

Chemical Science

www.rsc.org/chemicalscience

The Royal Society of Chemistry is the world's leading chemistry community. Through our high impact journals and publications we connect the world with the chemical sciences and invest the profits back into the chemistry community.

IN THIS ISSUE

ISSN 2041-6539 CODEN CSHCBM 6(6) 3273–3636 (2015)

Cover

See V. P. Ananikov *et al.*, pp. 3302–3313.
Image reproduced by permission of V. P. Ananikov from *Chem. Sci.*, 2015, **6**, 3302.

Inside cover

See Gilmar F. Salgado *et al.*, pp. 3314–3320.
Image reproduced by permission of Gilmar F. Salgado from *Chem. Sci.*, 2015, **6**, 3314.
Image modified with permission from the original "Boat in Storm" by Artem Rhads Cheboha.

PERSPECTIVE

3289

van der Waals dispersion interactions in molecular materials: beyond pairwise additivity

Anthony M. Reilly and Alexandre Tkatchenko*

In this perspective we discuss recent advances in the understanding of collective and many-body van der Waals interactions and their role and impact for molecular materials.

EDGE ARTICLES

3302

Spatial imaging of carbon reactivity centers in Pd/C catalytic systems

E. O. Pentsak, A. S. Kashin, M. V. Polynski, K. O. Kvashnina, P. Glatzel and V. P. Ananikov*

In the present study state-of-the-art experimental techniques involving ultra high resolution SEM/STEM microscopy (1 Å resolution), high brilliance X-ray absorption spectroscopy and theoretical calculations on truly nanoscale systems were utilized to reveal the role of carbon centers in the formation and nature of Pd/C catalytic materials.

Editorial staff**Interim executive editor**

May Copsey

Deputy editor

Jeanne Andres

Editorial production manager

Philippa Ross

Development editors

Alessia Millemaggi

Cesar Palmero

Publishing editors

Matthew Bown, Sage Bowser, Hugh Cowley,
 Ruth Dilleen, Cally Haynes, Alan Holder,
 Samantha Ivel, James Moore, Liisa Niitsoo,
 Victoria Richards, Susan Weatherby, Rachel Wood

Publishing assistants

Natalie Ford, Bethany Johnson, Rebecca Wojturska

Publisher

Jamie Humphrey

For queries about submitted articles please contact
 Philippa Ross, Editorial production manager, in the
 first instance. E-mail chemicalscience@rsc.org

For pre-submission queries please contact
 May Copsey, Interim executive editor.
 E-mail chemicalscience-rsc@rsc.org

Chemical Science (electronic: ISSN 2041-6539)
 is published monthly by the Royal Society of
 Chemistry, Thomas Graham House, Science Park,
 Milton Road, Cambridge, CB4 0WF, UK.

Chemical Science is a Gold Open Access journal
 and all articles from 2015 onwards are free to
 read. Please email orders@rsc.org to register
 your interest or contact RSC Order Department,
 Royal Society of Chemistry, Thomas Graham
 House, Science Park, Milton Road, Cambridge,
 CB4 0WF, UK

Tel +44 (0)1223 432398; E-mail orders@rsc.org

Advertisement sales: Tel +44 (0) 1223 432246;
 Fax +44 (0) 1223 426017; E-mail advertising@rsc.org

For marketing opportunities relating to this journal,
 contact marketing@rsc.org

Chemical Science

www.rsc.org/chemicalscience**Editorial board****Editor-in-chief**

Daniel G. Nocera, Harvard University

Vy Dong, University of California,
 IrvineJames K. McCusker, Michigan State
 UniversityWonwoo Nam, Ewha Womans
 UniversityCarsten Schultz, European Molecular
 Biology LaboratoryF. Dean Toste, University of California,
 Berkeley

Haw Yang, Princeton University

Jihong Yu, Jilin University

Associate editorsAlán Aspuru-Guzik, Harvard
 UniversityMatthew Gaunt, University of
 CambridgeHubert Girault, Federal Polytechnic
 School of LausanneZhenan Bao, Stanford University
 Christopher C. Cummins,Christopher A. Hunter, University of
 CambridgeMassachusetts Institute of
 TechnologyDavid A. Leigh, University of
 Manchester

Kazunari Domen, University of Tokyo

Kopin Liu, Academia Sinica

Advisory board

Takuzo Aida, University of Tokyo
 Markus Antonietti, Max Planck
 Institute of Colloids and Interfaces

Jeremy Harvey, University of Bristol
 Christy Haynes, University of
 Minnesota

Polly Arnold, University of Edinburgh
 Xinhua Bao, Dalian Institute of
 Chemical Physics

Johan Hofkens, Catholic University
 of Leuven

Guy Bertrand, University of California,
 Los Angeles

Linda Hsieh-Wilson, California
 Institute of Technology

Jeffrey Bode, Swiss Federal Institute of
 Technology Zurich

Eric Jacobsen, Harvard University
 Takashi Kato, University of Tokyo

Christopher Chang, University of
 California, Berkeley

Seong Keun Kim, Seoul National
 University

Chi-Ming Che, University of Hong
 Kong

Jerome Lacour, University of Geneva
 James Leighton, Columbia University

Jason Chin, Medical Research Council
 Laboratory of Molecular Biology

Steve Ley, University of Cambridge
 Chao-Jun Li, McGill University

Daniel Chiu, University of Washington
 Graham Cooks, Purdue University

Wenbin Lin, University of North
 Carolina

Eugenio Coronado, University of
 Valencia

Watson Loh, Instituto de Química
 Julie Macpherson, University of
 Warwick

Lee Cronin, University of Glasgow
 Gautam R. Desiraju, Indian Institute of
 Science, Bangalore

Stephen Mann, University of Bristol
 Bert Meijer, Eindhoven University of
 Technology

James Durrant, Imperial College
 London

Nils Metzler-Nolte, Ruhr University
 Bochum

Ben Feringa, University of Groningen
 Cynthia Friend, Harvard University

Scott Miller, Yale University
 Daniel Mirmidola, Indiana University

Makoto Fujita, University of Tokyo
 Philip Gale, University of Southampton

Mohammad Movassagh, Massachusetts Institute of
 Technology

Song Gao, Peking University
 Jinlong Gong, Tianjin University

Jonathan Nitschke, University of
 Cambridge

Justin Gooding, University of New
 South Wales

Kyoko Nozaki, University of Tokyo
 Takashi Ooi, Nagoya University

Michael Graetzel, Federal Polytechnic
 School of Lausanne

Rachel O'Reilly, University of Warwick
 Michel Orrit, Leiden University

Duncan Graham, University of
 Strathclyde

Oleg Ozerov, Texas A&M University
 Hongkun Park, Harvard University

Buxing Han, Chinese Academy of
 Sciences

Rasmita Raval, University of Liverpool
 Paul Reider, Princeton University
 Stuart Rowan, Case Western Reserve
 University

Richmond Sarpong, University of
 California, Berkeley

Gregory Scholes, University of
 Toronto

Oliver Seitz, Humboldt University of
 Berlin

Kay Severin, Federal Polytechnic
 School of Lausanne

Mikiko Sodeoka, RIKEN

Brian Stoltz, California Institute of
 Technology

Weihong Tan, University of Florida
 He Tian, East China University of
 Science and Technology

Zhong-Qun Tian, Xiamen University
 Andrei Tokmakoff, University of
 Chicago

Jan Van Hest, Radboud University
 Tom Welton, Imperial College London

Christina White, University of Illinois
 Martin Wolf, Fritz Haber Institute of
 the Max Planck Society

Omar Yaghi, University of California,
 Los Angeles

Vivian Yam, University of Hong Kong
 Yang Yang, University of California,
 Los Angeles

Shu-Hong Yu, University of Science
 and Technology of China

Qi-Lin Zhou, Nankai University

Information for authors

Full details on how to submit material for publication
 in Chemical Science are given in the Instructions for
 Authors (available from <http://www.rsc.org/authors>).
 Submissions should be made via the journal's homepage:
<http://www.rsc.org/chemicalscience>.

Authors may reproduce/republish portions of their
 published contribution without seeking permission
 from the RSC, provided that any such republication is
 accompanied by an acknowledgement in the form:
 (Original Citation)–Reproduced by permission of
 The Royal Society of Chemistry.

This journal is ©The Royal Society of Chemistry 2015.
 Apart from fair dealing for the purposes of research or
 private study for non-commercial purposes, or criticism
 or review, as permitted under the Copyright, Designs and

Patents Act 1988 and the Copyright and Related
 Rights Regulation 2003, this publication may only be
 reproduced, stored or transmitted, in any form or by
 any means, with the prior permission in writing of the
 Publishers or in the case of reprographic reproduction
 in accordance with the terms of licences issued by the
 Copyright Licensing Agency in the UK. US copyright law is
 applicable to users in the USA.

The Royal Society of Chemistry takes reasonable care in
 the preparation of this publication but does not accept
 liability for the consequences of any errors or omissions.

© The paper used in this publication meets the
 requirements of ANSI/NISO Z39.48–1992
 (Permanence of Paper).
 Registered Charity No. 207890.

EDGE ARTICLES

3314

G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy

Gilmar F. Salgado,* Christian Cazenave, Abdelaziz Kerkour and Jean-Louis Mergny

Using in-cell NMR spectroscopy to probe ligand binding to a G-quadruplex nucleic acid.

3321

Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers

Hyung-Suk Oh, Hong Nhan Nong, Tobias Reier, Manuel Gleich and Peter Strasser*

Ir nanodendrites (Ir-ND) supported on antimony doped tin oxide (ATO) show enhanced catalytic activity and stability for oxygen evolution reaction (OER) in polymer electrolyte membrane (PEM) water electrolysis.

3329

Boronic acids facilitate rapid oxime condensations at neutral pH

Pascal Schmidt, Cedric Stress and Dennis Gillingham*

We report here the discovery and development of boron-assisted oxime formation as a powerful connective reaction for chemical biology.

3334

Nanopipettes: probes for local sample analysis

Anumita Saha-Shah, Anna E. Weber, Jonathan A. Karty, Steven J. Ray, Gary M. Hieftje and Lane A. Baker*

Nanopipettes are demonstrated as probes for local mass spectrometric analysis with potential for small-scale extraction of analytes from single cells, tissue and organisms.

EDGE ARTICLES

3342

A supramolecular strategy for tuning the energy level of naphthalenediimide: Promoted formation of radical anions with extraordinary stability

Qiao Song, Fei Li, Zhiqiang Wang and Xi Zhang*

We report a supramolecular strategy to promote the formation of naphthalenediimide radical anions with extraordinary stability through tuning the energy level of naphthalenediimide.

3347

Using the gravitational energy of water to generate power by separation of charge at interfaces

Yajuan Sun, Xu Huang and Siowling Soh*

When water droplets (e.g., from rain) flow down a solid surface due to gravity, they can generate power.

3354

Accurate molecular weight determination of small molecules via DOSY-NMR by using external calibration curves with normalized diffusion coefficients

Roman Neufeld and Dietmar Stalke*

We describe a novel development of MW-determination by using an external calibration curve approach with normalized diffusion coefficients.

3365

***In situ* activation and monitoring of the evolution of the intracellular caspase family**

Lei Zhang, Jianping Lei,* Jintong Liu, Fengjiao Ma and Huangxian Ju*

An integrated nano-platform is designed to achieve *in situ* activation, monitoring and signal feedback of the caspase family evolution from upstream to downstream.

EDGE ARTICLES

3373

Nitrite reduction by copper through ligand-mediated proton and electron transfer

Cameron M. Moore and Nathaniel K. Szymczak*

A copper complex featuring a proton-responsive tripodal ligand reduces nitrite *via* a proton/electron transfer process, which parallels copper nitrite reductase.

3378

Spying on the boron–boron triple bond using spin–spin coupling measured from ^{11}B solid-state NMR spectroscopy

Frédéric A. Perras, William C. Ewing, Theresa Dellermann, Julian Böhnke, Stefan Ullrich, Thomas Schäfer, Holger Braunschweig* and David L. Bryce*

Boron–boron J coupling constants provide new insight into the nature of the boron–boron triple bond.

3383

A convergent total synthesis of ouabagenin

Ken Mukai, Satoshi Kasuya, Yuki Nakagawa, Daisuke Urabe and Masayuki Inoue*

A convergent total synthesis of ouabagenin, an aglycon of cardenolide glycoside ouabain, was achieved by assembly of the AB-ring, D-ring and butenolide moieties.

3388

Polymeric materials that convert local fleeting signals into global macroscopic responses

Hyungwoo Kim, Matthew S. Baker and Scott T. Phillips*

Polymers that support self-propagating reactions are used to create materials that change global wetting properties in response to specific fleeting, local stimuli.

EDGE ARTICLES

3393

Self-organisation of dodeca-dendronized fullerene into supramolecular discs and helical columns containing a nanowire-like core

Sebastiano Guerra, Julien lehl, Michel Holler, Mihai Peterca, Daniela A. Wilson, Benjamin E. Partridge, Shaodong Zhang, Robert Deschenaux,* Jean-François Nierengarten* and Virgil Percec*

C₆₀ dendronized with 12 chiral or achiral self-assembling dendrons form discs with C₆₀ at their centre that self-organise into helical columns with a nanowire-like core.

3402

Diindeno[1,2-b:2',1'-n]perylene: a closed shell related Chichibabin's hydrocarbon, the synthesis, molecular packing, electronic and charge transport properties

Kamal Sbargoud, Masashi Mamada,* Jérôme Marrot, Shizuo Tokito, Abderrahim Yassar* and Michel Frigoli*

A fixed Chichibabin's hydrocarbon CHI1 shows a closed shell configuration with a broad absorption from 400 up to 900 nm.

3410

Nickel-catalyzed reductive cleavage of aryl alkyl ethers to arenes in absence of external reductant

Mamoru Tobisu,* Toshifumi Morioka, Akimichi Ohtsuki and Naoto Chatani*

A nickel catalyst for reductive cleavage of aryl ethers in the absence of an external reductant is developed. The alkoxy group of the substrate serves as an internal reductant.

3415

Pd-catalyzed asymmetric hydrogenation of fluorinated aromatic pyrazol-5-ols via capture of active tautomers

Zhang-Pei Chen, Mu-Wang Chen, Lei Shi, Chang-Bin Yu and Yong-Gui Zhou

Here we explore a novel strategy for asymmetric hydrogenation of aromatic pyrazol-5-ols via capture of the active tautomers.

EDGE ARTICLES

3420

Hydration of guanidinium depends on its local environment

Sven Heiles, Richard J. Cooper, Matthew J. DiTucci and Evan R. Williams*

Infrared spectroscopy of guanidinium confined in gaseous nanodrops shows hydration depends on local environment and lends new insights into its effectiveness as a protein denaturant.

3430

An extended Tolerance Factor approach for organic-inorganic perovskites

Gregor Kieslich,* Shijing Sun and Anthony K. Cheetham*

Tolerance Factors of possible hybrid perovskites are calculated for over 2500 amine-metal-anion permutations of the periodic table.

3434

Mixed-ligand complexes of paddlewheel dinuclear molybdenum as hydrodehalogenation catalysts for polyhaloalkanes

Hayato Tsurugi,* Akio Hayakawa, Shun Kando, Yoshitaka Sugino and Kazushi Mashima*

A mixed-ligated dimolybdenum complex $\text{Mo}_2(\text{OAc})_2[\text{CH}(\text{NAr})_2]_2$ in combination with 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene and ${}^n\text{Bu}_4\text{NCl}$ exhibited high catalytic activity for hydrodehalogenation reactions.

3440

Biosynthesis of trioxacarcin revealing a different starter unit and complex tailoring steps for type II polyketide synthase

Mei Zhang, Xian-Feng Hou, Li-Hua Qi, Yue Yin, Qing Li, Hai-Xue Pan, Xin-Ya Chen and Gong-Li Tang*

Different starter unit and complex tailoring steps for type II polyketide synthase in trioxacarcin biosynthesis.

EDGE ARTICLES

3448

Sugar silanes: versatile reagents for stereocontrolled glycosylation *via* intramolecular aglycone delivery

Jordan T. Walk, Zachary A. Buchan and John Montgomery*

A new method for the intramolecular glycosylation of alcohols is described.

3454

Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes

Sarah A. Shepherd, Chinnan Karthikeyan, Jonathan Latham, Anna-Winona Struck, Mark L. Thompson, Binuraj R. K. Menon, Matthew Q. Styles, Colin Levy, David Leys and Jason Micklefield*

Targeted mutagenesis increases the activity and alters the regioselectivity of flavin-dependent halogenases.

3461

Generation of 1,2-azaboretidines *via* reduction of ADC borane adducts

H. Braunschweig,* A. Gackstatter, T. Kupfer, T. Scheller, F. Hupp, A. Damme, N. Arnold and W. C. Ewing

ADC borane adducts $\text{RBX}_2 \cdot \text{ADC}$ ($\text{R} = \text{Mes, Dur}$; $\text{X} = \text{Cl, Br}$; $\text{ADC} = :C(\text{NiPr}_2)_2$) have been prepared and reduced by KC_8 to afford air stable 1,2-azaboretidines with high selectivity.

3466

Stable porphyrin Zr and Hf metal-organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses

Jun Zheng, Mingyan Wu,* Feilong Jiang, Weiping Su* and Maochun Hong

Two isostructural porphyrin Zr and Hf metal-organic frameworks (FJI-H6 and FJI-H7) are rationally synthesized, and are constructed from 2.5 nm cubic cages.

EDGE ARTICLES

3471

Bottom-up on-crystal in-chip formation of a conducting salt and a view of its restructuring: from organic insulator to conducting “switch” through microfluidic manipulation

Josep Puigmartí-Luis,* Markos Paradinas, Elena Bailo, Romen Rodríguez-Trujillo, Raphael Pfattner, Carmen Ocal* and David B. Amabilino*

The chemical modification of an immobilized single crystal in a fluid cell is reported, whereby a material with switching functions is generated with reagent in the stream.

3478

What causes extended layering of ionic liquids on the mica surface?

Xiao Gong, Andrew Kozbial and Lei Li*

The adsorbed water on the mica surface is the key to the extended layering of ILs.

3483

Three-phase junction for modulating electron–hole migration in anatase–rutile photocatalysts

Wei-Na Zhao, Sheng-Cai Zhu, Ye-Fei Li and Zhi-Pan Liu*

Theory resolves the anatase–rutile phase junction structure and characterizes its role in photocatalysis as a *single-way* valve modulating electron–hole separation.

3495

Designing efficient photochromic dithienylethene dyads

Arnaud Fihey and Denis Jacquemin*

The impact of chemical substitution on the optical properties of ca. 30 dithienylethene (DTE) dyads is investigated with first-principles approaches, with the aim to provide useful guidelines for obtaining more efficient DTE multimers.

EDGE ARTICLES

3505

Soft HA capsules Stiff HA capsules

The role of capsule stiffness on cellular processing

Huanli Sun, Edgar H. H. Wong, Yan Yan, Jiwei Cui, Qiong Dai, Junling Guo, Greg G. Qiao* and Frank Caruso*

A systematic and quantitative study on the role of capsule stiffness in cellular processing was performed using hyaluronic acid capsules with tunable stiffness constructed via continuous assembly of polymers.

3515

Can the study of self-assembly in solution lead to a good model for the nucleation pathway? The case of tolfenamic acid.

W. Du, A. J. Cruz-Cabeza, S. Woutersen, R. J. Davey* and Q. Yin

To further our understanding of the role of solution chemistry in directing nucleation processes new experimental and computational data are presented on the solution and crystallisation chemistry of tolfenamic acid (TA), a benchmark polymorphic compound.

3525

Polymorph crystal packing effects on charge transfer emission in the solid state

Xiaoyan He, Andrew C. Benniston,* Hanna Saarenpää, Helge Lemmetyinen, Nikolia V. Tkachenko* and Ulrich Baisch

Condensation of 1,8-naphthalic anhydride with *N,N*-(dimethylamino)aniline produced the donor-acceptor compound DMIM, which crystallised from a chloroform-diethyl ether mixture to afford two different coloured crystal polymorphs.

3533

Mutual stabilisation between $M^{II}L_6$ tetrahedra and $M^{II}X_4^{2-}$ metallate guests

Imogen A. Riddell, Tanya K. Ronson and Jonathan R. Nitschke*

A series of $[M^{II}X_4]^{2-} \subset M^{II}L_6$ host-guest complexes are formed through the mutual stabilisation of the host and guest complexes; neither the host nor guest is stable in the absence of the other.

EDGE ARTICLES

3538

Aggregation-induced emission and aggregation-promoted photochromism of bis(diphenylmethylene)dihydroacenes

Zikai He, Liang Shan, Ju Mei, Hong Wang, Jacky W. Y. Lam, Herman H. Y. Sung, Ian D. Williams, Xiao Gu, Qian Miao* and Ben Zhong Tang*

Solid-state photochromism was found in bis(diphenylmethylene)dihydrotetracene, caused by photocyclization of the embedded *cis*-stilbene motifs.

3544

Addressing, amplifying and switching DNAzyme functions by electrochemically-triggered release of metal ions

Lina Freage, Alexander Trifonov, Ran Tel-Vered, Eyal Golub, Fuan Wang, John S. McCaskill and Itamar Willner*

The addressable potential-controlled release of metal ions into electrolyte solutions containing mixtures of nucleic acids leads to the metal ion-guided generation of different DNAzymes and to the activation of DNA cascades.

3550

Enantioselective synthesis of bicyclo[3.n.1]alkanes by chiral phosphoric acid-catalyzed desymmetrizing Michael cyclizations

Alan R. Burns, Amaël G. E. Madec, Darryl W. Low, Iain D. Roy and Hon Wai Lam*

2,2-Disubstituted cyclic 1,3-diketones containing a tethered electron-deficient alkene undergo chiral phosphoric acid-catalyzed desymmetrizing Michael cyclizations to give bridged bicyclic products in high enantioselectivities.

3556

A universal platform for building molecular logic circuits based on a reconfigurable three-dimensional DNA nanostructure

Kaiyu He, Yong Li, Binbin Xiang, Peng Zhao, Yufang Hu, Yan Huang, Wang Li, Zhou Nie* and Shouzhuo Yao

Integrating multiple components of a logic device into a 3D DNA nanopism provides a universal platform for constructing diverse logic gates.

EDGE ARTICLES

3565

Can acyclic conformational control be achieved via a sulfur-fluorine gauche effect?

C. Thiehoff, M. C. Holland, C. Daniliuc, K. N. Houk* and R. Gilmour*

Herein detailed conformational analyses of β -fluorosulfides, -sulfoxides and -sulfones are disclosed, thus extending the scope of the fluorine gauche effect to the 3rd Period (X = SR, SOR, SO₂R; $\phi_{FCCS} \approx 60^\circ$).

3572

Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation

Bing Ni and Xun Wang*

We have synthesized spiral ultrathin-nanosheets with overgrown edges of NiFe, CoNi and CoFe bimetallic hydroxides which show excellent performance for the OER.

3577

Two dimensional inorganic electricide-promoted electron transfer efficiency in transfer hydrogenation of alkynes and alkenes

Ye Ji Kim, Sun Min Kim, Eun Jin Cho, Hideo Hosono, Jung Woon Yang* and Sung Wng Kim*

A simple and highly efficient transfer hydrogenation of alkynes and alkenes by using a two-dimensional electricide, dicalcium nitride ($[\text{Ca}_2\text{N}]^+ \cdot \text{e}^-$), as an electron transfer agent is disclosed.

3582

Fluoride binding to an organoboron wire controls photoinduced electron transfer

Jing Chen and Oliver S. Wenger*

The efficiency of organoboron wires as mediators of long-range electron transfer can be controlled by anion binding.

EDGE ARTICLES

3593

Controlling the activity of quorum sensing autoinducers with light

J. P. Van der Berg, W. A. Velema, W. Szymanski, A. J. M. Driessens* and B. L. Feringa*

Bacteria use Quorum Sensing (QS) to organize into communities and synchronize gene expression. Here we report on a method to externally interfere with QS system using light.

3599

Enantioselective and diastereoselective azo-coupling/iminium-cyclizations: a unified strategy for the total syntheses of (−)-psychotriazine and (+)-pestalazine B

Qi Li, Tingting Xia, Licheng Yao, Haiteng Deng* and Xuebin Liao*

We report a unified strategy for the total syntheses of (−)-psychotriazine and (+)-pestalazine B based on the advanced intermediates of *3*α-amino-hexahydropyrrolo[2,3-*b*]indole.

3606

A prochelator peptide designed to use heterometallic cooperativity to enhance metal ion affinity

Bruno Alies, Jacob D. Wiener and Katherine J. Franz*

A peptide has been designed so that its chelating affinity for one type of metal ion regulates its affinity for a second, different type of metal ion.

3611

Asymmetric C–H functionalization of cyclopropanes using an isoleucine-NH₂ bidentate directing group

Jinhee Kim, Mikyung Sim, Namhoon Kim and Sungwoo Hong*

The use of an Ile-NH₂ auxiliary can provide excellent levels of asymmetric induction in the Pd(II)-catalyzed C(sp³)-H functionalization of cyclopropanes.

EDGE ARTICLES

3617

Combining triazole ligation and enzymatic glycosylation on solid phase simplifies the synthesis of very long glycoprotein analogues

Mathieu Galibert, Véronique Piller, Friedrich Piller, Vincent Aucagne* and Agnès F. Delmas

Solid phase chemical ligation followed by enzymatic glycosylation exploits the advantages of a solid support to minimize the purification steps, constituting a promising approach for the synthesis of complex glycoproteins.

3624

Enhanced ET and OAT Reactivity

Tuning the reactivity of mononuclear nonheme manganese(IV)-oxo complexes by triflic acid

Junying Chen, Heejung Yoon, Yong-Min Lee, Mi Sook Seo, Ritimukta Sarangi, Shunichi Fukuzumi* and Wonwoo Nam*

Binding of two HOTf molecules to Mn^{IV}(O) species resulted in contrasting effects on the reactivities in oxygen atom transfer and H-atom transfer reactions.

CORRECTION

3633

Correction: Cobalt co-catalysis for cross-electrophile coupling: diarylmethanes from benzyl mesylates and aryl halides

Laura K. G. Ackerman, Lukiana L. Anka-Lufford, Marina Naodovic and Daniel J. Weix*

RETRACTION

3634

Retraction: Homonuclear bond activation using a stable *N,N'*-diamidocarbene

Kelly M. Wiggins, Jonathan P. Moerdijk and Christopher W. Bielawski*

