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5,20-Bis(a-oligothienyl)-substituted [26]
hexaphyrins possessing electronic circuits strongly
perturbed by meso-oligothienyl substituents+

Hirotaka Mori,® Masaaki Suzuki,® Woojae Kim,? Jong Min Lim,°> Dongho Kim*®
and Atsuhiro Osuka™*?

A series of [26]hexaphyrins(1.1.1.1.1.1) bearing two a-oligothienyl substituents at 5,20-positions have been
synthesised and are shown to have a dumbbell hexaphyrin conformation, to which the a-oligothienyl
groups are linked with small dihedral angles to form an acyclic helix-like conjugated network. While their
distinct diatropic ring currents and four reversible reduction waves characteristic of aromatic [26]

hexaphyrins indicate that the [26]hexaphyrin aromatic circuits are viable, the absorption spectra and
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Accepted 30th November 2014 excited state dynamics are significantly perturbed, which becomes increasingly evident with elongation

of the oligothienyl substituents. DFT calculations of these hexaphyrins indicated that the LUMO and
LUMO + 1 are localised on the hexaphyrin circuit and the HOMO and HOMO — 1 are spread over the
acyclic helix-like conjugation network, which can explain the perturbed absorption spectra.
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Results and discussion

Synthesis of 5,20-bis(c-oligothienyl) [26]
hexaphyrins(1.1.1.1.1.1)

Introduction

In the last two decades, the chemistry of expanded porphyrins
has gained increasing popularity, in light of their flexible
structures, multi-metal coordination properties, anion sensing
abilities, facile interconversions between multiple and neutral
redox states, and unprecedented chemical reactivities such as
drastic skeletal rearrangements.® Fairly flexible electronic
systems of meso-aryl expanded porphyrins have been demon-
strated by the exploration of versatile electronic states such as
Hiickel aromatic, Hiickel antiaromatic,> MoObius aromatic,®

[26]Hexaphyrins T2-T4 have been prepared by a modified
method used for the synthesis of 5,20-(2-thienyl) [26]hex-
aphyrin(1.1.1.1.1.1) T1.* Acid-catalysed condensation of 5,10-

(a) Previous Work

Cefs CeFs CeFs CeFs
Mobius antiaromatic,® stable monoradical,® and singlet bir-
adicaloid species.® As an additional example, internally 5,20- Vs
aromatic-bridged [26]hexaphyrins have been recently developed
as dual electronic systems consisting of [18]porphyrin and/or CeFe CeFs CoFe CeFs

[26]hexaphyrin, which can be modulated by the internal
bridging aromatic units (Fig. 1a).” In this paper, we report the
synthesis of a series of 5,20-bis(a-oligothienyl) [26]hexaphyr-
ins(1.1.1.1.1.1) (T2-T4), which display characteristic optical and
electronic properties due to the presence of 5,20-bis(a-oligo-
thienyl) substituents (Fig. 1b).
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(b) This Work
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T Electronic supplementary information (ESI) available: General experimental

methods, HR-ESI-TOF mass spectra, UV/Vis absorption spectra, NMR spectra,  Fig. 1 [26]Hexaphyrins possessing dual electronic systems; (a) inter-

cyclic voltammograms, X-ray crystal structures and results of DFT calculations.
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nally aromatic-bridged [26]hexaphyrins (X = S, NH) and (b) bis(e-oli-
gothienyl) [26]hexaphyrins. Effective conjugated networks are
indicated by the coloured lines.
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bis(pentafluorophenyl)tripyrrane 1 with corresponding a-oli-
gothiophene-5-carbaldehydes followed by oxidation with 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) gave T2-T4 in
22, 10, and 15% yields, respectively (Scheme 1). High-resolution
electrospray ionisation time-of-flight (HR ESI-TOF) mass
measurements showed the parent ion peaks at m/z 1457.0685
([M+H]"; caled for C;oH,5NgF0Ss: 1457.0699) for T2, m/z
1621.0462 ([M+H]'; caled for C,5H,oNgF0S6: 1621.0453) for T3,
and m/z 1783.0059 ([M—H]; caled for CggHz1NgF50Ss:
1783.0062) for T4 (see ESIt). 5,15-Bis(a-oligothienyl)-substituted
porphyrins P1-P4 were also prepared (ESIf) to examine the
effects of a-oligothienyl substituents on the electronic system of
porphyrins, which highlight the characteristically flexible elec-
tronic properties of [26]hexaphyrins.

The solid-state structures of T2-T4 have been unambiguously
determined by single crystal X-ray diffraction analysis.” Hex-
aphyrins T2-T4 all show a dumbbell hexaphyrin conformation, to
which the two oligothienyl groups are appended with small
dihedral angles, being favorable for conjugation with the hex-
aphyrin macrocycle (Fig. 2 and ESIt). The hexaphyrin frames of
T2-T4 are essentially the same as those of 5,20-unsubstituted
hexaphyrin (T0)** and T1 ® with regard to the planar dumbbell
structure. The dumbbell conformation is intrinsically the most
stable for [26]hexaphyrins, because of four possible energy-sta-
bilising intramolecular hydrogen bonding interactions, but is
only allowed for [26]hexaphyrins bearing small substituents at
5,20-positions.**® Thus, TO is the most stable, having a strain-free
fairly planar conformation with the largest diatropic ring current.
The observed dumbbell structures of T1-T4 have been similarly
ascribed to small 2-thienyl and a-oligothienyl substituents.® The
two oligothienyl substituents are positioned above and below the
macrocycle and are oriented toward the same side of the hex-
aphyrin to form a helix-like conjugated network involving the
tripyrrodimethene segments of the hexaphyrin.

The '"H NMR spectra of TO and T1 indicate sharp signals at
room temperature, which are consistent with the dumbbell

CH,Cl,
CeFs
\ s
[ <
R n n
CeFs
P1(n=1,R=H)
P2 (n =2, R = n-hexyl)
P3(n=3 R=H)
P4(n=4, R=H)

Scheme 1 Synthesis of 5,20-(a-oligothienyl)-substituted [26]hex-
aphyrins T1-T4 and structures of P1-P4.
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Fig. 2 X-Ray crystal structures of (a and b) T2, (c and d) T3, and (e and
f) T4. Solvent molecules are omitted for clarity. The thermal ellipsoids
are scaled to a 30% probability level. One of the two molecules in the
unit cell is shown for T2 and T4.

structures.®® The "H NMR spectrum of T1 exhibits only three
signals at 7.38, 7.72, and 8.16 ppm due to the outer B-pyrrolic
protons, indicating a very rapid rotation of the meso-thienyl
substituents. In contrast, the "H NMR spectra of T2-T4 taken at
room temperature are interesting, in that the protons of the
hexaphyrin periphery appear as very broad signals but the
protons of the oligothienyl substituents appear as sharp signals.
At —60 °C, these "H NMR spectra became sharp, featuring six
signals due to the outer B-pyrrolic protons in the range 6 = 8.21-
5.76 ppm and signals due to the meso-oligothienyl groups in the
range 6 = 7.25-4.06 ppm. These data indicate substantial dia-
tropic ring currents for the hexaphyrin in T2-T4 in accordance
with the solid-state dumbbell structures. Importantly, two
singlets due to the two inner NH protons appeared differently
around 6 = 8.4-8.2 and 5.4-5.1 ppm, implying that the right and
left tripyrrodimethene segments of the hexaphyrin are elec-
tronically different, owing to the influence of the meso-oligo-
thienyl substituents. Most probably the rotational dynamics of
the meso-oligothienyl substituents are slow at room tempera-
ture as compared with the "H NMR time scale.

Chem. Sci., 2015, 6, 1696-1700 | 1697
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Redox potentials and UV/Vis/NIR absorption spectra

The electrochemical properties of T1-T4 were examined by
cyclic voltammetry (CV) in CH,Cl, containing 0.1 M Bu,NPF; as
a supporting electrolyte versus ferrocene/ferrocenium cation
(see Fig. S20 and Table S1t). All the cyclic voltammograms of
T1-T4 showed four reversible reduction waves almost at the
same potential, that correspond to stepwise reductions reach-
ing their 307 states, hence indicating that the 267 hexaphyrin
electronic circuits are all viable. On the other hand, the first
oxidation potentials appeared at 0.38 V for T1, 0.27 V for T2,
0.22 V for T3, and 0.17 V for T4, indicating the rising of the
HOMO levels upon elongation of the meso-oligothienyl chains.

The absorption spectrum of TO displays a sharp and intense
Soret-like band at 549 nm and weak but distinct Q-bands in the
range 700-1100 nm as characteristic features of typical aromatic
porphyrinoids. The absorption spectrum of T1 exhibits an ill-
defined Soret-like band at 616 nm and broad Q-bands in the
range 700-1150 nm, which is significantly different from that of
TO, indicating that the 2-thienyl substituents cause significant
perturbation on the electronic state of the [26]hexaphyrin. This
trend is increasingly evident upon elongation of the oligothienyl
chains. Namely, a Soret-like band, a characteristic attribute of
aromatic [26]hexaphyrins, almost disappears in the absorption
spectra of T2-T4, and instead a broad high-energy band is
observed around 350 nm for T1, which is red-shifted and
intensified with the elongation of the meso-oligothienyl
chains." In addition, the spectra of T2-T4 show broad Q-bands
in the NIR region. Collectively, these absorption features of T2-
T4 are radically different from those of aromatic porphyrinoids,
but are rather similar to those of reported acyclic oligopyrro-
methenes." The absorption spectra of T1-T4 became sharp-
ened upon lowering the temperature (ESIt), indicating the
importance of the dynamic motion of the oligothienyl substit-
uents for broadening the absorption spectra. In sharp contrast,
no such drastic changes were observed in the absorption
spectra of the porphyrin counterparts P1-P4 (Fig. 3b), under-
lining the unique and flexible electronic properties of the [26]
hexaphyrins.

Theoretical calculations and excited state dynamics

To understand the anomalous absorption spectra, density
functional theory (DFT) calculations of T0-T4 were carried out
using the Gaussian 09 program at the B3LYP/6-31G(d) level.*?
Geometry optimisations produced dumbbell structures that
were respectively similar to those obtained via X-ray diffraction
analyses. Since the calculated MO diagrams of T2-T4 are quite
similar (ESIt), we discuss here the MOs of T3 in comparison
with those of TO (Fig. 4). Similar to the rectangular shaped [26]
hexaphyrin,” the HOMO and LUMO of TO are, respectively,
similar to the a;,, and a,, HOMOs and two degenerate e; LUMOs
of porphyrins with a HOMO-LUMO gap of 1.88 eV. The LUMO
and LUMO + 1 of T3 are nearly localised on the hexaphyrin
circuit, and their energy levels are only slightly destabilised
from those of T0. In contrast, the HOMO — 1 is spread over the
helix-like network and the HOMO is mainly spread over the
same network, and both are largely destabilised, which causes a
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Fig. 3 UV/Vis/NIR absorption spectra of (a) T0O-T4 and (b) P1-P4 in
CHzclz.

small HOMO-LUMO gap of 1.340 eV. The MO features of T2 and
T4 are nearly the same as those of T3, which are all consistent
with the CV results. These MO features compelled us to
consider a dual contribution of the 267-hexaphyrin network
and an acyclic conjugation along the helix-like structure
(Fig. 1b), which plays an important role in the electronic exci-
tation to the excited states.

The nucleus-independent chemical shift (NICS) values*
inside the [26]hexaphyrin macrocycle were calculated to be
—15.54, —12.21, —8.50, —8.30, and —8.26 for T0-T4, respec-
tively. The harmonic oscillator model of aromaticity (HOMA)
values® for the [26]hexaphyrin circuit were calculated from the
real crystal structures and the optimised structures to be 0.783
and 0.737 for TO, 0.568 and 0.604 for T1, 0.464 (0.425) and 0.518
for T2, and 0.397 and 0.498 for T3. The HOMA value of T4 was
only calculated for the optimised structure to be 0.498 due to
insufficient crystal data to discuss the bond length. These
results indicate the increasing perturbation by the 5,20-oligo-
thienyl substituents of T1-T4.

We have also investigated the excited state dynamics of T1-
T4 by using femtosecond transient absorption (fs-TA) spec-
troscopy (Fig. S46 and 471) to confirm the electronic perturba-
tion by the 5,20-oligothienyl substituents. Si1-state lifetimes
have been determined to be 35.4 ps for T1, 15.2 ps for T2, 10.0
ps for T3, and 8.5 ps for T4, respectively, which show a dramatic
decrease compared to the value of 138 ps for T0.>* These overall

This journal is © The Royal Society of Chemistry 2015
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Fig.4 Kohn-Sham MO diagrams of TO and T3 calculated with the Gaussian 09 package. All energy levels were calculated at the B3LYP/6-31G(d)

level.

observations also confirmed the increasing electronic pertur-
bation by the oligothienyl chains.

Collectively, these experimental and theoretical calculations
indicate that the perturbation provided by the oligothienyl
substituents is delicate, being not strong enough to spoil the
aromatic [26]hexaphyrin network but large enough to alter the
absorption properties and mitigate the aromatic characters of
the [26]hexaphyrin segments as a rare case.

Conclusions

5,20-Bis(a-oligothienyl)-substituted [26]hexaphyrins(1.1.1.1.1.1)
T1-T4 were prepared and were shown to possess characteristic
optical and electronic properties. The observed diatropic ring
currents and reversible reduction waves indicate that the
aromatic [26]hexaphyrin networks are viable in T1-T4. Never-
theless, the absorption spectra and the excited state dynamics
of T1-T4 are significantly perturbed by the appended oligo-
thienyl substituents. DFT calculations indicated that the LUMO
and LUMO + 1 are localised at the [26]hexaphyrin network but
that the HOMO and HOMO — 1 are significantly spread over the
helix-like network and are largely destabilised. Further explo-
rations of expanded porphyrins possessing dual electronic
networks are actively under way in our group.
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