Carbon nitride–TiO$_2$ hybrid modified with hydrogenase for visible light driven hydrogen production†

Christine A. Caputo,a Lidong Wang,b Radim Beranekb and Erwin Reisnera*

A system consisting of a [NiFeSe]$-$hydrogenase (H$_2$ase) grafted on the surface of a TiO$_2$ nanoparticle modified with polyheptazine carbon nitride polymer, melan (CN$_x$) is reported. This semi-biological assembly shows a turnover number (TON) of more than 5.8 $ \times $ 105 mol H$_2$ (mol H$_2$ase)$^{-1}$ after 72 h in a sacrificial electron donor solution at pH 6 during solar AM 1.5 G irradiation. An external quantum efficiency up to 4.8% for photon-to-hydrogen conversion was achieved under irradiation with monochromatic light. The CN$_x$–TiO$_2$–H$_2$ase construct was also active under UV-free solar light irradiation ($\lambda > 420$ nm), where it showed a substantially higher activity than TiO$_2$–H$_2$ase and CN$_x$–H$_2$ase due, in part, to the formation of a CN$_x$–TiO$_2$ charge transfer complex and highly productive electron transfer to the H$_2$ase. The CN$_x$–TiO$_2$–H$_2$ase system sets a new benchmark for photocatalytic H$_2$ production with a H$_2$ase immobilised on a noble- and toxic-metal free light absorber in terms of visible light utilisation and stability.

Polymeric carbon nitride (polyheptazine or melon, herein CN$_x$) is a promising visible-light absorber for the photocatalytic generation of H$_2$. We have recently reported the use of CN$_x$ as a light harvesting material in combination with a H$_2$ase and a H$_2$ase-inspired synthetic Ni catalyst for solar H$_2$ generation. The CN$_x$–H$_2$ase system showed sustained catalysis with a turnover number (TON) of more than 50 000 after 72 h solar light irradiation. However, this hybrid system suffered from a weak interaction between the H$_2$ase and the CN$_x$ surface, and consequently, poor electron transfer from CN$_x$ to the H$_2$ase. Furthermore, CN$_x$–H$_2$ase only showed efficient H$_2$ production up to wavelengths of approximately 420 nm and therefore only limited visible light harvesting capabilities.

Here, we selected a hybrid material consisting of TiO$_2$ (Hombikat UV 100, anatase, BET surface area: 300 m2 g$^{-1}$, crystallite size < 10 nm) surface-modified with CN$_x$ polymer as a light absorbing hybrid material for the photocatalytic system with a H$_2$ase for three main reasons (Fig. 1; see ESI and Fig. S1† for synthesis and characterisation). Firstly, CN$_x$–TiO$_2$ can be readily prepared on a gram scale by heating TiO$_2$ nanoparticles with urea, an inexpensive and sustainable material.

Secondly, CN$_x$–TiO$_2$ provides us with substantially improved solar light harvesting performance compared to individual CN$_x$ and TiO$_2$. Band gap excitation of TiO$_2$ (pathway 1; Fig. 1) efficiently utilises the UV spectrum (band gap of 3.2 eV for anatase TiO$_2$ with CB$_{TiO_2}$ at approximately -0.6 V vs. NHE at pH 6).13 A significant portion of the visible spectrum is utilised with CN$_x$–TiO$_2$ as it can, upon photo-excitation of CN$_x$, perform photoinduced electron transfer from the LUMO$_{CN_x}$ to CB$_{TiO_2}$ (pathway 2).
In addition, direct optical electron transfer can occur from the HOMO$_{CNx}$ (with contributions of molecular orbitals formed upon interaction of CN$_x$ with TiO$_2$) directly to the CB$_{TiO2}$ (pathway 3), extending the absorption even further into the visible region (up to 540 nm). This absorption pathway 3 is based on strong coupling between CN$_x$ covalently grafted onto TiO$_2$, resulting in strong charge-transfer absorption. Conclusive evidence of this charge-transfer includes previously reported spectroscopic, photoelectrochemical, and theoretical investigations.

Thirdly, the H$_2$ evolution catalyst employed in this study, Desulfomicrobium baculatum (Dmb) [NiFeSe]–hydrogenase is not only known for its high H$_2$ evolution activity, lack of H$_2$ inhibition and O$_2$-tolerance, but also for its titaniaphilicity. This high affinity of the enzyme to adsorb strongly to TiO$_2$ stems presumably from a protein surface rich in glutamatic and aspartic acid residues close to the distal [Fe$_4$S$_4$] cluster, which act as anchor sites to TiO$_2$ and allow for stable binding and efficient electron flow into the hydrogenase active site (Fig. 1A). Thus, the CN$_x$–TiO$_2$ hybrid is expected to support a more robust H$_2$ase-particle interaction than with CN$_x$ alone, which would result in improved charge transfer and ultimately increased catalytic turnover for H$_2$ production.

Results and Discussion

Photocatalytic systems were assembled by dispersing CN$_x$–TiO$_2$ particles in an aqueous electron donor solution (0.1 M; 2.98 mL) in a photoreactor vessel (headspace volume: 4.74 mL; see ESI† for experimental details). The vessel was sonicated under air (15 min) before sealing and purging with an inert gas (2% CH$_4$ in N$_2$). The H$_2$ase (16.5 μL, 3 μM) was then added and the photoreactor purged again to ensure anaerobic conditions. The stirred suspension was irradiated at 25 °C with a solar light simulator (air mass 1.5 global filter, I = 100 mW cm$^{-2}$) and the headspace H$_2$ was quantified at regular time intervals by gas chromatography against the internal CH$_4$ standard. The conditions were optimised for maximum turnover frequency (TOF$_{H2ase}$) by varying the electron donor and pH of the solution (Table S1; Fig. S2 and S3†). Optimised conditions consisted of ethylenediamine tetraacetic acid (EDTA; 0.1 M) as the electron donor at pH 6. A ratio of semiconductor (5 mg unless otherwise noted) to H$_2$ase (50 pmol) was used for ease of comparison to previously reported photosystems with Dmb [NiFeSe]–H$_2$ase.

Solar (UV-visible) irradiation ($\lambda > 300$ nm) of CN$_x$–TiO$_2$–H$_2$ase under standard conditions generated an initial TOF$_{H2ase}$ of (2.8 ± 0.3) \times 10$^{-5}$ a$^{-1}$ or 8 s$^{-1}$ with the production of 5.85 ± 0.59 μmol H$_2$ after 4 h and 28 ± 3 μmol H$_2$ with an overall TON$_{H2ase}$ > (5.8 ± 0.6) \times 102 after 72 h (Fig. 2 and S4†). Negligible amounts of H$_2$ were detected in the absence of H$_2$ase, CN$_x$–TiO$_2$ or EDTA. UV band gap excitation of TiO$_2$ did not result in the accumulation of O$_2$, which suggests that holes generated upon UV band gap excitation of TiO$_2$ are either efficiently quenched by EDTA directly or scavenged after being trapped by CN$_x$.

To qualitatively determine the contributions from the three excitation pathways in Fig. 1B, irradiation was also performed with different long-pass filters. The CN$_x$–TiO$_2$–H$_2$ase system was studied under visible light irradiation at $\lambda > 420$ nm to study the contribution of CN$_x$ to light absorption (pathways 2 & 3) without Fig. 2. Photocatalytic H$_2$ production with Dmb [NiFeSe]–H$_2$ase (50 pmol) with CN$_x$–TiO$_2$ (5 mg) in EDTA (pH 6, 0.1 M, 3 mL) under AM 1.5G irradiation at an intensity of 1 Sun at $\lambda > 300$, 420 and 455 nm.

Fig. 1 (A) Schematic representation of photo-H$_2$ production with Dmb [NiFeSe]–H$_2$ase (PDB ID : 1CC1; a) on CN$_x$–TiO$_2$ suspended in water containing EDTA as a hole scavenger. (B) Irradiation of CN$_x$–TiO$_2$ can result in photo-induced electron transfer by three distinct pathways: (1) TiO$_2$ band gap excitation (2) excitation of CN$_x$ (HOMOCN$_x$ – LUMOCN$_x$), followed by electron transfer from LUMOCN$_x$ into the conduction band of TiO$_2$ (CB$_{TiO2}$). (3) Charge transfer excitation with direct optical electron transfer from HOMOCN$_x$ to CB$_{TiO2}$. The CB$_{TiO2}$ electrons generated through pathways 1 to 3 are then transferred via the [Fe$_4$S$_4$] clusters to the [NiFeSe] H$_2$ase active site.

Fig. 2 Photocatalytic H$_2$ production with Dmb [NiFeSe]–H$_2$ase (50 pmol) with CN$_x$–TiO$_2$ (5 mg) in EDTA (pH 6, 0.1 M, 3 mL) under AM 1.5G irradiation at an intensity of 1 Sun at $\lambda > 300$, 420 and 455 nm.
the contribution of intrinsic absorption by TiO₂ (pathway 1). A photoactivity with an initial TOFₜₐₙₐₜ of 6353 ± 633 h⁻¹ was observed, which results in the generation of 1.31 ± 0.13 μmol H₂ after 4 h. After 72 h, 13 ± 1 μmol of H₂ were generated with a TONₜₐₙₐₜ of more than (2.6 ± 0.3) × 10² (Fig. 2).

Subsequently, irradiation was carried out at λ > 455 nm to investigate the contribution of the direct charge-transfer from the HOMO-CN to CB₉ZrO₂ to the photoactivity. A TOFₜₐₙₐₜ of 1096 ± 175 h⁻¹ with the evolution of 0.26 ± 0.06 μmol H₂ after 4 h and 2.9 ± 1.6 μmol H₂ after 72 h was observed, which corresponds to 17% of the visible light activity. This suggests that all three pathways in Fig. 1B contribute to the UV-vis band gap excitation of TiO₂ dominates the absorption of the hybrid material.

Visible-light response of CN–TiO₂ photoactivity was approximately 17% of the visible light activity. This suggests that all three pathways in Fig. 1B contribute to the UV-vis band gap excitation of TiO₂ (pathway 1). A TONₜₐₙₐₜ of 14852 mol H₂ a with UV-visible light (> 300 nm, Table S1). Under visible light irradiation (λ > 300 nm, Table S1†). Under visible light irradiation (λ > 420 nm), a TONₜₐₙₐₜ of 2375 ± 267 was observed after 4 h and no H₂ was produced at λ > 455 nm, demonstrating the substantially enhanced activity with CN₉–TiO₂–H₂ase compared to CN₉–H₂ase at all wavelengths (Fig. S4†).

Experiments were also performed with TiO₂–H₂ase. While the system showed comparable activity under UV-visible irradiation due to efficient band gap excitation of TiO₂ (pathway 1), it showed significantly reduced activity under visible only irradiation at λ > 420 nm and displayed negligible H₂ yields at λ > 455 nm compared to CN₉–TiO₂–H₂ase (Fig. S4†). Thus, UV-band gap excitation of TiO₂ dominates the absorption of the CN₉–TiO₂–H₂ase hybrid material under UV-light irradiation, which becomes less significant under visible irradiation.

The effect of light intensity on the photocatalytic activity (λ > 300 nm) was studied by employing neutral density filters. A photoactivity of approximately 90% remained when employing a 50% absorbance filter (50 mW cm⁻²) and 44% of activity remained with an 80% filter (20 mW cm⁻²; Fig. S5†). The initial non-linear decrease in activity implies that the system is not limited by light at 1 Sun intensity as has been observed previously with synthetic H₂ evolution catalyst-modified Ru dye-sensitised TiO₂ systems.¹⁶

The CN₉–TiO₂–H₂ase system sets a new benchmark for visible light driven and prolonged H₂ production with a heterogenised H₂ase without the need for expensive or toxic materials.¹⁴,⁹ A part of this improvement can be attributed to the direct optical electron transfer (pathway 3) within CN₉–TiO₂, which draws the absorption of solar light significantly into the visible spectrum.

The enzyme loading onto CN₉–TiO₂ was calculated based on the BET surface area of 111 m² g⁻¹, a crystallite surface area of ~314 nm² per particle and an estimation that approximately one-quarter of the surface area of TiO₂ is accessible for the enzyme to adsorb. This equates to ~0.1 H₂ase per particle of CN₉–TiO₂. The approximate 1 : 10 enzyme : particle ratio allows the H₂ase to function at the maximum rate (i.e., TOF) as the maximum electron flux of conduction band electrons is directed towards a single enzyme. To qualitatively determine the amounts of surface-bound and solubilised H₂ase in the optimised system, H₂ase (50 pmol) was loaded onto CN₉–TiO₂ (5 mg) in aqueous EDTA solution by stirring under N₂ for 15 min. The suspension was centrifuged and the supernatant decanted (see ESI† for experimental details). The CN₉–TiO₂–H₂ase pellet was re-dispersed in fresh EDTA solution (3 mL, 0.1 M, pH 6) and the photocatalytic vessel purged with 2% CH₄ in N₂. The suspension was then irradiated (λ > 420 nm) and H₂ production monitored (Fig. 3). The H₂ production activity was nearly identical to a sample that was not centrifuged, both in the presence and absence of methyl viologen (MV²⁺, see below), indicating that attachment of H₂ase to CN₉–TiO₂ is essentially quantitative. The substantially improved adsorption of the enzyme on the TiO₂ surface compared to the inert CN₉ polymer therefore also contributes to the increased activity of CN₉–TiO₂–H₂ase compared to CN₉–H₂ase. Previously an 88% decrease in photoactivity was observed with the poorly interacting CN₉–
H₂ase after centrifugation and re-dispersion in fresh electron donor buffer.²

The external quantum efficiency (EQE) of the CN₅-TiO₂-H₂ase system was measured by applying narrow band pass filters (λ = 360 ± 10 nm; I = 2.49 mW cm⁻² and 400 ± 10 nm; I = 4.34 mW cm⁻²; see ESIF for experimental details). UV-irradiation gave an EQE of approximately 4.8% and under visible irradiation an EQE of 6.51% was obtained. These values are more than a 10-fold improvement over the UV and visible EQE for the CN₅-H₂ase system,²⁷ which can be attributed to the improved light absorption (Fig. S6†) and increased electron transfer rate due to adsorption of the H₂ase onto the particle surface.

We previously showed that a significantly increased photoactivity was observed under standard conditions using CN₅-H₂ase upon addition of an excess of the redox mediator MV²⁺, producing up to 77 μmol H₂ after 69 h of UV-visible irradiation.³ A long-term experiment with H₂ase (50 pmol), CN₅-TiO₂ (5 mg) and added MV²⁺ (5 μmol) in aqueous EDTA (0.1 M) at pH 6 was performed with both λ > 300 nm light and with visible light only (λ > 420 nm). Under UV-visible irradiation after 72 h, the CN₅-TiO₂-MV-H₂ase system produced 193 μmol H₂ with a TOFₜₙₕₑₜₜ of > 3.8 × 10⁸ and an initial TOFₜₙₜₜ of 35 s⁻¹ (Fig. S7†). Under visible-light only, 66 μmol H₂ was produced with a TOFₜₙₜₜ of 1.3 × 10⁶ and an initial TOFₜₙₜₜ of 9 s⁻¹ (Fig. S8†). The ratio of the amount of hydrogen produced in the presence and absence of MV²⁺ can be used to estimate the relative efficiency of the charge transfer from material to H₂ase. Under full spectrum irradiation (λ > 300 nm) with CN₅-H₂ase the ratio was found to be 22, whereas for both TiO₂-H₂ase and CN₅-TiO₂-H₂ase systems the ratio was 5. This strongly supports the fact that there is a significant improvement in the charge transfer from a TiO₂-based material to H₂ase. In addition, this ratio remains constant when the wavelength of light used is restricted to the visible region (λ > 420 nm).

The H₂ production rates in the presence of MV²⁺ are significantly higher than those obtained in the absence of MV²⁺. The blue colour of the vials containing MV²⁺ is indicative of the formation of reduced MV⁺ in solution (Fig. S9†). By comparison, addition of MV²⁺ to the previously reported Ru-dye-sensitised TiO₂-H₂ase system caused a slight decrease in activity, which was attributed to the decreased availability of electrons for the H₂ase and the absorption of incident photons by MV⁺.²⁸ Here, solubilised MV⁺ does not limit light absorption by CN₅-TiO₂ significantly and is able to efficiently donate electrons to surface-bound H₂ase, resulting in increased H₂ production. This result implies that interfacial electron transfer from CN₅-TiO₂ to H₂ase is still not fully optimised in this system, where the orientation of the H₂ase is not fully ‘directed’. Ideally, the distance from the CN₅-TiO₂ surface to the [Fe₅S₄] electron transport chain should be minimised and an improved orientation of the enzyme would allow trapping of CB₄-TiO₂ electrons more efficiently for maximised turnover.²⁹

Favourable electron transfer kinetics at the CN₅-TiO₂-H₂ase interface can be assumed based on previous reports. Electron transfer in the order of 10⁷ s⁻¹ was reported from CdS nanorods to an [FeFe]-H₂ase isolated from Clostridium acetobutylicum.²⁶ In addition, a long lived photo-excited state lifetime of τ₂/₉ ~ 0.8 s was previously reported for TiO₂ conduction band electrons in a photocatalytic system with Ru dye-sensitised TiO₂ and electron transfer to co-immobilised molecular cobaloxime catalysts occurred with τ₂/₉ ~ 5 to 50 μs.²⁸ Based on these reports, we can assume that a reasonably long-lived TiO₂ conduction band electron is generated and that H₂ase is capable of readily collecting these electrons.

Conclusions

In summary, solar light driven H₂ production with a semi-biological system consisting of TiO₂ modified with polymeric CN₅ and immobilised H₂ase has been demonstrated. We have shown that by improving the surface interaction of the enzyme with the light harvesting CN₅ material, specifically by adsorption of the enzyme onto the TiO₂ surface, H₂ generation is drastically improved. Another important factor is the improved visible light absorption by direct CN₅ excitation (pathway 2) and CN₅-TiO₂ charge transfer (pathway 3), which enables high photoactivity. The CN₅-TiO₂-H₂ase assembly achieved a TOF of 8 s⁻¹ and TON of > 5.8 × 10⁵ after 72 h in the absence of an external soluble redox mediator, thereby setting a new benchmark for photochemical architectures based on abundant and non-toxic materials and a heterogenised H₂ase. The additional use of the redox mediator MV²⁺ allowed for the photo-generation of H₂ with a TOF of 35 s⁻¹ and a TON of > 3.8 × 10⁶. This work advances the use of hybrid photocatalytic schemes by integrating highly active electrocatalysts with advanced light absorbing materials such as CN₅-TiO₂, which is shown to be compatible with H₂ases in aqueous solution.

Acknowledgements

We acknowledge support by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and National Foundation for Research, Technology and Development), the OMV Group and a Marie Curie fellowship to C.C. (GAN 624997624997). R.B. and L.W. acknowledge financial support by the MIWFT-NRW within the project “Anorganische Nanomaterialien für Anwendungen in der Photokatalyse”. We thank Dr J. C. Fontecilla-Camps and Dr C. Cavazza (CNRS Grenoble, France) for providing us with Dmb[NiFeSe] hydrogenase, Ms Marielle Bauzan (CNRS Marseilles, France) for growing the bacteria, and Dr Michal Bledowski for assistance with CN₅-TiO₂ synthesis.

Notes and references

