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Manipulating shear-induced non-equilibrium
transitions in colloidal films by feedback control

Tarlan A. Vezirov,? Sascha Gerloff® and Sabine H. L. Klapp®

Using Brownian Dynamics (BD) simulations we investigate non-equilibrium transitions of sheared colloidal

films under controlled shear stress ag,,. In our approach the shear rate v is a dynamical variable, which

relaxes on a time scale . such that the instantaneous, configuration-dependent stress a,,(t) approaches

a pre-imposed value. Investigating the dynamics under this “feedback-control” scheme we find unique

behavior in regions where the flow curve g,,(y) of the uncontrolled system is monotonic. However, in

Received 28th June 2014
Accepted 5th November 2014

non-monotonic regions our method allows to select between dynamical states characterized by

different in-plane structure and viscosities. Indeed, the final state strongly depends on 1. relative to an

DOI: 10.1039/c4sm01414f

www.rsc.org/softmatter a simple model.

1. Introduction

Soft matter under shear flow can display rich nonlinear
behaviour involving transitions between different dynamical
states,"” spontaneous spatial symmetry-breaking,® shear-band-
ing*” (for recent reviews, see ref. 8-12), rheochaos*™* and
heterogeneous local dynamics.'®'” These intriguing phenomena
often strongly affect the rheological properties of the system.
Understanding shear-induced effects in, e.g., complex surfac-
tant solutions™ or liquid crystals,"* colloids,"?" soft
glasses,'®'”** and active fluids,* is thus a major current topic
connecting non-equilibrium physics and soft material science.

A quantity of particular interest is the flow (or constitutive)
curve,”*? that is, the shear stress o as function of the shear rate
7, both of which can serve as experimental control parameters.
In many examples, the curve o(y) behaves not only nonlinear
(indicating shear-thinning,**** shear-thickening,*** sometimes
connected irregular (chaotic) rheological response'®*’), but
becomes also multivalued, i.e. different shear rates lead to the
same stress. In complex fluids of e.g. wormlike micelles, this
multivalued property is in fact a universal indicator of a shear-
banding instability, specifically, gradient banding, where the
(formerly homogeneous) system separates in gradient direction
into coexisting bands characterized by a smaller and a larger
local shear rate*? (note that this is different from the more exotic
vorticity banding, i.e., the formation of bands along the vorticity
direction as discussed e.g., in ref. 11, 12 and 28). In soft
(colloidal) glasses, multivalued functions ¢(7) occur as transient
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intrinsic relaxation time of the uncontrolled system. The critical values of 7. are estimated on the basis of

phenomena after a sudden switch-on of shear stress (Bau-
schinger effect),” or in the vicinity of the so-called yield stress;*
in these systems one observes strong dynamical heterogene-
ities.”” A further intriguing feature is that close to such non-
monotonicities, the system's behaviour strongly depends on
whether one uses the shear stress or the shear rate as a control
parameter.***" In fact, both choices are common in rheological
experiments.?*3%%

Here we present BD computer simulation results of yet
another system with multivalued stress-shear curve, that is, a
thin colloidal film sheared from an (equilibrium) state within
in-plane crystalline order in a planar Couette geometry. As
shown in previous experimental® and simulation®-* studies,
such films can display successive non-equilibrium transitions
from square crystalline over molten into hexagonal states. Here
we demonstrate that the structural transitions lead again to
non-monotonic flow curves, with a shape reminding that of
materials which perform a solid-to-liquid transition beyond a
critical (yield) stress.?®

Based on this nonlinear behaviour, we then investigate the
films in presence of controlled shear stress. In fact, so far
most simulations of sheared colloids have been done under
fixed shear rate v, exceptions being e.g. ref. 17, 30 and 37,
where constant ¢ has been realized by fixing the force acting
on the atoms forming the walls. Here we introduce an alter-
native, easy-to-apply scheme to control ¢ which has been
previously used by us in continuum approaches of sheared
liquid crystals.** In that scheme ¥ (which directly enters the
BD equations of motion) becomes a dynamical variable whose
time dependence is governed by a relaxation equation
involving a time scale 7.. The relaxation is based on the
difference between the instantaneous (configuration-depen-
dent) stress ¢(¢t) and a preimposed value o,. The idea of
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adapting the shear rate v is inspired by experiments of stress-
controlled systems.**** Our scheme differs from earlier
schemes'’***” where the desired value ¢, is imposed instan-
taneously. Moreover, due to the coupling to the particle
positions our method corresponds to a “feedback” (closed-
loop) control scheme, which is similar in spirit to e.g. a
Berendsen thermostat for temperature control.** However,
here the choice for 7. is found to be crucial for the observed
dynamical behaviour. In particular we demonstrate that, if
our scheme is applied within the multivalued regime of o(7),
the final state strongly depends on the magnitude of 7. rela-
tive to important intrinsic time scales of the system. Thus, the
stress-control can be used to deliberately select a desired
dynamical state.

2. Model and simulation details

We consider a model colloidal suspension where two particles
with distance r; interact via a combination of a repulsive
Yukawa potential, tyyi(ry;) = W exp[—«ry]/r; and a repulsive soft-
sphere potential ugs(r;) = 4ess(d/ry)"” involving the particle
diameter d.”* The interaction parameters are set in accordance
to a real suspension of charged silica macroions [for details, see
ref. 40 and 41]. Specifically, at the density considered (see
below), the interaction strength W/(kgTd) = 123 (where kgT the
thermal energy) and the inverse screening length « = 3.2d.
Spatial confinement is modeled by two plane parallel, smooth,
uncharged surfaces separated by a distance L, along the z
direction and of infinite extent in the x—y plane. We employ a
purely repulsive fluid-wall decaying as z ° [see ref. 21]. This is
motivated by previous investigations of the equilibrium layer
structure, where we found a very good agreement with
experiments.****

Our investigations are based on standard BD simulations in
three dimensions, where the position of particle 7 is advanced
according to*

r;(t+6t) =ri(t) + kf—OTF,-(t)ét + OW; + vz;(t)ote,, (1)
where F; is the total conservative force acting on particle 7.
Within the framework of BD, the influence of the solvent on
each colloidal particle is mimicked by a friction constant and
a random Gaussian displacement 6W;. The friction constant
is set to (Do/kgT)" ', where D, is the short-time diffusion
coefficient. The value 6W; has zero mean and variance 2D,0t
for each Cartesian component. The time scale of the system
was set to T = ¢>/D,, which defines the so-called Brownian
time. We impose a linear shear profile [see last term in
eqn (1)] representing flow in x- and gradient in z-direction,
characterized by uniform shear rate y. We note that, despite
the application of a linear shear profile, the real, steady-state
flow profile can be nonlinear.*® This approximation has also
been employed in other recent simulation studies of sheared
colloids;'**** the same holds for the fact that we neglect
hydrodynamic interactions.
One quantity of prime interest in our study is the x-z
component of the stress tensor,
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Thus, we consider only the configuration-dependent contri-
bution to o,,; the kinematic contribution (which involves the
velocity components in x- and z-direction) is negligible under
the highly confined conditions here. We note that, apart from
the kinematic contribution, eqn (2) also neglects higher-order
contributions  involving gradients.** In continuum
approaches, one typically includes non-local terms which are
essential for the description of interfaces between shear-
bands.”** The importance of such terms in our highly confined
system, which is characterized by pronounced layer formation,
remains to be investigated.

Based on the shear stress, we introduce a feedback scheme
as follows. Starting from an initial value for ¥ we calculate, in
each time step, the configuration-dependent stress o,, from eqn
(2) and adjust ¥ via the relaxation equation

d . 1 09— 0 (t

TR T ©)
where o, is a pre-imposed value of ¢,,, and 7. determines the
time scale of relaxation. Also, 7, is the shear viscosity obtained
for ¥ — 0 (Newtonian regime). This control scheme is inspired
by experiments under fixed stress [see, e.g. ref. 32], where the
adaptation of the shear rate to a new stress value always takes a
finite time.

From a more formal point of view, we note that through eqn
(3), ¥ becomes an additional dynamical variable. Therefore, and
since 0,,(t) depends on the instantaneous configuration {r,(t)} of
the particles, simultaneous solution of the N + 1 equations of
motion (1) and (3) forms a closed feedback loop with global
coupling. Interestingly, this feedback scheme is in accordance
with the common view that, in a stable system, the shear stress
o, should increase with the applied shear rate. This can be
shown (at least for a homogeneous system) by a linear stability
analysis of eqn (3) as outlined in Appendix A.

In our numerical calculations, we focus on systems at high
density, specifically pd® = 0.85, and strong confinement, L, =
2.2d. The corresponding equilibrium system forms a colloidal
bilayer with crystalline in-plane structure.** We also show some
data with L, = 3.2d, yielding three layers. The values L, = 2.2 and
3.2 have been chosen because the equilibrium lattice structure
is square** (other values would lead to hexagonal equilibrium
structures which do not show the shear-induced transitions
discussed here). The number of particles was set to N = 1058
and 1587, the width of the shear cell to L = 23.8d and 24.2d for
L, = 2.2d and 3.2d, respectively. Periodic boundary conditions
were applied in flow (x) and vorticity (y) direction. The time step
was set to 6t = 10~ °t where 1 = d*/D, the time unit.

The system was equilibrated for 10 x 10° steps (i.e. 1007).
Then the shear force was switched on. After the shearing was
started the simulation was carried out for an additional period
of 100t. During this time the steady state was reached. Only
after these preparations we started to analyze the considered
systems.
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3. Shear-induced transitions

We start by considering flow curves for systems at constant 7.
The functions ¢,,(7) for both, two- and three layer systems are
plotted in Fig. 1, where we have included data for the viscosities
1 = 0x,/"v. Note that we have defined 7 via the externally applied
rate v rather than via the effective shear rate within the system
(characterized by the average velocity of the layers®!), which can
show significant deviations from 7. As seen from Fig. 1, both the
bi- and the trilayer systems are characterized by a non-
monotonic flow curve, accompanied by pronounced shear-
thinning. At small shear rates, the systems display linear stress,
related to an Newtonian response of the square in-plane lattice
structure. An exemplary simulation snapshot for the three-layer
system is shown in Fig. 2a [see ref. 21 for corresponding results
for the bilayer]. In fact, within the Newtonian regime (square
state) the layer velocities are zero, ie., the particles are
“locked”.”* In this state the lattice structure persists and the
system reacts to the displacement of the particles in elastical
manner. Further increase of the shear rate then destroys the
square order. In the bilayer, the system then enters a “shear-
molten” state characterized by the absence of translational
order within the layers (as indicated, e.g., by a non-zero long-
time diffusion constant in lateral directions®'). At the same
time, the entire system starts to flow, that is, the layer velocities
increase from zero to non-zero values.”® From the function
0x(7) plotted in Fig. 1a, the appearance of the shear-molten
state is indicated by a sudden decrease of o,,, implying the
onset of shear-thinning. In fact, with the shear-molten regime
the slope of the flow curve is negative. For bulk systems, such a
behavior implies that the system is mechanically unstable.***
Here we are considering a strongly confined system, where the
macroscopic arguments cannot be immediately applied.
Nevertheless, it is an interesting question to which extent the
flow curve pertains to a true steady state in the regime where the

0.1 —

a) 2 Ia)'/ers

20

Fig. 1 (Color online) steady state shear stress and shear viscosity
(insets) for bi- and trilayer systems as function of the applied shear rate.
Regions indicated as |, II, lll are discussed in the main text.
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a) yr=10 |b) y7=28 |C) 77=80

y X X

Fig. 2 (Color online) snapshots of a colloidal trilayer at three different
shear rates corresponding to (a) square, (b) laned, and (c) hexagonal
state. In the main figures, the three colours correspond to particles in
the three layers. In the insets, the two colours indicate the particles of
the middle layer which are positioned at z > 0 (red) and z < O (yellow),
respectively (where z = 0 is the middle plane).

shear rate has values corresponding to shear-molten configu-
rations. Investigating the shear stress as function of strain (see
Appendix B) we find that o, assumes indeed a constant value on
the time scale of our simulations; however, the relaxation time
is extremely long (see next section). We also mention that our
observation of shear-molten (long-time) configurations in the
regime, where o, decreases with v, is consistent with findings
in an earlier theoretical study of a colloidal suspension under
shear.*

Somewhat different behaviour is found in the trilayer system
which displays, before melting, an intermediate state [see
Fig. 2b]: this state is characterized by a non-zero layer velocity.
In addition, the middle layer separates into two sublayers, in
which the particles are ordered in “lanes” [see inset of Fig. 2b]
and move with the velocity of the corresponding outer layer (a
more detailed discussion of this “laned” state will be given
elsewhere®). Only further increase of ¥ then yields a shear-
molten state characterized by a decreasing flow curve (in
analogy to the bilayer). Finally, both systems transform into a
state with in-plane hexagonal ordering [see Fig. 2c] and low
viscosity. In this hexagonal state the layer velocity is non-zero,**
that is, the systems flows. As demonstrated earlier by us* the
mechanism of relative motion involves collective oscillations of
the particles around lattice sites, consistent with recent exper-
iments of 3D sheared colloidal crystals.”® Regarding the stress,
we see that the hexagonal regime is (in both systems) charac-
terized by a slight increase of 7,, with ¥. As a consequence, there
is a parameter range (indicated as region “II” in Fig. 1) where
the flow curve is multivalued, that is, different y lead to the same
gy,- In many contexts (such as for worm-like micelles), multi-
valued flow curves are associated with the phenomenon of
shear-banding, that is, the separation of the system into spatial
regions with different shear rates. In our case, where the system
consists of two or three layers such a separation can not occur.
Instead, the non-monotonic stress curve is a consequence of the
structural transitions of the system induced by the shear.

4. Intrinsic time scales

Before exploring the impact of shear-stress control, which
involves a time scale itself through the parameter 7. [see eqn
(3)], we take a closer look at the intrinsic time scales

This journal is © The Royal Society of Chemistry 2015
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characterizing the uncontrolled systems. We focus on the
bilayer (the same findings apply qualitatively on the trilayer)
and consider the response of the unsheared equilibrium
system, which is in a square state, to a sudden switch-on at time
Ton Of shear with rate yye. The resulting time dependence of
the instantaneous stress is plotted in Fig. 3.

If Ynew? has a value pertaining to the square state, the shear
stress jumps at 7,,, to a non-zero value but then settles quickly to
its steady-state value [see Fig. 1]. At shear rates corresponding to
the shear-molten state we can also observe a relaxation at some
non-zero value. However, it should be emphasized that this
value is transient in character. The true, steady state value is only
achieved at much longer simulation times (see the stress-strain
relations presented in Appendix B). Finally, for shear rates
related to the hexagonal steady state (Ynew? > Yhext = 257, [see
Fig. 1]), we observe a well-pronounced stress overshoot, similar
to what is observed e.g. in soft glassy systems,* wormlike
micelles® and polymer melts.>® Closer inspection shows that
the actual value of 7, as well as the functional behavior of o,,(¢)
strongly depends on the distance between ¥, and the
threshold between shear-molten and hexagonal state, YhexT: the
smaller this distance is, the larger becomes 7,, and the more
sensitive it is against small changes of the shear rate. Moreover,
a sudden quench deep into the hexagonal state leads to an
oscillatory relaxation of the stress o,,(t) [see curves Ynewt = 400,
500], with 7; (which now corresponds to the relaxation time of
the envelope) being still quite large. Taken together, for Yewt >
YhexT, T1 can be fitted according to (see inset in Fig. 3)

a;

4)

o
”Ynewf - Yf'f| '
where we find a;/t = 0.21, b; = 0.52 (setting ¥17 = Ynext). The
oscillations occurring at large v,e, induce yet a different
time scale 7,5, which is smaller than t,. Specifically, we find
Tos/T = 0(10~%). The physical reason for these oscillations is the
“zig-zag” motion of particles in adjacent layers.”* This motion is
accompanied by periodic variations of nearest-neighbor

40 T T T
Y new? =300 (hexagonal)
30 g /YnewT = 280 (hexagonal) 7
¥ new® = 240 (slow melting)
20 - |
o ¥ new® = 200 (square)
10 T 4
~
5 0.15 T T
= 0 b) |
S
° i _ 0.1 4
-10 | ¥ new® =400 (hexagonal) 3 Y |
5 t
Y new® = 500 (hexagonal) 0.05 [+ B
20 ¢ Cogssszsesetrana®osel |
0 h )
230 0 100 200
a) Vnew" Y hex®
40 . . .
0 0.05 0.1 0.15 0.2
tit

Fig. 3 (Color online) response of g,,(t) to a sudden switch-on (at time
Ton) Of shear with different rates ynewt. The simulations were started
from the equilibrium (square) state in a bilayer system. The inset shows
the fit of the relaxation times t; according to egn (4).
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Fig. 4 (Color online) response of g,,(t) to a sudden change (at time
Ton) Of shear. The new shear rates vnewt result in a relaxation in the
square state. The simulations were started from the hexagonal steady
state at ¥y = 400 in a bilayer system. The inset shows the fit of the
relaxation times 1, according to eqn (4).

distances, and thus, pair forces, which eventually leads to
oscillations of a,,(t).

Furthermore it is interesting to relate the relaxation times
emerging from Fig. 3 to the structural transition from square to
hexagonal state in Fig. 1. To this end we consider the Peclet
number Pe = y1p. where 1p. is a “typical” relaxation time.>*
Identifying tp. with 7, and considering shear rates ¥ close to the
transition from the quadratic into the shear-molten state, we
find Pe = ¢(10°). In other words, the shear-induced structural
transitions happen at Pe = 1,
expectations.>

For comparison we have also investigated the reverse situa-
tion, where the system is initially in a hexagonal steady state at
shear rate ¥, = 400. We then suddenly change the shear rate
towards a much smaller value and consider the relaxation

consistent with our

towards the square equilibrium state. The corresponding
behaviour of ¢,,() is shown in Fig. 4. Again we find that, the
smaller the difference ¥new? — 727 is, the larger 7, becomes (and
the more pronounced is the sensitivity to small changes in
Ynew). The resulting relaxation times can be also fitted via
eqn (4) with a,/t = 22.58, b, = 1.73 and 7,7 = 215, whereby
2T = ¥sq7 denotes the threshold between the square and the
molten states. The result for this fit is visualized in the inset of
the Fig. 4.

5. Impact of feedback control

We now discuss the impact of our shear stress control scheme
defined in eqn (3). The latter involves the zero-shear viscosity,
N0, Which is estimated from Fig. 1 to o, = 0.086/dz and 0.323/dt
for the bilayer and trilayer, respectively.

The overall dynamical behaviour under feedback control
strongly depends on the value of ¢, (imposed shear stress)
relative to the flow curve of the original system [see Fig. 1]. We
can differentiate between regimes I, II, and III, which are indi-
cated in Fig. 1.

Soft Matter, 2015, 11, 406-413 | 409
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For a g, chosen in region I, the response of the system is
unique, that is, the final state is independent of the control time
scale 1., as well as of the initial shear rate vy;,;; and the initial
microstructure. Thus, when starting from a square state, with a
corresponding initial shear rate ¥i,i;, the system immediately
settles at this state. As a more critical test of the injectivity of the
flow curve in region I, we plot in Fig. 5a and b the functions ¥(¢)
and o,(t) for the bilayer system at ¢,dt> = 6 and various 1.,
starting from a hexagonal configuration (and ¥;,;t = 400). In all
cases, the shear rate decreases towards the value yt = 70 and
the structure relaxes into the square state pertaining to the
value o,,dt> = 6 in the uncontrolled system. This indicates that
the square state in region I is indeed the only fixed point of the
dynamics. We also see from Fig. 5a that the relaxation time into
this steady state increases with 7.. Fig. 5b additionally shows
that o.,(¢) displays a pronounced peak. The peak indicates the
time window in which the initial hexagonal ordering transforms
into a square one. In fact, the high values of ¢,, at the peak
reflect the large friction characterizing the intermediate molten
state. Similar behaviour occurs in region I of the trilayer system
[see Fig. 5¢ and d] where, however, fluctuations of o,,(t) are
generally larger.

We now choose ¢, within region II of the flow curve, where
there are three different shear rates (and thus, three fixed
points) pertaining to the same stress [see Fig. 1]. We focus on
systems which are initially in a square configurations, whereas
the initial shear rate ¥;,;c has a value pertaining to the hexagonal
state (other initial conditions will be discussed below). The
impact of 7. on the time dependence of (¢) and o,,(t) is shown
in Fig. 6. For small values of the control time scale the systems
stays in the initial lattice configuration, i.e., ¥ relaxes towards
the value pertaining to the square state (yt = 90). Different
behaviour occurs at larger values of t./t: although the initial
structure is square, the final state is hexagonal, and the shear
rate essentially remains at its high initial value. We stress that
these findings crucially depend on the choice of ¥ini. In

500 f4) ' 2 layers ] 3 Iéyers i
400 ]
300 f .
.l—'
200 1
100 1
0L . ‘ ] . s ]
30 F : : E : : : :
2 7b) Tt =0.1 2 layers | 129 3 layers
Tt =1 10 Tt =0.01 1
o, 20 ) R 8 r B
15 %6 1/t =01
©10 § ‘ c4
| AN——— 2
° 0
0 AN
0 5 10 15 0o 2 4 6 8 10
tit tit
Fig.5 (Color online) time dependence of the instantaneous shear rate

and shear stress for a bilayer- [a and b] and a trilayer system [c and d] in
presence of feedback control within region |. The imposed stress was
set to godt® = 6(2) for the bilayer (trilayer) system. Various values of ./t
are considered. The initial configuration is hexagonal.
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Fig. 6 (Color online) same as Fig. 5, but for god® = 8(2.7) for the
bilayer (trilayer) system (region Il). The initial configuration is square.

particular, the dependency of the long-time behaviour on 1./t
only arises for large values of 7;y;; for small values the system
remains in the square state irrespective of .. An overview of the
final dynamical states in the feedback-controlled bilayer at
oodt* = 8 and various combinations of ;i and 7./t (assuming a
square initial structure) is given in Fig. 7. The colour code
indicates the ratio of local bond-order parameters (¥ /¥ ,) [for a
definition of the ¥, see e.g., ref. 21]. The restriction to values
(We/W4) = 6 is related to the actual values observed in the
simulations. From Fig. 7 one clearly sees that for initial shear
rates VinitT > Yhext = 257, the final state of the feedback-
controlled system depends on t./t. This is in contrast to the
uncontrolled system which becomes hexagonal for all 7in;e >
Yhex- For a hexagonal initial configuration the diagram (not
shown here) looks similar from a qualitative point of view;
however, the range of control times where the system retains a
hexagonal state despite of Yinic < Yquad (With Yquaa being the
threshold between square/molten states) is much smaller.

10’ : : 6
: 5
H
Oteevvensoceoil
10 4/\<r
5 ¥ 3§,
10-1 oo ecccccccoce 2V
LN ) 1
10-2 cecegoessesecs

0 100 200 300 400 500
Yinit?
Fig. 7 (Color online) state diagram indicating long-time lattice
structures. All simulations were started from a square initial structure
and the imposed shear stress was set to godt® = 8. The line shows the
result from eqn (8).
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We conclude that, by varying 7. and the initial structure, we
can “switch” between the two stable, steady-state configurations
arising in the multivalued region of the uncontrolled system.
That these states are stable also under feedback (stress) control
is supported by the linear stability analysis presented in
Appendix A. Indeed, the dynamics under feedback control never
evolves towards the intermediate, shear-molten states, consis-
tent with the view that these states are mechanically unstable.
This holds also in region III of the flow curve of the uncontrolled
system, e.g., for aodt> = 16(5) for the bilayer (trilayer): here, a
small value of 7. yields relaxation towards the square state,
whereas for large 7., the system evolves into a hexagonal state.
Finally, we note that completely analogous behaviour is found
in the trilayer system [see Fig. 6b and c] for a o, pertaining to the
regime where square, molten and hexagonal states exist.

6. Transition line

The most significant observation from Fig. 7 is that at high
values of ¥ini, the feedback-controlled system can achieve either
the hexagonal or the square configuration, provided that we
start from a square configuration and choose 7./t accordingly.
We now propose a simple model which allows us to estimate the
transition values of the control time, 54",

The physical idea behind our model is that, with the initial
conditions described above, relaxation into the hexagonal state
only occurs if the reorganization time Tieory required by the
system to transform from a square into a hexagonal configu-
ration, is smaller than the time Tgecqy in which ¥ decays to a
value pertaining to the square state. We can estimate tqecay
from eqn (3) if we assume, for simplicity, a linear relationship
0x(t) = my(t) (note that such a relationship is indeed nearly
fulfilled within the square and hexagonal states, see Fig. 1).
Under this assumption eqn (3) can be easily solved, yielding

Y(0) = m~ e iy — 0o + €M), 5)
From eqn (5) we find that the decay time of ¥ to the threshold
value Ypext = 257 (below which the hexagonal state of the

uncontrolled system is unstable) is given by

.0 MY inie — 00
- (mmm)
m MYpex — 00

To estimate the reorganization time Tyeors (from the initial
square into a hexagonal configuration), we assume that its
dependence on vin; is analogous to that of the relaxation time
7, introduced for the uncontrolled system [see eqn (4)]. Specifi-
cally, we make the ansatz

a/

)

Treorg = K b
h’inilT - ’Yhexfl

As stated above, a crucial assumption of our model is that
the system can only reach the hexagonal state if 7;cory does not
exceed Tgecay- Note that the latter involves (in fact, is propor-
tional to) the time .. By equating expressions (6) and (7) for
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Tdecay aNd Treorg, respectively, we can therefore find an expres-
sion for the minimal control time, t5*", above which the system
reaches the hexagonal state, that is

,L_trans — alm . [8)

¢ B
. . b 1 MYinit — 00
|/Yiuil‘c - Yhexrl Mol .
MYhex — 00

Due to the square initial configuration, we set m = 1, and
0x2(t) = m7(¢) as defined in our ansatz. The remaining param-
eters a’ and b’ are determined by fitting the numerical results
for 7./t at the boundary [see Fig. 7] to expression (8), yielding
a'/t = 54.127 and b’ = 1.503. The resulting line 0™ (Yin;) is
included in Fig. 7, showing that our estimate describes the
transition between square and hexagonal states very well.

Similar considerations are possible, when we use a hexag-
onal initial lattice structure. Choosing then a small value of
vinie? We find that we can switch between hexagonal and square
state. This is illustrated in Fig. 8. To obtain the corresponding
transition values of 7., we use the same strategy as before,
but take a different ansatz for the stress. Specially, we set
0x.(t) = n + my(¢) which approximately describe the flow curve
in the hexagonal state of the uncontrolled system. From the
results plotted in Fig. 1 we find n = 7.0477/d7* and m = 0.0025.
The analog of the eqn (8) then reads

e = akic ©)

. S n+ My — 0o
|'YinitT - 'Yhexrl nOln .
n+ Mmyp — 0o

with @'/t = 0.012 and b’ = 0.237 [see Fig. 8]. The result is visu-
alized in Fig. 8. Comparing the typical control time scales at the
transition with those seen in Fig. 7 we find that 7./t which is
necessary to switch from square into the hexagonal state [see
Fig. 7] is about two orders of magnitude larger than switching
from hexagonal into the square state. We suspect that this
difference results from the differences of the slope of the shear
stress in the square and hexagonal regimes.

102 . ; . 6
5

| R

. >

2V
. 1

° °

e o o

cesevessecns 0

10-4 ? :
0 100 200 300 400 500

Tinit®
Fig. 8 (Color online) state diagram indicating long-time lattice

structures. All simulations were started from the hexagonal initial
structure and the imposed shear stress was set to oodt® = 8.
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7. Conclusions

Using numerical simulation we have studied the complex
dynamical behaviour of sheared colloidal films under a specific
type of shear-stress control. Our approach involves relaxation of
the shear rate in a finite relaxation time 7., until the instanta-
neous stress matches its desired value. This approach is
inspired by rheological experiments®* where the instantaneous
shear rate as function of time can be measured. Focusing on
systems with multivalued flow curves (resulting from successive
non-equilibrium transitions) we have found that, by tuning 7.
and the initial conditions, it is possible to select a specific
dynamical state. In the present system these are either a state
with square in-plane ordering and high viscosity, or a hexagonal
state with low viscosity. Therefore, our study suggests a way to
stabilize states with desired rheological properties, particularly
shear viscosities. Moreover, we have proposed a model which
relates the transition values of 7. to relevant intrinsic relaxation
times under sudden change of 7.

Although most of our results pertain to a colloidal bilayer,
the fact that we found analogous results for trilayers suggests
that the proposed technique can also be applied for systems
with larger number of layers. In fact, we think that this method,
after some minor adaptations such as consideration of the
kinematic (and, possibly, also the non-local) contributions in
eqn (2), should also be applicable and fruitful in bulk systems.
Indeed, we expect the method to allow for state selection in any
shear-driven system with multivalued flow curve. For example,
in an earlier study we have used an analogous approach (based,
however, on continuum equations) to select states and even
suppress chaos in shear-driven nematic liquid crystals.** It
therefore seems safe to assume that the capabilities of the
present scheme are quite wide. For colloidal layers one may
envision, e.g., stabilization of time-dependent structures such as
oscillatory density excitation, which may have profound impli-
cations for lubrication properties.>

Finally, our findings are quite intriguing in the broader
context of manipulating nonlinear systems by feedback control.
In our case, the feedback character stems from the fact that the
stress control involves the configuration-dependent instanta-
neous stress. Mathematically, this scheme can be viewed as
feedback control with exponentially distributed time-delay®® (as
can be seen by formally integrating eqn (3) and inserting it into
eqn (1)). Similar schemes are used to stabilize dynamical
patterns in laser networks,” neural systems,”® and more
generally, coupled oscillator systems.”® The implications of
these connections are yet to be explored.

Appendix

A. Stability of the feedback controlled system

In this Appendix we investigate the stability of the solutions of
eqn (3). Specifically, we consider the impact of small variations
of the shear rate from its steady state value 7, related to the

imposed stress g,. Expanding the right side of eqn (3) with
respect to the difference vy — v, yields
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Fig. 9 (Color online) stress—strain relations in the colloidal bilayer for
different shear rates, starting from the equilibrium (square)
configuration.

g 7 ~ 00 — Oxz (’5’07 t) _ aaxz (77 t)
dr ey M0y

(¥ = 7o) + O(F).

70

(10)

For long times we expect the first term on the right side of
eqn (10) to vanish, since o,,(vo,t) — 0. To linear order, eqn (10)
then reduces to

d . 1 do.(y,t
d. L doe(ny)

di M 9y

(= i0) + 0(37).

Yo

(11)

Noting that the values of 7. and 7, are both positive, we can
follow that the feedback controlled shear rate approaches a
steady-state value only if

99y

> 0. (12)

dy

This corresponds to the usual criterion of mechanical
stability.*®

B. Strain-stress relation under constant shear rate

In this Appendix we present results for stress—strain relations at
different fixed values of 4. These can be obtained from the data
shown in Fig. 3 by rescaling the time axis with the applied shear
rate. Numerical results are shown in Fig. 9. Similar to the stress—
time relations shown in Fig. 3, one observes simple, monotonic
behavior for the case ¥,ewt = 200 (quadratic regime), while the
curves for larger shear rates display pronounced stress over-
shoots. The width of these overshoots is largest at Ynew? = 240,
where the system is in the molten state. This is consistent with
the appearance of a particularly large intrinsic relaxation time
as discussed in Section 4.
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