
Registered charity number: 207890

Stay ahead,  
get noticed,  
make connections
Register for our conferences and events – membership* included

Our 2015-16 calendar includes: 

http://rsc.li/events

Challenges in Chemical Biology (ISACS16) 
15–18 June 2015, Zurich, Switzerland 
http://rsc.li/isacs16

Solid Oxide Electrolysis: Fuels and 
Feedstocks from Water and Air  
(Faraday Discussion) 
13–15 July 2015, York, UK 
http://rsc.li/electrolysis-fd2015 
Register for this event and receive 25% discount off your 
registration fee for the 12th International Conference on 
Materials Chemistry (MC12).

12th International Conference  
on Materials Chemistry (MC12) 
20–23 July 2015, York, UK 
http://rsc.li/mc12 
Register for this event and receive 25% discount off your 
registration fee for Solid Oxide Electrolysis: Fuels and Feedstocks 
from Water and Air: Faraday Discussion.

24th International Symposium: Synthesis 
in Organic Chemistry (OS24) 
20–23 July 2015, Cambridge, UK 
http://rsc.li/os24

Carbon Dioxide Utilisation  
(Faraday Discussion) 
7–9 September 2015, Sheffield, UK 
http://rsc.li/cdu-fd2015

Challenges in Chemical Renewable  
Energy (ISACS17) 
8–11 September 2015, Rio de Janeiro, Brazil 
http://rsc.li/isacs17

Single-Molecule Microscopy and 
Spectroscopy (Faraday Discussion) 
14–16 September 2015, London, UK 
http://rsc.li/molecule-fd2015

Supramolecular Photochemistry  
(Faraday Discussion) 
15–17 September 2015, Cambridge, UK 
http://rsc.li/photochemistry-fd2015

Challenges in Organic Materials & 
Supramolecular Chemistry (ISACS18) 
19–21 November 2015, Bangalore, India 
http://rsc.li/isacs18

Nanoparticle Assembly: from 
Fundamentals to Applications (Faraday 
Discussion) 
7-9 January 2016, Mumbai, India 
http://rsc.li/assembly-fd2016

Designing new Heterogeneous Catalysis 
(Faraday Discussion) 
4-6 April 2016, London, UK 
http://rsc.li/catalysis-fd2016

Nanoparticles with Morphological 
and Functional Anisotropy (Faraday 
Discussion) 
4-6 July 2016, Glasgow, UK 
http://rsc.li/anisotropy-fd2016

*Offer is for Affiliate membership, and applies to full-rate 
non-member registrations at selected conferences only.



Registered charity number: 207890

Showcasing collaborative research from the laboratories of 

Jeff rey Johnson (University of North Carolina, United States) 

and Takashi Ooi (Nagoya University, Japan).

Enantioselective reductive multicomponent coupling reactions 

between isatins and aldehydes

A highly stereoselective fully organic reductive coupling of two 

carbonyl electrophiles catalysed by a chiral iminophosphorane 

catalyst and mediated by an economical organic reductant.

As featured in:

See Jeff rey S. Johnson, 
Takashi Ooi et al., 

Chem. Sci., 2015, 6, 6086.

Registered charity number: 207890

www.rsc.org/chemicalscience

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

01
5.

 D
ow

nl
oa

de
d 

on
 2

/1
5/

20
26

 1
0:

58
:0

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc02170g
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC006011


Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

01
5.

 D
ow

nl
oa

de
d 

on
 2

/1
5/

20
26

 1
0:

58
:0

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Enantioselective
aDepartment of Chemistry, The University o

Hill, NC 27599, USA. E-mail: jsj@unc.edu
bInstitute of Transformative Bio-Molecules

Chemistry, Graduate School of Engineeri

Chikusa, Nagoya 464-8602, Japan. E-mail: t
cCREST, Japan Science and Technology Agen

8603, Japan

† Electronic supplementary information (
and characterizations of compounds. CCD
data in CIF or other electronic format see

‡ These authors contributed equally.

Cite this: Chem. Sci., 2015, 6, 6086

Received 16th June 2015
Accepted 23rd July 2015

DOI: 10.1039/c5sc02170g

www.rsc.org/chemicalscience

6086 | Chem. Sci., 2015, 6, 6086–6090
reductive multicomponent
coupling reactions between isatins and aldehydes†

Matthew A. Horwitz,‡a Naoya Tanaka,‡b Takuya Yokosaka,a Daisuke Uraguchi,b

Jeffrey S. Johnson*a and Takashi Ooi*bc

A metal-free stereoselective reductive coupling reaction between isatins and aldehydes is reported. The

reaction relies on commercial diethyl phosphite (�V70 kg�1) as the stoichiometric reductant. Base-

catalyzed Pudovik addition and phosphonate/phosphate rearrangement achieved polarity inversion on

the isatin, and the derived carbanions were trapped by aldehydes with subsequent dialkoxyphosphinyl

migration. Chiral iminophosphoranes were used as basic catalysts to achieve high diastereo- and

enantioselectivities with excellent yields.
The reductive coupling of p-unsaturation is a powerful
method for the construction of carbon–carbon bonds. When
the two coupling partners are prochiral, there exists the
opportunity to establish multiple stereogenic centers
concurrent with C–C bond formation. In the specic case of
two carbonyl reactants, reductive coupling offers an attractive
and straightforward method for the synthesis of vicinal diols,
valuable building blocks in organic chemistry. A generic
carbonyl reductive coupling manifold encompasses many
mechanistic subtypes,1 but the pinacol reaction is preeminent
among them. The traditional pinacol coupling entails single-
electron reduction of the carbonyl functionality to generate
the corresponding ketyl radical and subsequent dimerization
between two radical species. The reaction has been studied
extensively using low-valent metals in this single-electron
transfer manifold.2–6 Despite numerous advances, however,
myriad challenges remain: a stoichiometric or super-
stoichiometric amount of metal agents is oen required and
there are sparse examples that use catalytic conditions.4n–r

Moreover, the nature of the mechanism can render it difficult
to control both chemoselectivity (homo- versus cross-
coupling) and stereoselectivity, and the lack of differentiation
of the nascent alcohols can be nettlesome. These precedents
collectively informed our interest in developing an
f North Carolina at Chapel Hill, Chapel

(WPI-ITbM) and Department of Applied

ng, Nagoya University, Furo-cho D2-1,

ooi@apchem.nagoya-u.ac.jp

cy (JST), Nagoya University, Nagoya 464-

ESI) available: Experimental procedures
C 1055582. For ESI and crystallographic
DOI: 10.1039/c5sc02170g
alternative, potentially generalizable reductive coupling
strategy that utilizes a polar two-electron reaction mechanism
for addressing the aforementioned issues. The purpose of this
communication is to detail a new base-catalyzed cross
coupling of carbonyls mediated by an economical organic
reductant, diethyl phosphite; the stereochemical outcome of
this multicomponent process is precisely controlled by a
chiral triaminoiminophosphorane (Figure 1a).7,8
Fig. 1 Stereoselective reductive coupling reactions.

This journal is © The Royal Society of Chemistry 2015

http://crossmark.crossref.org/dialog/?doi=10.1039/c5sc02170g&domain=pdf&date_stamp=2015-10-07
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc02170g


Table 1 Three component reductive coupling: racemica

a All reactions were run on 0.2 mmol scale, using 1.1 equiv. of
dialkylphosphite and 5.0 equiv. of aldehyde. % Yields refer to isolated
yields. All d.r. and % yield values are the averages of two trials.
Reactions were run until complete as adjudged by TLC. b % Yield
determined by crude 1H NMR using mesitylene as an internal
standard. Products derived from apparent retro-reaction signicantly
diminished the isolated yield; therefore, this substrate was not
selected for further study.
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At the outset, we envisaged the possibility of catalytic
generation of an a-oxycarbanion from a carbonyl substrate and
its rapid and selective trapping with another carbonyl
compound to form 1,2-diols. For substantiating this hypothesis,
polarity reversal of a particular carbonyl group is of critical
importance and we sought to take advantage of the phospho-
nate–phosphate (phospha-Brook) rearrangement to achieve this
requisite process. Thus, a base-catalyzed sequence of Pudovik
addition and phosphonate–phosphate rearrangement between
ketone 1 and dialkyl phosphite was projected to lead to carb-
anion 2. The interception of this key intermediate by aldehyde 3
would afford mono-protected diol 4 through dialkox-
yphosphinyl migration (Figure 1b).9 A crucial departure from
prior art is the fully intermolecular nature of the coupling and
the need for the phosphite to exhibit complete selectivity
between the two carbonyl reactants. We reasoned that the
crucial chemoselectivity issue underlying this mechanistic
framework, viz. the selective generation of a-oxycarbanion 2
from ketone 1, would be ensured by the inherent reversibility of
Pudovik reaction and the reluctance of the aldehyde Pudovik
product to undergo phospha-Brook rearrangement. In addition,
absolute stereochemical guidance in the C–C bond-forming
event could be provided by the conjugate acid of a suitable
chiral base. In providing the conceptual blueprint for this
scenario, we focused our attention on the exceptional electro-
philicity and utility of a-dicarbonyls.9d–g,10

Steps were initially taken to assess the feasibility of the
proposed reaction in a racemic sense using achiral bases such
as potassium tert-butoxide (KOtBu). Initial trials with diethyl
phosphite as the stoichiometric reductant indicated that the
reaction proceedsmost cleanly and efficiently when a protecting
group is used on the isatin. Benzyl, allyl, and methyl protecting
groups were examined using 20 mol% KOtBu in THF at 0 �C
(Table 1, (�)-4a–(�)-4c). Under these conditions, the reactions
were complete in minutes with no observable intermediates (if
the aldehyde is omitted from the reaction, the Pudovik-phos-
pha-Brook product can be observed, however).9f These experi-
ments revealed that the benzyl protecting group provided the
highest isolated yield and diastereoselectivity. We subsequently
veried that para-tolualdehyde is not capable of phospha-Brook
rearrangement when treated with diethyl phosphite and 20
mol% KOtBu: only the Pudovik adduct was observed, implying
that it is the isatin that is undergoing polarity reversal as we
expected.

We then briey studied the scope of the racemic reaction.
The reaction gives consistently good yields for various aryl
aldehydes incorporating substituents of different electronic
properties (Table 1, (�)-4d–(�)-4g). At the current level of opti-
mization, alkyl aldehydes and Boc-protected imine electro-
philes were not well tolerated and only provided messy
reactions.11 The substitution pattern of the isatin was also
examined; we found that the racemic reaction is reasonably
exible in terms of isatin electronics ((�)-4h–(�)-4k).

Efforts were next directed to the development of the enan-
tioselective variant.12 We were encouraged to nd that when we
used the chiral iminophosphorane (C1), we obtained the
secondary phosphate 4a with appreciable enantioenrichment
This journal is © The Royal Society of Chemistry 2015
(er 89.5 : 10.5), although the diastereoselectivity was poor (Table
2, entry 1). Gratifyingly, we found that upon lowering the
temperature to �78 �C, phosphate 4a was obtained in 82%
yield, 15 : 1 diastereoselectivity and an er of 96.5 : 3.5 (entry 2).
Using the same temperature, we proceeded to evaluate the effect
of the catalyst structure (entries 3 to 6), but ultimately
concluded that a-branching in ligand substituent R is essential
for promoting the desired transformations and the valine-
derived iminophosphorane C1 was optimal in terms of stereo-
selectivity and chemical yield.

The disparity between the stereoselectivities at 0 �C and �78
�C prompted us to investigate the reversibility of the carbon–
carbon bond formation via crossover experiments in that
temperature range (Table 3). When racemic phosphate (�)-4a
was subjected to standard conditions in the presence of 4-u-
orobenzaldehyde, signicant incorporation of that component
in the form of phosphate 4a–F was observed at 0 �C and�40 �C,
but no crossover was observed at �78 �C. These data support
the hypothesis that the increase in enantioselectivity at �78 �C
is not only a consequence of more rigorous facial discrimina-
tion of both substrates but also shutting down a stereoablative
retro-aldol process that is operative at higher temperatures.

Using the optimized conditions, we evaluated the scope of
the asymmetric reaction by initially looking at various isatins.
Chem. Sci., 2015, 6, 6086–6090 | 6087
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Table 2 Optimization of the asymmetric catalytic reductive couplinga

Entry T (�C) Catalyst d.r. e.r.
%
Conv.

1 0 C1 3.4 : 1 89.5 : 10.5 96
2 �78 C1 15 : 1 96.5 : 3.5 82
3 �78 C2 n.a. n.a. 18
4 �78 C3 n.a. n.a. 15
5 �78 C4 n.a. n.a. 12
6 �78 C5 7.9 : 1 86 : 14 80

a All reactions were conducted on a 0.1 mmol scale, using 1.1 equiv. of
dialkylphosphite and 5.0 equiv. of 4-tolualdehyde. Argon was used to
purge the reaction asks. All d.r., e.r., and % conversion values are
the average of two trials. n.a. ¼ not analyzed.

Table 4 Scope of asymmetric reactiona
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While electron-decient 5-halogenated isatins were well
accommodated under the optimized conditions, use of
dimethyl phosphite was indispensable for completion of the
reactions with 5-methyl and methoxy isatins probably because
of the slow phospha-Brook rearrangement (Table 4, 4h–4m).13 6-
Chloro and 7-uoro isatins were also smoothly converted into
the reductive coupling products of high stereochemical purity
using appropriate phosphite (4n and 4o). The absolute stereo-
chemistry was determined at this stage by an X-ray diffraction
study of phosphate 4j (Fig. 2).14

For exploration of aldehyde generality, we selected 5-bromo
isatin as a coupling partner in consideration of its high reac-
tivity and advantage of having an additional functional handle
at the aromatic nuclei. As included in Table 4, various para-
Table 3 Crossover experiments establish reversibilitya

Entry T (�C) 4a : 4a–F

1 0 1.0 : 1.5
2 �40 1.0 : 1.1
3 �78 Only 4a

a Product distributions were determined by 1H NMR analysis (800 MHz)
of the crude mixture.

a All reactions were conducted on a 0.1 mmol scale, using 1.1 equiv. of
dialkylphosphite and 5.0 equiv. of ArCHO. Argon was used to purge the
reaction asks. % Yields refer to isolated yields. All d.r., e.r., and % yield
values are the average of two trials. b 15 mol% of catalyst was used. c 2.2
equiv. of dialkylphosphite was used.

6088 | Chem. Sci., 2015, 6, 6086–6090 This journal is © The Royal Society of Chemistry 2015
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Fig. 2 ORTEP diagram of 4j (ellipsoids displayed at 50% probability.
Calculated hydrogen atoms except for that attached to the stereo-
genic carbon atom are omitted for clarity. Black: carbon, red: oxygen,
purple: phosphorous, blue: nitrogen, vermilion: bromine, white:
hydrogen).
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substituted aromatic aldehydes were tolerated and relatively
electron rich aldehydes exhibited higher reactivity and selec-
tivity (4p–4t). Hetero-substituents at the meta-position slightly
affected the stereochemical outcome (4u–4w). For sterically
demanding ortho-substituted aldehydes, dimethyl phosphite
was needed to accelerate the reaction and virtually complete
stereocontrol could be achieved (4x–4z).

In summary, we have developed a highly stereoselective, fully
organic multicomponent coupling reaction between isatins and
aldehydes with dialkyl phosphite as an economical reductant.
The advantages of extending the reductive coupling into a two-
electronmanifold are manifest, and themechanistic framework
established herein may be applicable to other stereoselective
reductive carbon–carbon bond constructions. Efforts to exploit
this reaction paradigm in other systems are ongoing in our
laboratories.
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