RSC Advances

CORRECTION

View Article Online
View Journal | View Issue

Cite this: RSC Adv., 2015, 5, 64300

Correction: Highly selective aluminium-catalysed intramolecular Prins reaction for L-menthol synthesis

H. Itoh, ^{ab} H. Maeda, ^a S. Yamada, ^a Y. Hori, ^{*a} T. Mino ^{*b} and Masami Sakamoto ^b

DOI: 10.1039/c5ra90068a

www.rsc.org/advances

Correction for 'Highly selective aluminium-catalysed intramolecular Prins reaction for L-menthol synthesis' by H. Itoh et al., RSC Adv., 2014, 4, 61619–61623.

The authors regret that, due to mistakes in the analysis of NMR data, incorrect structures were presented in Table 2 of the original manuscript for the cyclization products **14**, **16** and **18**. The correct structures are given in the amended version of Table 2, which is shown below.

Table 2 The Prins reaction of a variety of substrates with ACPP (4b)

Entry	Time (h)	Substrate	Product	Yield (%)	Diastereo-selectivity ratio ^a
1 ^b	19	7	8 (trans)	29 ^a	trans/cis = 81/19
2	1	сно (±)-1	ОН	92	(\pm) -2a/ (\pm) -2b, 2c, 2d = 98.9/1.1
3	4	сно	(±)-2a OH	89	<i>trans/cis</i> = >99/<1

aTaksasago International Corporation 4-11, Nishi-Yawata 1-Chome, Hiratsuka City, Kanagawa 254-0073, Japan. E-mail: yoji_hori@takasago.com

^bDepartment of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan. E-mail: tmino@faculty.chiba-u.jp

Table 2 (Contd.)

			R_4			
Entry	Time (h)	Substrate	Product	Yield (%)	Diastereo-selectivity ratio ^a	
4^b	19	сно	ОН 12	94	trans/cis = >99/<1	
5	4	сно 13	OH 14 (1α,2β,5β) OH (1α,2β,5α)	85 ^a	$1\alpha,\!2\beta,\!5\beta/1\alpha,\!2\beta,\!5\alpha=78/22$	
6	4	пВи сно 15	nBu, OH 16 (1α,2β,5β) n Bu OH (1α,2β,5α)	90	$1\alpha,2\beta,5\beta/1\alpha,2\beta,5\alpha=87/13$	
7 ^c	4	Ph_CHO	Ph. OH 18 $(1\alpha,2\beta,5\beta)$ Ph. OH $(1\alpha,2\beta,5\alpha)$	74	$1\alpha,\!2\beta,\!5\beta/1\alpha,\!2\beta,\!5\alpha=62/38$	
8	19	19 CHO	HO	Trace		
9	19	СНО 21	20 HO 22	Trace		

 $[^]a$ Determined by gas chromatography (GC) analysis. b Et₃Al (20 mol%) and 5b (62 mol%) were used. c Et₃Al (10 mol%) and 5b (31 mol%) were used.

The Supplementary Information for the original article has been updated to show the correct structures. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.