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Cross-coupling catalysis holds a preferred position in the
synthetic chemist's arsenal as it provides a myriad of options for
the efficient and user-friendly access to organic motifs that are
otherwise difficult or impossible to obtain.' In this context
efforts have been devoted to extend the use of cross-coupling to
the functionalization of C-H bonds, as this highly attractive
strategy leads to an atom-economical formation of new bonds
while generating minimal waste.> The use of directing groups
and/or activated C-H bonds in this chemistry has been thor-
oughly studied.>* In contrast, the use of less acidic C(sp®)-H
pro-nucleophiles in the absence of any directing group®’ has
proven more challenging, and such examples remain scarce.®
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Scheme 1 Context of the present work.

The arylation of benzylamines-derived imines belongs to this
reaction class. It was initially reported by Yorimitsu and Oshima®
in 2008 and more recently alternative protocols have been
described.'® As most of the deprotonative cross couplings reported
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The first nickel catalyzed deprotonative cross coupling between C(sp3)—H bonds and aryl chlorides is
reported, allowing the challenging arylation of benzylimines in the absence of directing group or
stoichiometric metal activation. This methodology represents a convenient access to the (diarylmethyl)-
amine moiety, which is widespread in pharmaceutically relevant compounds.

to date, these protocols are based on palladium catalysis (see
Scheme 1). In recent years, attention has focused on the use of less
expensive and more earth-abundant first-row transition metals as
catalysts."* Amongst these, nickel has long been used in a number
of industrial applications,” and its utility as a powerful catalyst
has been revisited in several areas of homogenous catalysis,
ranging from coupling reactions™ to C-H bond functionaliza-
tion™* and small molecules activation.”> However, deprotonative
functionalization of benzylic C-H bond under nickel catalysis is,
to date, unprecedented. As the (diarylmethyl)Jamine moiety is a
well-known pharmacophore motif found in pharmaceuticals,*
the development of more sustainable synthetic methodologies
towards its synthesis is of significant interest.

We therefore envisioned the use of a Ni-NHC (NHC: N-
heterocyclic carbene) system, known to be highly active in cross-
coupling chemistry,"***" in lieu of Pd-based catalysts in this
challenging transformation. Our initial hypothesis relied on the
existence, for nickel, of a mechanistically closely related process
to palladium (see Scheme 2).
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Scheme 2 The mechanism of the deprotonative cross coupling of
benzylimines.
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Our study began with the examination of a model reaction
involving 1a and chlorotoluene (Table 1). The role of the base
was examined early on and full conversion and good NMR yields
of the product were obtained using a [Ni(COD),](1)/IPr catalytic
system in toluene (see Fig. 1) when potassium hexamethyldisi-
lylamide (KHMDS) was used as base. All other bases tested gave
no conversion to the desired product (for full solvent-base
system optimization, see the ESI})."”
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Fig. 1 Ligands and complexes tested.

We proceeded to examine the influence of the ligand: the use
of smaller NHCs resulted in poor or no conversion (entries 2-3),
while SIPr (entry 4) gave only a moderate yield. The use of the
very bulky IPr* ligand, which usually provides the best outcome
when employed in cross coupling chemistry,”® resulted in a
lower yield (entry 5). As we identified IPr as the optimal ligand,
in our initial reaction, the IPr-bearing well-defined catalysts 4
and 5 (entries 6-7) were tested. In contrast to previous examples
of Ni-NHC catalyzed reactions,”™*** both pre-catalysts gave
poorer results compared to the in situ prepared [Ni(COD),]/IPr
system. We suspect the lower efficiency shown by the preformed
pre-catalysts is due to the inability of the 2-azaallyl anion to
effectively activate the Ni(u) center. This is an issue we are
currently addressing in the design and synthesis of novel nickel-
based pre-catalysts. To complete the optimization, temperature
effects were examined and yields decreased with higher
temperature (entry 8). The concentration could be increased to
0.17 M (entry 9), but further increase led to dramatic decrease in
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yield (entry 10). The optimal metal/ligand ratio was found to be
1:2 (entry 11). The use of a representative phosphine ligand,
PCy;, resulted in no conversion. Similar results were obtained
when other Ni sources, such as [Ni(acac),] and [Ni(DME)Cl,]
were employed. Interestingly, further increasing the amount of
ligand completely suppressed the reaction. This result suggests
that a monoligated Ni species is possibly the catalytically active
species, and large excess of ligand moves the equilibrium
towards the more stable but inactive bis-ligated species. Grati-
fyingly, the relatively mild operating temperature does not lead
to the formation of isomeric mixtures. It is important to
underline that, contrarily to previous reports,'*** slow addition
of the base is unnecessary, thus making our protocol opera-
tionally simple.

Table 1 Optimization of the reaction conditions®

Ph N Ph

. ’
Ph\r/N\/Ph cl NI, L Ph
Ph + KHMDS (2.0 equiv.)
toluene, 45 °C, 16 h
1a 2a 3a

Entry [Ni] (5 mol%) L (mol%) Conc.(mol L") Conv.” (yield)®
1 [Ni(COD),] IPr (6) 0.10 >95 (81)

2 [Ni(COD),] IMes (6)  0.10 24

3 [Ni(COD),] DD (6)  0.10 —

4 [Ni(COD),] SIPr(6)  0.10 94 (65)

5 [Ni(COD),] IPr* (6)  0.10 >95 (60)

6 4 — 0.10 70 (45)

7 5 — 0.10 >95 (70)

8¢ [Ni(COD),] IPr (6) 0.10 >95 (72)

9 [Ni(COD),] IPr (6) 0.17 >95 (85)

10 [Ni(COD),] IPr (6) 0.25 >95 (53)

1 [Ni(COD),] IPr(10)  0.17 >95 (93)

12 [Ni(COD),] PCy; (10) 0.17 —

13 [Ni(acac),] IPr (10) 0.17 Traces

14 [Ni(DME)Cl,]  IPr(10)  0.17 —

15 [Ni(COD),] IPr(15)  0.17 —

% Conditions: 4-chlorotoluene (0.25 mmol), imine 1a (2.0 equiv.),

KHMDS (2.0 equiv.), toluene (1.0-2.5 mL) Ni source (2.5-5 mol%),
ligand (3-10 mol%), 45 °C, 16 hours. ” Calculated by G.C. analysis.
Yield calculated by NMR analysis using dimethyl malonate as an
internal standard. ¢ Reaction performed at 60 °C.

Once the optimal reaction conditions were established, we
sought to explore the generality of the new protocol by varying
the nature of the aryl chloride coupled with 1a (see Scheme 3).
We were pleased to find that both the electron-rich 4-chlor-
oanisole 2b and the electron-poor chlorides 2¢ and 2d led to
high yields of the desired products. The compatibility of func-
tionalized aryl chlorides, bearing functional groups such as
amines (3e), benzodioxole (3g) and relatively sensitive ketone
and nitrile derivatives (3g and 3h) was then examined. In all
cases, good to very good yields were obtained. The use of
heterocyclic (3i) and hindered aryl-chlorides (3j and 3k) was also
possible; in these cases, complete conversion required a catalyst

This journal is © The Royal Society of Chemistry 2015
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loading of 7.5 mol%. Compound 3k was isolated after hydro-
lysis, as the reaction mixture contained a small impurity that
was not possible to remove by column chromatography (see
ESIT). The results obtained in the coupling of bulky aryl chlo-
rides clearly improve on previous Pd-based reports. Imines 1b
and 1c, bearing respectively a 4-methoxyphenyl and a 4-fluo-
rophenyl moiety on the benzylamine starting material afforded
the coupling products with chlorobenzene in good yields (see
entries 3b-2 and 3c-2). To highlight some of the limitations of
the method, heterocyclic substrates 6-10 proved unsuitable in
this transformation.

Encouraged by these results and to further increase the
scope and demonstrate the versatility of this catalytic system,
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Scheme 3 Reaction scope of the Ni-catalyzed arylation of C(sp®)—H
bonds. Reaction conditions: aryl chloride (2) (0.25 mmol), 1 (2.0 equiv.),
KHMDS (2.0 equiv.), toluene (1.5 mL), [Ni(COD),] (5 mol%), IPr (10
mol%), 45 °C, 16 h. [a] 4 (7.5 mol%), IPr (15 mol%). [b] Isolated yield of
the corresponding ammonium chloride salt.
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the methodology was tested on the commercially available
imine 1d. As the deprotonation of 1a and 1d converge to the
same intermediate Int-1, a unique final product was expected
(see Scheme 2). Under the optimized reaction conditions, the
desired coupling products were indeed obtained and in very
good yields (see Scheme 4).

In order to shed light on the exact role of the base in this
reaction, we performed the alkylation of 1a using benzyl chlo-
ride under the catalytic arylation reaction conditions (toluene,
45 °C) in the absence of the catalyst, using three different bases:
KO¢Bu, NaHMDS and the optimal KHMDS (Table 2). We found
that in the presence of a base weaker than the azaallyl anion,
such as a t-butoxide, lower amounts of alkylated product were
observed (entry 3), and the crude NMR analysis showed the
formation of significant amounts of side-products, which were
absent in the reactions using HMDS containing-bases (entries 1
and 2). This observation led us to test NaHMDS and KHMDS in
the absence of any electrophile, finding that while the latter
leads only to the formation the expected starting material and
the isomerized form 1d (entry 4), the use of NaHMDS caused
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+ArCl % Ph /N
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\(/;‘
3a-3
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84%
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Scheme 4 Reaction scope of the Ni-catalyzed arylation of C(sp*)—H
bonds. Reaction conditions: aryl chloride (2) (0.25 mmol), 1 (2.0 equiv.),
KHMDS (2.0 equiv.), toluene (1.5 mL), [Ni(COD),] (5 mol%), IPr (10
mol%), 45 °C, 16 h.

Table 2 The role of the base”

ol Base Ph__N__Ph
- T
Toluene Ph Ph
45°C
1
11

Entry Base (equiv.) (equiv.) 12° (%) Notes
1 KHMDS (2.0) 2.0 81 —
2 NaHMDS (2.0)  0.10 80 —
3 KOt?Bu (2.0) 0.10 60 Side-products observed
4 KHMDS (0.5) — — Only 1a and 1d observed
5 NaHMDS (0.5) — 24 Side-products observed
6° KHMDS (0.5) — — Only 1a and 1d observed

“ Conditions: benzyl chloride (0.24 mmol, 1.2 equiv., or none), imine 1a
(0.2 mmol, 1.0 equiv.), base (0.4 mmol or 0.1 mmol 2.0 equiv. or 0.5
equiv.), toluene (0.6 mmol), 45 °C, 3 hours. Calculated by NMR
analysis using dimethyl malonate as an internal standard. © Reaction
performed in the presence of 5% [Ni(COD),]/10% IPr.

Chem. Sci., 2015, 6, 4973-4977 | 4975
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side-products to arise (entry 5). No side-products were observed
using KHMDS even when the catalytic Ni/IPr system was present
in the reaction medium (entry 6). Although further studies are
needed to elucidate the mechanism of this reaction, the fact
that KHMDS is the only base which cleanly affords the azaallyl
indicates that this could be a reasonable explanation for the
lack of reactivity of other bases in the catalytic arylation
reaction.

Conclusions

In summary, we have developed a synthetic methodology to
access the (diarylmethyl)amine motif via a high yielding Ni-
catalyzed coupling between C(sp®)-H bonds of benzylimine pro-
nucleophiles and aryl chlorides. This work discloses the use of a
commercially available Ni-based catalytic system under mild
and operationally simple conditions. We hope to soon report on
related Ni-catalyzed processes, as well as on the details of the
reaction mechanism.
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