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f polyunsaturated fatty acid,
nonribosomal peptide and polyketide biosynthetic
machinery is used to assemble the zeamine
antibiotics†
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The zeamines are a unique group of antibiotics produced by Serratia plymuthica RVH1 that contain variable

hybrid peptide–polyketide moieties connected to a common pentaamino-hydroxyalkyl chain. They exhibit

potent activity against a broad spectrum of Gram-positive and Gram-negative bacteria. Here we report a

combination of targeted gene deletions, high resolution LC-MS(/MS) analyses, in vitro biochemical assays

and feeding studies that define the functions of several key zeamine biosynthetic enzymes. The

pentaamino-hydroxyalkyl chain is assembled by an iterative multienzyme complex (Zmn10–13) that

bears a close resemblance to polyunsaturated fatty acid synthases. Zmn14 was shown to function as an

NADH-dependent thioester reductase and is proposed to release a tetraamino-hydroxyalkyl thioester

from the acyl carrier protein domain of Zmn10 as an aldehyde. Despite the intrinsic ability of Zmn14 to

catalyze further reduction of aldehydes to alcohols, the initially-formed aldehyde intermediate is

proposed to undergo preferential transamination to produce zeamine II. In a parallel pathway,

hexapeptide-monoketide and hexapeptide-diketide thioesters are generated by a hybrid nonribosomal

peptide synthetase-polyketide synthase multienzyme complex (Zmn16–18) and subsequently conjugated

to zeamine II by a stand-alone condensing enzyme (Zmn19). Structures for the resulting prezeamines

were elucidated using a combination of high resolution LC-MS/MS and 1- and 2-D NMR spectroscopic

analyses. The prezeamines are hypothesized to be precursors of the previously-identified zeamines,

which are generated by the action of Zmn22, an acylpeptide hydrolase that specifically cleaves the N-

terminal pentapeptide of the prezeamines in a post-assembly processing step. Thus, the zeamine

antibiotics are assembled by a unique combination of nonribosomal peptide synthetase, type I modular

polyketide synthase and polyunsaturated fatty acid synthase-like biosynthetic machinery.
Introduction

To keep up with the increasing emergence of multidrug-resis-
tant bacterial infections, there is an urgent need for the
discovery of novel classes of antibiotics. Natural products have
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been and continue to be the major source of novel drug leads
for the treatment of a wide range of infectious diseases.1 Poly-
ketides and nonribosomal peptides, two major classes of
bacterial secondary metabolites, constitute an enormous group
of complex, biologically active natural products. They are bio-
synthesized by large enzymatic assembly lines that employ
analogous strategies for sequential linking of short carboxylic
acid and amino acid building blocks, respectively.2–4 Like non-
ribosomal peptide synthetases (NRPSs), type I modular poly-
ketide synthases (PKSs) are modular multienzymes. In both
cases, each module consists of a set of discrete catalytic
domains responsible for the incorporation of one building
block and a variety of modications into the growing chain.
Type I iterative PKSs are multienzymes that use a single set of
catalytic domains repeatedly to perform several successive
condensation and modication reactions.5 A minimal PKS
module consists of three domains: an acyl transferase (AT)
Chem. Sci., 2015, 6, 923–929 | 923
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Fig. 1 Biosynthesis of zeamine II (1). (A) Domain and module organi-
zation of Zmn10–14 which constitute a type I iterative FAS/PKS
showing high homology to PUFA synthases. (B) Proposed biosynthetic
scheme for zeamine II. Domains are abbreviated as follows: KS ¼
ketosynthase, KR ¼ ketoreductase, ACP ¼ acyl carrier protein, CLF ¼
chain length factor, TR¼ thioester reductase, DH¼ dehydratase, ER¼
enoyl reductase, AMT ¼ aminotransferase.
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domain, which selects and loads an acyl thioester building
block onto the phosphopantetheinyl arm of an acyl carrier
protein (ACP) domain, and a ketosynthase (KS) domain, which
catalyzes chain elongation. In NRPSs, equivalent functions are
fullled by adenylation (A), peptidyl carrier protein (PCP) and
condensation (C) domains, respectively. A variety of additional
domains can be found that perform modications of the
growing chain e.g. ketoreductase (KR), dehydratase (DH), enoyl
reductase (ER) and C-methyltransferase domains in PKSs and
epimerization (E) and N-methylation domains in NRPSs. During
the assembly process, biosynthetic intermediates remain cova-
lently tethered to the ACP/PCP domains. Following the nal
chain elongation/modication cycle, the fully-assembled poly-
ketide or peptide chain is released from the assembly line. The
most frequently encountered chain release reaction is catalyzed
by a C-terminal thioesterase domain, which catalyzes product
release by hydrolysis or macrocyclization.6–8 Alternatively, chain
termination can be mediated by thioester reductase (TR)
domains or C domains. TR domains release the fully-assembled
thioester as an aldehyde using NAD(P)H as a cosubstrate,9

whereas C domains catalyze inter- or intramolecular amide or
ester bond formation.10–12

Secondary lipid biosynthesis involves the production of long-
chain fatty acid products with specialized functions that do not
play a direct role in the growth and development of the cell
under normal laboratory conditions. Secondary lipid synthase
genes show high homology to the pfa clusters of genes involved
in the de novo synthesis of long-chain polyunsaturated fatty
acids (PUFAs) like eicosapentaenoic acid (EPA) and docosa-
hexaenoic acid (DHA) in marine, psychrophilic bacteria.13 The
pfaA-D cluster typically displays a conserved operon organiza-
tion and encodes an iterative type I fatty acid synthase (FAS)/PKS
system.14,15 Secondary lipid synthases have been shown to
produce the alkyl chains of heterocyst glycolipids in nitrogen-
xing cyanobacteria as well as the phenolic lipid alkyl chains in
cysts of Azotobacter vinelandii. Additionally, numerous orphan
gene clusters encoding related FAS/PKS systems with the same
conserved multi-domain architecture have been identied in
diverse microbial phyla.13

The zeamines are a unique complex of broad spectrum
antibiotics produced by Serratia plymuthica RVH1.16–18 Zeamine
production is regulated by a LuxI/LuxR-type quorum sensing
system and provides the strain with a selective advantage in
competitive environments.19,20 The structures of these antibi-
otics represent a completely new chemical scaffold consisting of
an unusual polyamino alcohol chain (zeamine II, 1, Fig. 1),
conjugated via an amide bond to a valine-linked polyketide
moiety in the case of zeamine (2) and zeamine I (3) (Fig. 2). The
valine residue has been hypothesized to be part of a non-
ribosomal hexapeptide leader sequence that is cleaved during a
post-assembly processing step.17 Specic components of the
zeamine complex have also been reported to be produced by the
bacterial phytopathogens Dickeya zeae DZ121 (zeamine) and D.
zeae EC122 (zeamine and zeamine II). Previously, zeamine
biosynthesis was mapped to a 50 kb gene cluster in S. ply-
muthica RVH1, which appears to be conserved across different
bacterial species.17,23,24 In addition to presumed tailoring
924 | Chem. Sci., 2015, 6, 923–929
(Zmn15, Zmn22) and export-related (Zmn20–21) enzymes, two
separate assembly lines are encoded by genes within the gene
cluster: a type I FAS/PKS homologous to PUFA synthases
(Zmn10–14) and a hybrid NRPS/PKS (Zmn16–19). This unusual
genetic architecture strongly suggests that an unprecedented
combination of NRPS, PKS and PUFA synthase-like multien-
zymes participates in zeamine assembly.17 To validate this
hypothesis and experimentally conrm the functional role of
specic enzymes in zeamine biosynthesis, in vitro biochemical
assays and feeding studies were performed, and targeted in-
frame gene deletions were made in the zeamine biosynthetic
gene cluster. The effect of knockout mutagenesis on metabolite
production was examined by ultra-high resolution LC-MS
analysis of culture supernatants and antibacterial activity
assays. Furthermore, the prezeamines, precursors to zeamine
and zeamine I, were isolated, structurally elucidated and shown
to undergo an unusual post-assembly proteolytic processing
step.
Results and discussion
Involvement of a PUFA synthase-like multienzyme complex in
zeamine II biosynthesis

The 40-carbon pentaamino-alcohol zeamine II (1) is proposed to
be biosynthesized by Zmn10–14, an iterative PUFA synthase-like
multienzyme complex consisting of three multifunctional
This journal is © The Royal Society of Chemistry 2015
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Fig. 2 Proposed biosynthetic pathway for zeamine (2) and zeamine I (3). The Zmn16–18 hybrid NRPS/PKS catalyzes the sequential incorporation
of g-Asp, His, Asn, Asn, Thr and Val, followed by one or two elongations of the resulting pentapeptide with a malonyl extender unit. The stand-
alone condensation domain Zmn19 condenses the ACP-bound thioesters (a) and (b) to the primary amino group of 1 via chain-terminating
amide bond formation, giving rise to prezeamine I (5) and prezeamine (4), respectively. Zmn22 then cleaves off the N-terminal pentapeptide in a
post-assembly processing step to form 3 and 2. The precise timing of the cyclization reaction between D-Asn and Thr remains unclear. The
configurations of the stereocenters depicted here were bioinformatically predicted based on the presence of an epimerization domain in Zmn16
and sequence analysis of the KR domain in Zmn18. Domains are abbreviated as follows: C ¼ condensation, A ¼ adenylation, T ¼ thiolation, KS ¼
ketosynthase, AT ¼ acyltransferase, KR ¼ ketoreductase, ACP ¼ acyl carrier protein.
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proteins and stand-alone ketoreductase (KR) and thioester
reductase (TR) enzymes (Fig. 1A). Zmn10–12 show high
homology to the PUFA biosynthetic enzymes PfaA, C and D
respectively, differing only in the number of ACP and DH
domains and in the presence of an unusual PLP-dependent
aminotransferase (AMT) domain in Zmn12.17 By analogy to
similar domains involved in mycosubtilin and microcystin
biosynthesis, this AMT domain likely catalyzes the conversion
of selected b-ketothioester intermediates in carbon chain
assembly to the corresponding b-aminothioesters, as well as
transamination of the aldehyde group in the nal tetraamino-
alcohol intermediate in zeamine II biosynthesis.25,26 Zmn10
This journal is © The Royal Society of Chemistry 2015
homolog ZmsA (66% amino acid identity) was previously shown
to be essential for production of 1 and 2 in D. zeae EC1.22

Antibacterial activity was no longer detectable in mutants in
which either zmn10, zmn11, zmn12, zmn13 or zmn14 were indi-
vidually deleted. LC-MS analysis of culture supernatants from
these mutants conrmed that the production of all components
of the zeamine complex was abolished (Fig. 3). Moreover, no
putative biosynthetic intermediates could be detected. Upon
feeding of isolated zeamine II to small-scale cultures of the
zmn10, zmn11 and zmn12 deletion mutants, production of 2 and
3 could be observed in the culture supernatant aer 72 h
fermentation (Fig. S1†). This is consistent with the direct
Chem. Sci., 2015, 6, 923–929 | 925
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Fig. 3 Base peak chromatograms from LC-ESI-MS analyses of culture
supernatants from wild type S. plymuthica RVH1 and the deletion
mutants. The constituents of the zeamine complex co-elute at 22.2 �
0.2 minutes. Dzmn22 produces only prezeamines and zeamine II (see
Fig. S6†), whereas Dzmn15 produces reduced levels of the zeamine
complex. As is the case for Dzmn10, 11, 12 and 14, zeamine production
in Dzmn13 cannot be detected. Dzmn19, Dzmn16, Dzmn17 and
Dzmn18 produce only zeamine II (see Fig. S5†). The effect of in-frame
deletion of the individual zeamine biosynthetic genes on the antimi-
crobial activity excreted by S. plymuthica RVH1 is shown next to the
chromatograms. Plate bioassays were performed using Staphylo-
coccus aureus ATCC27661 as the indicator strain. To rule out the
influence of polar effects on the observed phenotypes, deletions were
complemented by expressing the respective genes in trans. For an
overview of all gene deletion and complementation experiments, see
Table S1.†

Fig. 4 Preferential consumption of NADH over NADPH in the Zmn14-
catalyzed reduction of dodecanoyl-CoA. Purified Zmn14 was incu-
bated with dodecanoyl-CoA and either NADH or NADPH and the
change in fluorescence emission at 462 nm was monitored.
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involvement of the PUFA-synthase like multienzyme complex in
the biosynthesis of 1. The assembly process is proposed to be
initiated by an acetyl-CoA starter unit undergoing two complete
rounds of elongation, ketoreduction, dehydration and enoyl
reduction (Fig. 1B). Following the next elongation step, the
reductive modication of the b-ketothioester is replaced by a
transamination, catalyzed by the AMT domain in Zmn12. This
process is repeated four more times, with the transamination
step being replaced by a ketoreduction in the last iteration.
Throughout the biosynthesis, the chain is presumed to be
attached to the ACP domain of Zmn10. Reductive release of the
fully extended b-hydroxythioester as an aldehyde by Zmn14 and
a nal transamination reaction would then generate 1. The
absolute congurations of the stereocentres bearing the amino
groups remain to be elucidated and the enzyme responsible for
the introduction of the hydroxyl group into 1 is still to be
identied. Comparative sequence analyses previously suggested
that the KR domain in Zmn10 would generate a hydroxyl group
with an R conguration, whereas the KR domain in Zmn13
would introduce a hydroxyl group with S conguration.17
926 | Chem. Sci., 2015, 6, 923–929
Zmn14 is a thioester reductase

Zmn14 is proposed to be responsible for reductive release of the
tetraamino-hydroxy thioester from the ACP domain of Zmn10 to
form the corresponding aldehyde. TR domains typically utilize
NAD(P)H to catalyze transfer of a single, or two successive,
hydride ions to the carbonyl group of a thioester resulting in
formation of an aldehyde or alcohol, respectively.27 To further
elucidate the function of Zmn14, it was overproduced in E. coli
with a His6-tag fused to its C-terminus and puried to homo-
geneity using Ni-NTA chromatography. Using dodecanoyl-CoA
as a mimic of the natural substrate, the ability of Zmn14 to
consume NADPH and NADH was investigated by monitoring
the decrease in absorbance at 340 nm (due to production of
NAD(P)+). The enzyme was found to have a marked preference
for NADH over NADPH and no activity was observed in control
reactions utilizing boiled enzyme (Fig. 4). NADH consumption
was also observed when Zmn14 was incubated with octanoyl- or
butyryl-CoA in place of dodecanoyl-CoA, demonstrating that it is
able to tolerate a range of thioester substrates (Fig. S2†).
Furthermore, Zmn14 was able to catalyze NADH-dependent
reduction of octanal, butanal, 2-octanone and butanone
(Fig. S3†). To conrm that such reactions lead to the formation
of an alcohol, Zmn14 was incubated with octanal and NADH,
and the reaction mixture was extracted with chloroform and
treated with N,O-bis-(trimethylsilyl)acetamide (BSA). An analyte
with m/z ¼ 187.2, corresponding to the fragment ion of the BSA
derivative of octanol resulting from neutral loss of a methyl
group, was observed in GC-MS analyses of the extracts (Fig. 5).
This analyte was absent from control reactions utilizing boiled
enzyme and had the same retention time as the corresponding
analyte derived from an authentic standard of the BSA deriva-
tive of octanol (Fig. 5).
Identication of the prezeamines reveals the involvement of a
parallel NRPS/PKS assembly line

The valine-derived moieties of zeamine (2) and zeamine I (3) are
proposed to originate from the hybrid NRPS/PKS encoded by
zmn16–18. This assembly line consists of six NRPS modules and
This journal is © The Royal Society of Chemistry 2015
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Fig. 5 Extracted ion chromatograms at m/z 187.2 from GC-MS
analyses of the Zmn14-catalyzed reduction of octanal with NADH. The
top chromatogram is for the authentic standard of BSA-derivatized
octanol. The middle chromatogram is for the BSA-derivatized product
of the enzymatic reaction. The bottom chromatogram corresponds to
the BSA-derivatized product of the negative control using boiled
enzyme.
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one PKS module (Fig. 2). Although sequence analyses do not
indicate that any of the domains are non-functional, only valine,
the predicted amino acid substrate of the nal NRPS module, is
incorporated into the structure of zeamine and zeamine I. This
led us to speculate that 2 and 3 arise from ‘prezeamines’ from
which an N-terminal pentapeptide is cleaved in a post-assembly
processing step.17

High resolution LC-MS analyses of wild type S. plymuthica
RVH1 culture supernatant identied two metabolites with
identical retention times as 1, 2 and 3, and molecular formulae
corresponding to zeamine and zeamine I derivatives with ve
additional amino acids appended to their N-termini (calculated
for C69H130N15O12

+: 1361.0023, observed: 1361.0009; calculated
for C71H134N15O13

+: 1405.0286, observed: 1405.0259) (Fig. S4†).
Prezeamine (4) was isolated and puried, and its structure was
elucidated by a combination of high resolution LC-ESI-MS/MS
and various 2-D NMR analyses, including multiplicity-edited
HSQC, HSQC-TOCSY and HMBC. These data revealed that the
pentapeptide of 4 consists of (from N- to C-terminus): g-aspar-
tate, histidine, asparagine, asparagine and threonine, with a
cyclization occurring between the side chains of the rst
asparagine and the threonine residue (Fig. 6, S7–S13, Table S2
and S3†). LC-ESI-MS/MS analysis conrmed that prezeamine I
(5) harbors the same N-terminal pentapeptide. This peptide
moiety is in line with the predicted specicities of the adeny-
lation domains within Zmn16 and Zmn17 and is identical to the
proposed peptide part of fabclavine IVa, recently reported as a
metabolite of Xenorhabdus szentirmaii (Fig. S14, Table S4†).23

The presence of an epimerization domain in the third NRPS
module predicts that the rst asparagine residue has the D
conguration, in contrast to the ve other amino acid residues
which are all bioinformatically predicted to have the L cong-
uration. The hexapeptidyl thioester predicted to be assembled
by Zmn16 and Zmn17 is proposed to undergo one or two rounds
of Zmn18-mediated two-carbon chain elongation, with
concomitant reduction of the b-keto groups in the chain elon-
gated intermediates. Sequence comparisons of the KR domain
in Zmn18 with KR domains of known stereospecicity from
This journal is © The Royal Society of Chemistry 2015
other PKSs, predicts the S conguration for the resulting
hydroxyl group(s).17 Zmn19 is then predicted to catalyze
condensation of the b-hydroxy and b, d-dihydroxy thioester
products of the PKS with the primary amino group of 1, to form
prezeamine I and prezeamine, respectively (Fig. 2). A similar
catalytic role has been proposed for Zmn19 homolog ZmsK
(48% amino acid identity) in D. zeae EC1 by Zhang and
coworkers.28 According to this biosynthetic model, deletion of
zmn16, zmn17 or zmn18 should abolish the production of the
peptide–polyketide moiety, whereas inactivation of zmn19
would prevent the conjugation of this moiety to 1. The corre-
sponding mutants all displayed reduced antimicrobial activity
and LC-MS analyses conrmed that this is due to exclusive
production of 1 in all cases (Fig. 3 and S5†), thus providing
strong support for our proposed biosynthetic pathway.

Zmn15, a predicted nitrilase belonging to the C–N hydrolase
superfamily of enzymes, which catalyzes condensation and
hydrolysis of a wide array of non-peptidic carbon–nitrogen
bonds,29 has recently been proposed by Bode and coworkers to
catalyze condensation of the threonine and D-asparagine side
chains.23 Deletion of zmn15 resulted in reduced production
levels of all the zeamines, as indicated by both plate bioassay
and LC-MS analysis of culture supernatant (Fig. 3). However, no
metabolites with m/z values corresponding to acyclic preze-
amines were observed.
Post-assembly processing of the prezeamine precursors

Deletion of zmn22, which encodes a predicted acylpeptide
hydrolase, abolished production of 2 and 3, and increased the
quantities of 4 and 5 in the culture supernatant relative to the
wild type. Zeamine II (1), the metabolic product of Zmn10–14,
was also still produced by the zmn22mutant (Fig. 3, S6†). This is
consistent with the involvement of Zmn22 in the conversion of
prezeamine (I) to zeamine (I). Although 4 and 5 are over-
produced in the zmn22 mutant, a decrease in halo size was
observed in the plate bioassay. To better evaluate the relative
antibacterial activities, minimal inhibitory concentrations
(MIC) were determined for the different zeamine components
puried from S. plymuthica RVH1 (Table 1). These experiments
demonstrated that the prezeamines are more effective at
inhibiting bacterial growth than zeamine II but have a reduced
antimicrobial activity compared to the processed zeamines. The
cyclic peptide byproduct resulting from prezeamine processing
was not detected in cells or culture supernatant from wild type
S. plymuthica RVH1. Thus, it remains unclear if this moiety
possesses any biological activity.

Several products of nonribosomal peptide/polyketide
biosynthetic machinery are known to be assembled via inactive
precursors that require post-assembly activation to become
biologically active. A well-studied example is the biosynthesis of
xenocoumacin,30 in which XcnG, a membrane-anchored peri-
plasmic peptidase, specically cleaves off an N-terminal acyl-
ated D-asparagine moiety from the prexenocoumacins upon
export to produce bioactive xenocoumacin 1. XcnG homolog
ClbP similarly activates precolibactin31 and the same mecha-
nism is proposed to be involved in zwittermycin biosynthesis.32
Chem. Sci., 2015, 6, 923–929 | 927
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Fig. 6 Overview of key 2-D NMR correlations observed for prezeamine (4). Spin systems observed in the 2-D hetero-TOCSY spectrum are
depicted as bold lines. Arrows indicate the 1H to quaternary 13C correlations observed in the 2-D HMBC spectrum.

Table 1 Activity of purified components of the zeamine complex
against Escherichia coli MG1655 and Staphylococcus aureus
ATCC27661

Compounds

Minimal inhibitory
concentration (mg l�1)

S. aureus
ATCC27661

E. coli
MG1655

zeamine II (1) 32 64
zeamine (2), zeamine I (3)a 4 8
prezeamine (4)a, prezeamine I (5) 16 32

a Puried mixtures of inseparable metabolites were used to analyse the
MIC.
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However, the prezeamine processing mechanism deviates from
these other systems. In contrast to XcnG and homologs, no
periplasmic signal sequence is present in Zmn22, indicating
that peptide cleavage takes place in the cytoplasm. Further-
more, prezeamines are easily detected in supernatants from
wild type cultures. This implies that only partial cleavage of
prezeamines to zeamines occurs in the cytoplasm and that the
prezeamines are exported along with the zeamines as compo-
nents of a bioactive complex. Interestingly, the gene cluster that
directs the biosynthesis of the closely-related fabclavines in
Xenorhabdus does not contain a zmn22 homolog and thus only
uncleavedmetabolites are produced.23 This raises the intriguing
question of why a partial pro-peptide cleavage mechanism is
operative in the biosynthesis of zeamines by S. plymuthica
RVH1.
Conclusions

In summary, we provide evidence for an unprecedented inter-
action between NRPS, PKS and PUFA synthase-like multien-
zymes in the biosynthesis of the zeamine antibiotics, an
unusual class of polyamine–polyketide–nonribosomal peptide
natural products. Using a combination of in vitro biochemical
assays, feeding studies and in-frame deletion of biosynthetic
genes, the functional roles of most of the enzymes involved in
the assembly of the zeamines were experimentally elucidated
928 | Chem. Sci., 2015, 6, 923–929
and insight was obtained into atypical chain release mecha-
nisms from type I PKS and PUFA synthase-like multienzymes.
The prezeamines, novel members of the zeamine antibiotic
complex containing an N-terminal pentapeptide, were struc-
turally elucidated and implicated as precursors to zeamine and
zeamine I, which appear to arise from post-assembly proteolytic
processing. This raises intriguing questions regarding the
precise biological function of the partial proteolytic processing
of the prezeamines in S. plymuthica RVH1.

The zeamine biosynthetic pathway illustrates the remarkable
level of functional hybridization that can occur between
different biosynthetic systems and is a testament of Nature's
biosynthetic ingenuity for generating novel natural products
with a high degree of structural diversity. This unusual
biosynthetic machinery may therefore prove to be a valuable
contribution to the synthetic biology toolbox for combinatorial
biosynthesis and rational bioengineering to produce novel
bioactive compounds. A major focus of future work will be the
mechanism of action underlying the broad spectrum of anti-
bacterial activity exhibited by the zeamines.
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