2014 results show that liquid inclusions can actually stiffen a solid when R < 3L/2. Intriguingly, surface tension

cloaks the far-field signature of liquid inclusions when R = 3L/2. These results are have far-reaching
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. Introduction

Eshelby's theory of inclusions® provides a fundamental result
underpinning a wide swath of phenomena in composite
mechanics,>” fracture mechanics,*” dislocation theory,® plas-
ticity>'® and even seismology."* The theory describes how an
inclusion of one elastic material deforms when it is embedded
in an elastic host matrix. At an individual inclusion level, it
predicts how the inclusion will deform in response to far-field
stresses applied to the matrix. It also allows the prediction of
the macroscopic material properties of a composite from a
knowledge of its microstructure.

Eshelby's theory does not include the effects of surface
stresses at the inclusion/matrix boundary. However, recent
work has suggested that surface stresses need to be accounted
for in soft materials. This has been suggested both by theoret-
ical models of nanoscale inclusions,”*™** and by recent experi-
ments which have shown that surface tension (isotropic, strain-
independent surface stress) can also significantly affect soft
solids at micron and even millimetric scales. For example, solid
capillarity limits the resolution of lithographic features,"**
drives pearling and creasing instabilities,'*** causes the Young-
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Dupré relation to break down for sessile droplets,** and leads
to a failure of the Johnson-Kendall-Roberts theory of adhe-
sion.>*** Of particular relevance are our recent experiments
embedding droplets in soft solids, where we found that Eshel-
by's predictions could not describe the response of inclusions
below a critical, micron-scale elastocapillary length.** A similar
break down was also seen in recent experiments that embedded
bubbles in soft, elastic foams.?*

To apply Eshelby's theory to a broad-class of mechanical
phenomena in soft materials, we need to reformulate it to
account for surface tension. Here, we derive analytic expres-
sions for the deformation of individual inclusions, the defor-
mation and stress fields around the inclusions, and the elastic
moduli of soft composites. Our approach builds upon previous
theoretical works that have: focused on strain-dependent
surface stresses'****® (which are relevant to nanoinclusions in
stiffer materials, but not for softer materials such as gels*’), only
considered isotropic loadings,”” used incorrect boundary
conditions® (¢f.*'), or only considered incompressible solids
and employed a dipole approximation to calculate composite
properties.*

Il. Stretching individual inclusions

We begin by considering how surface tension affects Eshelby's
solution for the deformation of individual inclusions embedded
in elastic solids subjected to far-field stresses." We consider an

This journal is © The Royal Society of Chemistry 2015
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isolated, incompressible, spherical droplet of radius R
embedded in a linear-elastic solid that is deformed by a
constant uniaxial far-field stress, as shown in Fig. 1. The
displacement field in the solid satisfies

(1 = 2») Vu+ V(V-u) =0, (1)

where v is Poisson's ratio of the solid.

For far-field boundary conditions, the stress in the solid ¢ is
given by the applied uniaxial stress o,, = 0%, 0. = 0y, = 0 in
cartesian coordinates. Stress and strain are related by

1
&5 = (14 v)oy — vojou], 2)

where 6; is the Kronecker delta, and E is Young's modulus.
Thus, the far-field boundary conditions can also be written ¢,, =
€2y = Oy |E, &xx = €y, = —Véy," . At the surface of the droplet
the elastic stress satisfies a generalised Young-Laplace equa-
tion, which states that the difference in normal stress across an
interface depends on its surface stress, 1, and curvature #
(equal to twice the mean curvature, or the sum of the principal
curvatures) via

o'n=—pn+ Yxn (3)

(e.g. ref. 20 and 23). Here n is the normal to the deformed
droplet surface, ¢-n is the normal stress on the solid side, and p
is the pressure in the droplet. The assumption that the surface
stress is simply an isotropic, strain-independent, surface
tension is appropriate for many soft materials including gels
and elastomers.*® Expressions for n and 2 in terms of surface
displacements are given in Appendix A - these are different
from the expressions used in ref. 13 which ignored inclusion
deformation and assumed that ¢ = 2Y/R.**

We exploit symmetry and solve the problem in spherical
polar co-ordinates by adopting as an ansatz the solution

G
U = Fr+ — + Py(cos )
I

S5—dne |9
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Fig. 1 Schematic diagram for uniaxial stretching of a single, incom-
pressible droplet embedded in a linear-elastic solid. ¢ is the length of
the deformed droplet in the stretch direction.

This journal is © The Royal Society of Chemistry 2015

View Article Online

Soft Matter

_ d#;(cost)

(I-2v)e 9
ST

x |(7— 4v)tr® 4+ Br + 2 +=|- (4)

2

as described by ref. 14. The surface displacements in the radial

and @ directions (f is the polar angle from the z-axis) are u, and

ug respectively, #, is the Legendre polynomial of order 2, and .«

through ¢ will be determined from the boundary conditions.

Applying the far-field strain condition, we find that.«# = 0, #

= (1 — 2v)e,, /3 and # = (1 +v)e,,~ /3. Droplet incompressibility
27T (T

requires that J u'ndS= J J R*u, sinfdf d¢ =0, where .# is
ES 0 0

the boundary of the stretched droplet, and the area integral is

evaluated using results from differential geometry summarised
in Appendix A. This gives ¥ = —(1 — 2v)R%,,*/3. Finally, by
applying the boundary condition (3) using eqn (2) to covert
stresses to strains and displacements we obtain

5R3(1+y){§—(1+u)}

W: L:2oo (5)
6{%(7 —50)+(17 -2 7191;2)}
and
R
R(1+v) {Z —(-1+v+ 21/2)}
9 =5 .. (6)
2(7 —5v) 4+ (17 = 2v —19/%)

Here L = Y'/E is the elastocapillary length, a material property of
the solid-liquid interface. For perturbations of wavelength
much smaller than L, A < L, surface deformations are primarily
opposed by surface tension, whereas for A >> L, bulk elasticity
suppresses deformation of the surface (e.g. ref. 19, 25, 43 and
44). With the expressions for .# — ¢, eqn (4) gives us the exact
displacement solutions. These also allow calculation of stresses
in the solid: we convert displacements to strains (e.g. ref. 45)
and then use eqn (2) to find the non-zero stress components o,,,
Orgy Tpg AN Ty

While these results are for uniaxial stress, they are readily
extended to provide the solution for general far-field stresses. In
the appropriate coordinate frame, the far-field stress matrix is
diagonalisable so the only non-zero far-field stresses are o4, 0,
and o;. Then, from linearity of the governing equations, we can
calculate the resulting displacements by simply summing the
solutions for uniaxial far-field stresses g4, 0, and o;.

A. Inclusion shape

While Eshelby's results are scale-free, surface tension makes the
response of a liquid inclusion strongly size-dependent. We
derive the equations describing the inclusion shapes in
Appendix B. For large droplets, R >> L, the fluid droplet
deforms more than the surrounding solid. In this limit, the
droplet shape only depends on ¢ “/E = ¢,,” and v, in agreement
with Eshelby's theory.' However, as R approaches L, high
interfacial curvatures are suppressed by surface tension. For R
< L, u(R,0) = 0 and the droplets remain spherical. This is
visualized in Fig. 2 for a uniaxially-stressed solid where the far-
field stress and strain are ¢ = 0.3E and ¢,,~ = 0.3, respectively.

Soft Matter, 2015, 11, 672679 | 673
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Fig. 2 Examples of droplets embedded in an incompressible solid under uniaxial strain with ., = 0.3. Top: excess radial displacements (u, —
u,”)/R caused by the presence of the inclusion. The elastic dipole around the inclusion changes sign as R/L increases. Middle: excess tangential
displacements (uy — Us*)/R 6 is the polar angle from the z-axis. Bottom: shear-stress concentration factor tmax/tmax - When surface tension
dominates, tmax IS significantly increased at the inclusion tip. The black arrows denote the stretch of the host material.

Here, the radial and polar displacements in the top two rows are
measured relative to the far-field displacement field: u,” = Fr+
2P,(cos 0)%r and u,~ = P,/(cos 0)%r.

Changes in droplet shape are captured with an effective
droplet strain eq = (¢ — 2R)/R = 2u,(R,0)/R, where { is the long-
axis of the droplet. For an incompressible solid, eqn (4) gives

20e..®
a=|—-r7| (7)
6+15§

This is plotted in Fig. 3(a). In both extremes of droplet size,
the droplet shape is independent of size. In the capillary-
dominated regime (R < L) the droplet stays spherical (¢ = 0). In
the large-droplet limit (R >> L), surface tension does not play a
role, and Eshelby's results are recovered (¢q = 10¢,, " /3). There
is a smooth cross-over between these limits in the vicinity of R ~
L. Surface tension makes significant changes to droplet shape
for droplet radii up to about 100L.

Although we only consider the uniaxial stress case above, the
results can be generalised to the more general case of triaxial
far-field strains. For example, for an incompressible solid in
plane stress conditions (a4, g, # 0, 3~ = 0, as in our recent
experiments®), we calculate the solution by the summation
technique described earlier. This gives the length of the droplet
in the 1-direction as

674 | Soft Matter, 2015, 11, 672-679
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We recently compared this result to experimental measure-
ments of individual liquid inclusions in soft, stretched solids.
We found good agreement over a wide range of droplet sizes,
substrate stiffnesses and applied strains.**

4 =2R|1+

B. Stress focussing by inclusions

The macroscopic strength of composites can be reduced due to
stress focusing by inclusions. According to the Tresca yield
condition, the solid will yield when the shear stress exceeds a
critical value 7. Fig. 2 (bottom row) shows the maximum shear
Stress, Tmax, fOr an incompressible solid with a uniaxial far-field
stress for various values of R/L. The maximum shear stress is
greatest at the tip of the inclusion, and the value there increases
significantly as R is reduced below L. In fact at the inclusion tip

L
5<2+9§>

Tmax (F = R, 0 = 0) = Tpax ™ 9)

L
15=
6+5R

This is plotted in Fig. 3(b). There is a significant increase in
shear-stress concentration as surface tension becomes more

This journal is © The Royal Society of Chemistry 2015
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Fig. 3 Liquid inclusion characteristics as a function of size R/L for
inclusions in an incompressible solid with an applied uniaxial far-field
stress as shown in Fig. 1 (a) Droplet strain, eg = (¢ — 2R)/R divided by far-
field strain ¢ only depends on R/L. When R/L < 1, surface tension
dominates and there is no droplet deformation. When R/L > 1,
surface tension is negligible and the shape prediction is that of classical
Eshelby theory — given by the dash-dotted line. The dashed line shows
the material stretch, (¢ — 2R)/R = ¢*. (b) The shear-stress concentra-
tion factor at the inclusion tip (r = R, § = 0). This corresponds to the
highest shear stress in the solid around the inclusion (see Fig. 2, bottom
row). Dash-dotted lines show surface-tension dominated and Eshelby
iMits: Tmax/Tmax ~ = 3, 5/3 respectively. (c) The far-field dipole caused
around the inclusion. Note that this dipole changes sign at R = 1.5L,
indicating the transition between inclusion stiffening and inclusion
softening of the composite.

important with t,,,,4(R,0) increasing from 5t,,,, /3 when R >
L, t0 3Tpax . when R < L.

These results suggest that surface tension could weaken a
soft composite when inclusions fall below a size ~100L. This
also means that the applied strain at which yielding is expected
to occur is no longer independent of the size of the liquid
inclusion, as would be predicted from Eshelby's results, but
depends on the parameter R/L. These results hint at the
potential role of surface tension for fracture mechanics in soft
materials where a critical value is the crack-tip stress. The
capillary-induced stress focussing seen here shows how surface
tension could potentially significantly alter this value.*

C. Dipole signature of inclusions

At finite concentrations, inclusions interact at a distance
through their far-field stresses. This can be important for
determining mechanical properties of dilute composites (e.g.
ref. 42 and 47). The farfield solutions are conveniently
expressed by a multipole expansion.

This journal is © The Royal Society of Chemistry 2015
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Here, inclusions appear as force dipoles in the far-field.
From eqn (4), we find the leading order terms in the inclusion-
induced displacements (u, — ©,, uy — 1) are proportional to
1/, This corresponds to a force dipole in an elastic body

Py = PZZ; + Pedy, (10)
with Z being the unit vector in the z-direction. The displacement
fields due to the dipoles are*®

~ (14+»)[(1—=20)(P+ 3P.) + #(cos 0)(5 — 4v) P]
" 2mE(1—v)r? '

(11)

and

_ (1+»)(1—2v) d&y(cos 0)
Y= mEr(—y)  dd L (12)

Thus, from comparison with eqn (4),
P =24enE(l — v)/(1 + ), (13)

and

G —2@(1— 2v)

P. :4TCE(1—V)m.

(14)

The first dipole, P, is a force dipole of two point forces on the
z-axis which also act along the z-axis - i.e. parallel to the applied
far-field stress. The second term P. is an isotropic centre of
expansion.”® When » = 1/2, the displacement field due to P,
vanishes, and P = 8T #E.

Intriguingly, the dipole strength, P, can be positive or nega-
tive. Fig. 3(c) shows the normalised dipole strength P/c*R® of a
liquid inclusion in incompressible solid with a uniaxial applied
stress. For large inclusions (R > 1.5L), P > 0 and the dipole is a
pair of outward pointing point forces. This increases solid
displacements - consistent with a weak point in the solid. For
small inclusions (R < 1.5L), P < 0 and so the dipole opposes the
applied far-field stress, acting like a stiff point in the solid. The
sign switch is clearly seen in the displacement fields of Fig. 2. At
R = 1.5L, the inclusion has no effect on the far-field elasticity
field and is effectively invisible (e.g., see ref. 49).

lll.  Soft composites

We have shown that the surface tension of a small liquid droplet
in a soft linear elastic solid resists deformation imposed by far-
field stretch. Therefore, we expect that the dispersion of small
liquid droplets within a solid can increase its apparent macro-
scopic stiffness. We calculate the effective Young's modulus E.
of a composite containing a dilute quantity of monodisperse
droplets by following Eshelby's original approach.“* First, we
calculate the excess energy W due to the presence of a single
inclusion when a solid is uniaxially stretched. Then, we
consider uniaxial stretching of a dilute composite of noninter-
acting inclusions. If the applied stress is ¢,, = ¢, the strain
energy density of the composite is

Soft Matter, 2015, 11, 672-679 | 675
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& = (6™ IQE) + Wol(4mR33) = (67 )’ I(2E,), (15)

where @ is the volume fraction of inclusions. The second
equality comes from the relationship between the strain energy
density and the effective modulus of the material, allowing
calculation of E. from W.

The excess energy due to the presence of a single elastic
inclusion in a uniaxially-stressed solid is

1
W= EJV <o!-,-e,-j — U,-j”e,-j°°>dV

1
+*J (0','/'6,'/'—0','/008,'/00>dV+YAS. (16)
2 v / L L

Here we assume that the inclusion is an elastic solid for
generality - the droplet is the limiting case of zero shear modulus.

The volumes of the elastic matrix outside of the inclusion
and the inclusion V;,, and V;, respectively, the far-field stresses/
strains are o;” and ¢;~ respectively, and the change in surface
area of the droplet upon stretching is AS. Using the divergence
theorem, the stress boundary condition (3), and the fact that in
the far-field, o; = oy,

1 1
W = EJV (g’ingij — (Tijg,-jw)dV-i- §J9/+ <I’l,-0'l.j°°uj — I’liﬂ’ijuj“’)ds

r
2),
(17)

Integration on the matrix side of the droplet surface % is
denoted by #'. From eqn (2), the first term is zero, so W
depends only upon displacements and stresses at the droplet
surface. Using our earlier results (e.g. eqn (4)), along with
second-order (in the displacement) versions of the expressions
for n, 2%, dS and AS shown in Appendix A, we obtain W for the
case of a uniaxial far-field stress o*:

W =2nR¢* (1- )
[%(1 4 130)— (9 w5+ 161/3)}

X . (18)
E(1+v) EU —50)+(17 - 2w — 19y2)}

Finally, from eqn (15),

3(1-v) {%(1 +13r)—(9— 2w+ 57 + 161/3)}

% =1+ R D
(1+v) {2(7 —5)+(17—-2w— 191/2)}
(19)
For an incompressible solid » = 1/2 and we have
1+ > L
E, 2R
f _ 2R (20)

(17¢)+<1+§¢).

SRS
x|~
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Fig. 4 The stiffness of soft composites. Young's modulus of
composites of droplets embedded in linear-elastic solids, E. as a
function of liquid content. The dotted curve shows Eshelby's predic-
tion without surface tension. The dash-dotted curve shows the
surface-tension dominated limit, R/L < 1. The dashed curve show
Eshelby's prediction for rigid spheres embedded in an elastic solid.

Fig. 4 plots the results of eqn (20) and shows the dramatic
influence of capillarity on soft composite stiffness. When surface
tension is negligible (R > L), the composite becomes more
compliant as the density of droplets increases - in exact agree-
ment with Eshelby's prediction of E/E = (1 + 5®/3)"" (dotted
curve), and qualitatively agreeing with other classical composite
laws (e.g. ref. 2 and 3). However Eshelby's predictions break down
when R < 100L. In fact, when R < 1.5L, increasing the density of
droplets causes the solid to stiffen, consistent with the dipole
sign-switching seen earlier. In the surface-tension dominated
limit, R < L, the droplets stay spherical, and we find the maximum
achievable composite stiffness E. = E/(1 — @) (dash-dotted curve).
Note that the droplets do not behave like rigid particles in this
limit, for which E. = E/(1 — 5&/2) (ref. 1) (dashed curve). Although
the droplets remain spherical due to capillarity, there are non-zero
tangential displacements, unlike the case of rigid particles.

These results agree with experiments. Recently, we made soft
composites of glycerol droplets embedded in soft silicone
solids. In quantitative agreement with the theory, we saw stiff-
ening of solids by droplets in compliant solids, and softening in
stiffer solids.* In the dilute limit (¢ — 0), eqn (20) matches
with recent theoretical predictions (derived using the dipole
approximation for inclusions in incompressible solids) that
describe experimental measurements of shear moduli of
emulsions containing monodisperse bubbles.*>*

IV. Conclusions

We have modified Eshelby's inclusion theory to include surface
tension for liquid inclusions in a linear-elastic solid, giving both
the microscopic behaviour and the macroscopic effects of
inclusions in composites. We have shown that surface tension
stiffens small inclusions, and focusses shear stresses at the
inclusion tips. Thus composites with small, capillary-domi-
nated inclusions will be stiffer but may be weaker. This stress-
concentration illustrates the potentially strong role of surface

This journal is © The Royal Society of Chemistry 2015
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tension in the failure of soft-solids, highlighting the relevance
of this work to emerging fields like fracture mechanics and
plasticity in soft materials (e.g. ref. 46, 50 and 51).

Inclusions with surface tension can be viewed, at leading
order, as elastic dipoles in a solid. The sign of the dipole
captures the stiffening behaviour due to capillarity. Treating
inclusions as dipoles also offers a simplified picture of inclu-
sions that give the interactions between features in elastic
bodies, and can streamline calculations of bulk composite
properties via standard theories. The analytic theory presented
for bulk composite stiffness, which incorporates the entire
elastic field around inclusions, validates the dipole approach by
recovering previous results for incompressible materials in the
limit of dilute composites.*>*

Our work is applicable to a wide variety of soft material
problems. Most obviously it can be directly applied to
composites comprising soft materials such as gels and elasto-
mers. As a specific example, we have shown how surface tension
effects allow elastic cloaking, with inclusions of size R = 1.5L
being mechanically invisible. Our work also has interesting uses
in mechanobiology, as biological tissue is predominantly soft.
For example, a recent study embedded droplets in biological
tissue and observed their deformations to extract local aniso-
tropic stresses.®> The coupling between microscopic and
macroscopic stress also plays an important role in the tensional
homeostasis of soft tissues.**** Although we have only consid-
ered liquid inclusions here our analysis can be repeated for
more general soft composites with elastic inclusions in place
of liquid droplets. In that case, we expect that similar
capillary effects to those presented here will be seen whenever R
< 100Y/E;, 100Y/E,, with Ej/E,, being the inclusion/matrix
stiffnesses respectively.

Appendix
A. Differential geometry

To calculate the effect of surface tension on the shape of a
droplet embedded in a soft solid, we need expressions for the
normal to the droplet surface, its curvature, and surface area in
terms of the surface displacements. We consider an initially
spherical droplet with the position of its surface given by x =
(R,0,0), and apply a uniaxial stretch so that x —x' = (R + u,, uy,
0). From axisymmetry, the u,, u, are independent of the angle ¢.

We calculate the normal to the droplet surface, n, by taking the
cross-product of the surface tangent vectors, dx'/d6 and dx'/d¢,>

w0000 (21)
a0~ ¢
with
, - aur aLIO
ax/‘”_(aa ”"’R”"*aa’o)’ (22)
and
0x'/d¢ = (0, 0, (R + u,)sin 6 + uy cos 6). (23)
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At leading order in u we find
_ uy 1 du,
nf(l,R Raﬁ’o)' (24)

The droplet surface curvature, 2, can be calculated from
differential geometry using the first and second fundamental
forms:*®

_ erGy — 2fi Fy + grEx

H 25
EG; — F? (25)
where
B ox’ ox’ B ox’' ox’ B ox' ox’ (26)
Y700 000 T 90 ap” " 3¢ 9¢’
and
X/ ) 0°x’ X/
= — - — - n — 27
ey n (:)(927 ft n aﬁad” 8r n ad)z ( )
Thus, at leading order in u,
2 1 du, 0w,
Jp—ﬁ—ﬁ(Zur-i-cotﬁ 00+602>' (28)

Using the results above, we also obtain the area ele-
mentdS = \/EfGg — Fr>dfd¢.* At leading order in u,

ds = do do,

. . d .
R?sin 0 + R(ua cos 6 + 2u, sin 6 + al; sin 0)

(29)
and after integration we obtain the droplet surface area

2T T
S:4TER2+J J
0 0

dg do

. a .
R(ua cos 0 + 2u, sin 6 + % sin 0)

2T p2TC
— 47 R? + J [ 2u, sin 0 df d®.

0o Jo (30)

B. The shape of a uniaxially stretched droplet

We determine the shape of a uniaxially-stretched droplet by
using the calculated expressions for.# — & in eqn (4) to obtain
the surface displacements:

(R,0) _ Sex” (1—1?)[1 + 3 cos(20)] ]
R~ 2 L (31)

(7= 50)+ 2 (17 = 20 —195%)

and

L .
us(R, ) 15e..% {1+§(1+V)}(1*V )sin(26) o)
Y 32

N ? (7*5")+%(1772V719v2)_
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When L >> R, we see that radial displacements vanish, and
the inclusions remain spherical. In the opposite limit, R > L,
the inclusion shape becomes independent of its size, as pre-
dicted by Eshelby's results.
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