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osition products by gas
chromatography-mass spectrometry and ion
chromatography-electrospray ionization-mass
spectrometry in thermally decomposed lithium
hexafluorophosphate-based lithium ion battery
electrolytes

Vadim Kraft, Waldemar Weber, Martin Grützke, Martin Winter and Sascha Nowak*

In this work, the thermal decomposition of a lithium ion battery electrolyte (1 M LiPF6 in ethylene carbonate/

ethyl methyl carbonate, 50/50 wt%) with a focus on the formation of organophosphates was systematically

studied. The quantification of non-ionic dimethyl fluorophosphate and diethyl fluorophosphate was

performed with synthesized standards by gas chromatography-mass spectrometry. Due to absence of

commercially available or synthesized standards for the monitoring of ionic methyl fluorophosphate,

ethyl fluorophosphate and ethylene phosphate a method working with ion chromatography-electrospray

ionization-mass spectrometry was developed, where dibutyl phosphate was used as an internal standard.

In addition, an ion chromatography conductivity detection method with short analysis time for

simultaneous determination and quantification of F�, PF6
� and BF4

� was developed. The formation and

degradation of analytes was studied to show the dependence of different temperatures, electrolyte

volumes and separator materials. The thermal aging experiments were carried out in gas-tight aluminum

vials at 80 �C for three weeks. After the storage time, the samples were diluted with the appropriate

analysis solvents and investigated with gas chromatography-mass spectrometry, ion chromatography

and ion chromatography-electrospray ionization-mass spectrometry. Finally, the thermal degradation of

the electrolyte at 85 �C after five days in aluminum and glass vials was studied.
1 Introduction

The investigation of the chemical and electrochemical aging
occurring in lithium ion batteries (LIBs) is a central point for the
further development of novel and improved battery materials
and battery cells as aging is inuencing cycling stability, power
fading and safety.1 This includes, inter alia, the analysis of the
electrolyte decomposition products formed by aging processes.
Currently, the electrolytes based on LiPF6 dissolved in organic
carbonates are the most established in industry.2,3 Despite the
advantages of LiPF6 like high solubility in the organic carbonate
solvents,4 high electrochemical stability,5 excellent solid elec-
trolyte interphase (SEI) formation properties6 and aluminum
current collector protection,7,8 this conducting salt is unfortu-
nately also known for its low chemical and thermal instability in
organic carbonates.5–8 The thermal decomposition was in focus
of many research groups and is still an ongoing issue of debate.
h Center, Institute of Physical Chemistry,
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By application of different analysis techniques numerous aging
products were identied, including HF,9–13 inorganic or organic
phosphates (OPs),11,14–18,41 CO2,15,19,20 dicarboxylates,42,43 diols40

and alkyl uorides.12,15,19,41,45 The negative impact of HF on the
battery performance resulting from dissolution of manganese
in LiMnO2 (ref. 21) or LiNi1/3Co1/3Mn1/3O2 (ref. 22) cathodes or
the deterioration of the SEI on the anode23 was proven. Other
decomposition products like organic uorophosphates are
critical due to their high toxicity.15 Dimethyl uorophosphate
(DMFP) and diethyl uorophosphate (DEFP) were frequently
detected by several groups.12,15,17,18Due to presence of uoride in
their structure, which is a good leaving group, both compounds
are effective nerve agents and have similar toxicity to diiso-
propyl uorophosphate,24 which is used as sarin imitator.25,26

With few exceptions, the previous analysis of thermal decom-
position products was performed non-quantitatively. The quanti-
cation experiments were focused on the monitoring of HF
formation measured with spectroscopic ellipsometry9,10 or by
titration.12 In previousworks, we applied gas chromatography-mass
spectrometry (GC-MS) and two dimensional-ion chromatography-
mass spectrometry (IC/IC-ESI-MS)44 for identication of non-ionic
This journal is © The Royal Society of Chemistry 2015
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and ionic OPs generated at elevated temperatures. The aging was
performed at 95 �C with the aim to produce various analytes
establishing a comprehensive picture of the decomposition
mechanism. Furthermore, the quantication of DMFP and DEFP
aer 48 h aging time could be accomplished with GC-MS. The
quantication of ionic OPs was not possible due to the absence of
commercially available or synthesized analytical standards, but a
method for the monitoring of the concentration change was
developed. In the present work, we apply a GC-MS method devel-
oped by us with focus on quantication of DMFP and DEFP to the
systematical study of the thermal decomposition at different
temperatures and using various electrolyte volumes. In addition,
the inuence of different separator and storage materials on aging
is studied. Ion chromatography-electrospray ionization-mass
spectrometry (IC-ESI-MS) is chosen as a supporting method, in
which instead of an absolute quantication, the aging ismonitored
relative to DBP as an internal standard (IS). In addition, IC with
conductivity detection is applied to monitor PF6

� and other inor-
ganic decomposition products.

In most published reports about thermal decomposition of
electrolytes nuclear magnetic resonance spectroscopy (NMR)
glass tubes were used.14,15,27–29 As shown by Handel et al.,
compared to polymeric materials, glass accelerates the degra-
dation.12 It was proposed, that SiO2 undergoes a reaction with
HF resulting in the production of water, which in turn leads to
more LiPF6 degradation. The electrolyte storage container for
our previous experiments and present work is made from
aluminum. Although reactions similar to the reaction with glass
may be expected from Al, as the surface aluminum oxide can be
attacked by HF30 leading to increased concentration of decom-
position products, a study of thermal electrolyte aging in the
presence of aluminum is for several reasons of high interest.
Aluminum is the essential part of a lithium ion battery as
current collector for cathodes8 and it is a promising material for
some battery parts, for instance the cell cans. As shown by Chen
et al., aluminum coated cans have much higher resistance vs.
oxidation at high voltages compared to stainless positive cans,
which reects in a dramatically improved initial coulombic
efficiency.31 Furthermore, the coating of LiNi0.05Co0.15Mn0.4O2

with Al2O3 enhances the battery performance32 and Al2O3 coated
separators have increased thermal stability, which is especially
important for applications in electric vehicles.33 Finally, the
electrolytes studied in our work, are commercially available in
aluminum bottles. For all these reasons, the aging behavior in
aluminum and glass vials was studied and compared.

Herein, we present a basic and reliable method for system-
atical investigations of OPs generated in LiPF6-based LIB elec-
trolytes at 80–85 �C. Besides the toxicological aspects of the OPs,
it can be additionally applied for monitoring the thermal aging
degree of the electrolyte.

2 Experimental part
2.1 Chemicals and materials

A battery grade SelectiLyte™ electrolyte LP50 was purchased
from BASF (Ludwigshafen, Germany). The electrolyte consists of
1 M LiPF6 dissolved in ethylene carbonate/ethyl methyl
This journal is © The Royal Society of Chemistry 2015
carbonate (EC/EMC, 50/50 wt%). Deionized water for the prep-
aration of IC eluents, of standard solutions and for dilution of
analytes was produced with a Milli-Q water system using a
LC-PAK cartridge (Bedford, USA). Sodium carbonate (Certipur)
and sodium bicarbonate (for analysis) for IC measurements
were purchased fromMerck (Darmstadt, Germany). Acetonitrile
(ACN) (HPLC gradient grade) was ordered from VWR (Bruchsal,
Germany). Dibutyl phosphate (DBP) (97.0% purity) was ordered
from Sigma-Aldrich (Steinheim, Germany). The GC equipment
was run with helium (purity 6.0) as the carrier gas (Westfalen
Gas, Germany). Dichloromethane (DCM) (HiPerSolv) was
purchased from Merck (Darmstadt, Germany). The uoride
standard solution (1000 ppm) (TraceCERT®) was purchased
from Sigma-Aldrich (Steinheim, Germany). LiPF6 (battery grade)
and LiBF4 were ordered from BASF (Ludwigshafen, Germany).
For the thermal aging experiments 10 mL aluminum vials with
butyl/polytetrauoroethylene (PTFE) screw caps from Leicht &
Appel GmbH (Bad Gandersheim, Germany) and 10 mL glass
vials with butyl/polytetrauoroethylene (PTFE) screw caps from
Macherey-Nagel (Düren, Germany) were used. The aging
experiments with materials were performed with lters based
on polyolen (FS 2226) of Freudenberg Vliesstoffe (Weinheim,
Germany) and glass ber (WhatmanTM GF/D) of GE Healthcare
Life Science (Little Chalfont, Great Britain).

2.2 Karl Fischer titration and aging of electrolytes

The water content in the electrolytes was measured with an 851
Titrando Karl Fisher Coulometer (Metrohm, Herisau, Switzer-
land). The instrument was controlled with the soware Tiamo 2.3
from the same company. The water content in electrolyte was
determined to 20.1 ppm. The LP50 electrolyte samples were stored
in gas-tight aluminum or glass vials at different temperatures.

2.3 GC-MS conditions, sample preparation and
quantication of analytes

GC MS experiments were done on a Shimadzu GC-MS-QP2010
Ultra a Restek Rxi-5ms column (30 m � 0.25 mm � 0.25 mm).
The system was run with helium as the carrier gas with a
column ow of 1 mL min�1, a split of 1 : 100 and the following
column oven program were used: starting with 40 �C for 1 min,
the temperature was increased with a rate of 3 �Cmin�1 to 60 �C
and then with 30 �C min�1 to 210 �C, held for 1.0 min. An
electron impact (EI) ionization mode was used with a lament
voltage of 70 V and a detector voltage of 1.5 kV. For sample
preparation, 25 mL of a sample was added in a 1 mL poly-
propylene Safe-Lock tube, diluted in 1 mL dichloromethane and
centrifuged for 5 minutes at 8500 rpm to remove the solid LiPF6.
The centrifuged solution was transferred into a 1 mL GC glass
vials and measured by GC-MS. For quantication of DMPF and
DEPF an external ve-point calibration (R2 > 0.99) with synthe-
sized standards (purity > 99%) in a range of 1 to 50 ppm was
used. Each standard solution and sample was measured three
times. The mass fragmentm/z 98 was used for the calibration of
DMFP and m/z 113 for DEFP. The limits of detection (LOD) and
limits of quantication (LOQ) were calculated according to DIN
32645: DMPF (1.0 ppm, 2.0 ppm), DEPF (1.2 ppm, 2.3 ppm).
RSC Adv., 2015, 5, 80150–80157 | 80151
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Fig. 1 GC-MS chromatogram (SIMmode) of the LP50 electrolyte after
storage for 21 days in a 10 mL aluminum vial at 80 �C.
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2.4 IC and IC-ESI-MS conditions, sample preparation and
quantication of analytes

All ion chromatographic investigations were carried out with 850
Professional IC instruments of Metrohm with a chemical
suppression and conductivity detection (Herisau, Switzerland).
The samples were injected with an 889 IC sample center. The IC
systems were controlled with the soware MagIC Net 3.0 (Met-
rohm, Herisau, Switzerland). The injection volume for all IC
measurements was 10 mL. For sample preparation, 10 mL were
diluted in 1 mL water. The quantication of PF6

�, BF4
� and F�

was performed with an aqueous solution of 2.3/2.2 mM Na2CO3/
NaHCO3 and 25% ACN isocratically. The separation was carried
out on a Metrosep A Supp 4-250/4.0 column using a guard
columnMetrosep A Supp 4/5 Guard/4.0 with a ow of 1mLmin�1

and a column oven temperature of 40 �C. For quantication of
BF4

� and F� an external seven-point calibration (R2 > 0.99) with
prepared or commercially available stock solutions in a range of
0.1 to 25 ppm (BF4

� and F�) or 0.01 to 2.5 mM were used. Each
standard solution and sample was measured twice. For the
study of ionic organophosphates an aqueous solution of 4.5/4.3
mM Na2CO3/NaHCO3 and a gradient step with ACN were
applied. The percentage of acetonitrile was changed as follows:
0 min, 25%; 9 min, 25%; 12 min, 45%; 20 min, 45%; 21 min,
25%; 30 min, 25%. The analysis was carried out on Metrosep A
Supp 7-250/4.0 and a guard columnMetrosep A Supp 4/5 Guard/
4.0 with a ow of 0.7 mL min�1 and a column oven temperature
of 40 �C. The mass spectrometric measurements were per-
formed using a triple quadrupole/linear ion trap instrument
3200 LC/MS/MS (AB Sciex, Framingham, USA). The ESI-MS
instrument was controlled with the soware Analyst 1.5.2
from the same producer. The applied ion spray voltage was
�4250 V. The curtain, nebulizer and dry gas were applied with
30, 35 and 40 psi, respectively. The measurements were per-
formed with the declustering potential of 25 V and the entrance
potential of �10 V. The source was heated to 450 �C. The
experiments were performed in a multiple monitoring mode
(MRM) with a collision energy of �30 eV. For sample prepara-
tion, 10 mL of a real sample were diluted in 1mL ACN and spiked
with 5 mL of the DBP solution (1000 vppm). For the measure-
ments the parent ions of three OPs with the fragment m/z 79
were chosen. The m/z ratios of parent ions were as followed:
methyl uorophosphate (MFP) 113.0, ethyl uorophosphate
(EFP) 127.0, ethylene phosphate (EP) 123.0. LOD and LOQ were
calculated according to DIN 32645: PF6

� (9.8 ppm, 29.7 ppm),
BF4

� (0.8 ppm, 2.4 ppm), F� (0.1 ppm, 0.3 ppm). All sample
preparations were carried out in a dry room (max. 20 ppm H2O).
Fig. 2 IC-ESI-MS chromatogram (MRMmode) of the LP50 electrolyte
after storage in a 10 mL aluminum vial at 80 �C for 21 days.
3 Results
3.1 Determination and quantication of thermal
decomposition products by GC-MS, IC and IC-ESI-MS

Fig. 1 shows a typical GC-MS chromatogram in a selective ion
monitoring (SIM) mode of the LP50 electrolyte aer storage at
80 �C for 21 days. DMFP, ethyl methyl uorophosphate (EMFP)
and DEFP are detected at the retention times of 4.2, 6.0 and
8.4 min, respectively. In addition, the retention times for
80152 | RSC Adv., 2015, 5, 80150–80157
trimethyl phosphate (TMP) (tR 9.5 min, m/z 110) and triethyl
phosphate (TEP) (tR 11.5 min, m/z 155) were identied using
commercially available standards. The reliable identication of
organophosphates by the retention time and elucidation of
fragmentation pattern using a GC-MS was performed according
to Weber et al.18 The work describes the detection of trialkyl
phosphates, but only in strongly aged electrolytes. Since the
concentration of all trialkyl phosphates was below the limit of
detection during our study, the focus was on DMFP and DEFP.

To support the GC-MS results, we applied additional IC-ESI-
MS measurements. A different fraction of decomposition
products constitutes the ionic phosphates, which structure was
elucidated by MS/MS experiments aer thermal aging at 95 �C.16

To investigate the aging processes in details, three target ionic
phosphates have been chosen: methyl uorophosphate (MFP,
m/z 113), ethyl uorophosphate (EFP, m/z 127) and ethylene
phosphate (EP, m/z 123), which are present in the spectra of
thermally degraded electrolytes with sufficient intensity. Since
standards for the ionic OPs are not commercially available, a
method for monitoring the concentration change was devel-
oped. Instead of an absolute quantication, a relative
This journal is © The Royal Society of Chemistry 2015
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Fig. 3 IC/conductivity chromatogram of the LP50 electrolyte after
storage in a 10 mL aluminum vial at 80 �C for 21 days.
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quantication has been carried out using the constant
concentration of IS in the investigated samples. The organic
phosphate DBP is an appropriate candidate as IS. It is
commercially available and has advantageously a similar
retention time compared to the studied analytes. The signal
ratio of the analyzed peak areas (analyte/IS) is calculated and
applied as an independent value for the comparison of the
different samples. In addition, to increase the sensitivity and
specicity of the ESI-MS detection, the measurements were
performed in the multiple reaction modus (MRM) mode. Since
Fig. 4 Analysis of OP formation by GC-MS (top) and IC-ESI-MS
(bottom) in dependence on the used electrolyte volume performed in
10 mL aluminum vials after aging at 80 �C for 21 days.

This journal is © The Royal Society of Chemistry 2015
PO3
� has been identied as the characteristic fragment of all

OPs,16 m/z 79 was chosen for reliable determination of the
analytes. The same mass fragment is obtained from DBP in the
MS/MS experiment. An additional parameter to increase the
sensitivity of the ESI-MS method is a high content of organic co-
solvents like methanol or ACN in the eluent.34 Therefore, the IC
method was further developed with a high eluent content of
ACN (25% in a period of 0–9 min) on a high capacity A Supp 7
column. The IC-ESI-MS chromatogram is presented in Fig. 2.
The retention times under these conditions are: EP (8.5 min),
MFP (10.4 min), EFP (10.9 min), DBP (12.6 min). Despite the
application of a high capacity separation column, the analytes
still have a high co-elution degree.

Additional to the ESI-MS detection, conductivity measure-
ments have been carried out simultaneously. The correspond-
ing chromatogram is shown in Fig. 3. The comparison of the
retention times of the detected OPs with the retention time of
uoride indicates that at least EP co-elutes with F�, compli-
cating the quantication of uoride content by conductivity.
Beside EP, numerous other OPs have a high co-elution degree
with uoride.16 Nevertheless, the uoride content was investi-
gated aer the aging experiments and will be discussed below.

3.2 Inuence of the electrolyte volume and the temperature
on the formation of organophosphates

Commercially available aluminum vials were chosen as a stan-
dard electrolyte sample container. The general aim was to nd
suitable experimental conditions for the analysis of longer
Fig. 5 Analysis of OP formation by GC-MS (top) and IC-ESI-MS
(bottom) in dependence on the applied temperature performed in
10 mL aluminum vials after aging at 80 �C for 21 days.

RSC Adv., 2015, 5, 80150–80157 | 80153
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Fig. 6 Quantitative analysis of fluoride formation in dependence on the electrolyte volume (left) or on the applied temperatures (right) per-
formed in 10 mL aluminum vials after aging at 80 �C for 21 days.
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samples series (e.g. overnight experiments). To investigate the
inuence on the degradation formation due to different sample
volumes in the storage vials, an experiment with ten LP50
samples ranging from 1 to 10 mL was carried out. The results
obtained by GC-MS and IC-ESI-MS measurements are shown in
Fig. 4. The volume of the headspace phase correlates with the
concentration (GC-MS) or concentration change (IC-ESI-MS) of
the formed OPs. Since the occurring PF5 is a very reactive
compound, its further chemical degradation can take place in
the solvent as well in the gas phase. Therefore, the highest
degradation degree is observed when using 1 to 5 mL
electrolyte.

An additional important aspect is the inuence of the
temperature on the electrolyte aging. In Fig. 5 a clear depen-
dence on the applied temperature is observable. As shown, the
temperatures of 20 �C and 40 �C generate only very low amounts
of degradation products. In contrast to the GC-MS results, a
change in the concentration can be detected by IC for all
temperatures. At 80 �C the highest amount of OPs is generated,
however, the relative standard deviation for DEFP and EFP is
also higher under these thermal conditions. It can be
concluded, that 60–80 �C temperature range is themost suitable
for a comprehensive aging study.

In addition, the formation of uoride for the same samples
was studied. The calculated content of F� is shown in Fig. 6. The
obtained results for the F� concentration are in very good
Fig. 7 Quantitative analysis of PF6
� degradation in dependence on the e

10 mL aluminum vials after aging at 80 �C for 21 days.

80154 | RSC Adv., 2015, 5, 80150–80157
agreement to the results for the detection of non-ionic and ionic
OPs. Therefore, it is possible to investigate the aging of the
electrolytes by only monitoring the uoride formation. Never-
theless, it is important to remark, that the F� peak in IC chro-
matograms co-elutes with ionic organophosphates as
mentioned above. For the investigated samples, the content of
ionic organophosphates is very low, thus their inuence on the
F� content can be neglected (the differences between the indi-
vidual compounds are in the same magnitude as the deter-
mined standard deviation). For samples with a high
degradation degree it is possible, that the calculated F� content
has a positive bias due to the presence of co-eluted compounds
and alternative methods like the determination with a uoride
selective electrode have to be applied to validate the obtained
uoride values.

A different theoretically suitable analyte for monitoring the
thermal aging by conductivity is the PF6

� anion. Although the
LiPF6 salt is highly hygroscopic, the degradation process is
inhibited by adding high amounts of water as analysis solvent.35

Therefore, battery grade LiPF6 was dissolved in water and used
as stock solution for the quantication of PF6

�. In Fig. 7 the
calculated concentrations of PF6

� aer 21 days aging time at
80 �C are shown. During the experiment with different electro-
lyte volumes only very low changes of the concentration were
observed. The experiment at different temperatures correlates
with the previously quantied OPs and uoride content in
lectrolyte volume (left) or the applied temperatures (right) performed in

This journal is © The Royal Society of Chemistry 2015
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Fig. 8 Analysis of theOPs formation byGC-MS (left) and IC-ESI-MS (right) in dependence on the applied temperature performed in 10mL aluminum
vials after 21 days of aging at 80 �C. (The values for GC-MS of LP50 + glass fiber separator are divided because of better clarity by factor 10.)

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Se

pt
em

be
r 

20
15

. D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 1
:4

2:
02

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
dependence of the temperature. At 20 �C no degradation of PF6
�

takes place, while at elevated temperatures a low decrease of its
concentration can be observed. Nevertheless, the observed
differences are small and comparable to the determined stan-
dard deviation.
3.3 Inuence of the separator materials and the storage
container materials on the thermal aging

To study the inuence of two materials, which are frequently as
separators in publications,8,36–38 on the thermal decomposition
of the LP50 electrolyte, the polyolen and glass ber lters were
placed in 1 mL electrolyte. With both methods, GC-MS and
IC-ESI-MS no concentration change of the OPs in the case of the
polyolen material could be obtained (Fig. 8), which is
explainable with the thermal and chemical inertness of the
polyolen ber. In comparison, the presence of a glass ber
material induces strong decomposition of the electrolyte, which
reects in a massive formation of OPs. Because of this massive
formation, the uoride content could not reliably quantied. In
addition, it was found that the concentration of PF6

� decreased
from 1.02 M to 0.70 M. It was stated by Handel et al., that the
accelerated thermal degradation bases on the progressive
production of water, which originates from the reaction of the
Fig. 9 Analysis of OPs formation by GC-MS (left) and IC-ESI-MS (right) in
of glass vials after aging at 85 �C for 5 days. (The values for GC-MS of the
clarity by factor 10.)

This journal is © The Royal Society of Chemistry 2015
LiPF6 hydrolysis product HF with SiO2.12 Since the glass ber
material contains supposedly boron oxide, it can be concluded
that boron oxide reacts with HF in a similar way as SiO2,
resulting in BF4

� formation. The presence of BF4
� was veried

by ESI-MS measurements, whereas both boron isotope signals
with m/z 86 and 87 (for 10BF4 and 11BF4) were detected.
Furthermore, a LiBF4 standard was used for the nal
assignment.

The thermal aging studies described in literature were per-
formed so far in glass material such as NMR tubes at 85 �C.15,28,39

In order to repeat and review the experiments, we investigated
the formation of OPs in aluminum vials compared to glass vials
at the same temperature and analyzed the generated OPs by
GC-MS and IC-ESI-MS (Fig. 9). Similar to the experiment with
the glass ber lter, the glass based storage container causes
strong formation of the OPs due to the described above reaction
of SiO2. Furthermore, the content of PF6

� is decreased signi-
cantly (from 1.02 M to 0.43 M). The extent of decomposition in
aluminum vials is much smaller (from 1.02 M to 0.98 M); the
decomposition products remain in the order of the calculated
standard deviation. Quantication of uoride could not be
carried out due to the high content on OPs disturbing F�

analysis (see Fig. 10). This chromatogram also perfectly
dependence on the applied temperature performed in 10mL aluminum
electrolyte samples stored in glass vials are divided because of better
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Fig. 10 IC/conductivity chromatogram of the LP50 electrolyte after
storage in a glass 10 mL vial at 85 �C for 5 days.
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demonstrates the difficulties of F� detection and quantication
in presence of high content of OPs. In the samples in contact
with glass, BF4

� was detected and quantied (0.32 wt%).
In literature, the formation of BF4

� from lithium bis(oxalato)
borate (LiBOB) or lithium diuoro(oxalato)borate (LiDFOB) has
been reported aer an aging experiment of a LiPF6-based elec-
trolyte at 85 �C.28,39 No information about the chemical nature of
the NMR tubes used for this thermal aging experiment was
available. We suspect, by the identication and quantication
of BF4

� reported in this work, that boron oxide containing
materials, like SiO2 based containers, are not appropriate
storage systems for LiPF6 based battery electrolytes.

4 Conclusions

A basic and reliable method working with GC-MS and IC-ESI-MS
for monitoring of the thermal aging of a LP50 electrolyte was
developed. The change in the concentration of the electrolyte
degradation products aer storage (i) at different temperatures,
(ii) at different volume sizes and (iii) in contact with various
materials and electrolyte container materials was investigated.
Systematic variation of these parameters leads to a controlled
formation of organophosphates, which serve as characteristic
thermal decomposition products of the LiPF6/organic
carbonate system. We propose that the aging degree of the
electrolyte can be determined with a good reproducibility by low
sample volume (1 mL in 10 mL vials) at 60–80 �C and aer two-
three weeks. The investigation was performed on one electrolyte
composition but can be extrapolated to other LiPF6-based
electrolytes containing organic carbonates. Finally, it was
shown that a Whatman glass ber separator placed in the
electrolyte as well as glass storage vials accelerate the aging of
the electrolyte at 80–85 �C dramatically, which reects in a high
concentration of organophosphates and a strong degradation of
PF6

�. In addition, BF4
� as a product of the reaction of HF with

boron oxide (as component of the glass) was determined and
quantied in these samples.
80156 | RSC Adv., 2015, 5, 80150–80157
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45 M. Grützke, S. Krüger, V. Kra, B. Vortmann, S. Rothermel,
M. Winter and S. Nowak, ChemSusChem, 2015, DOI:
10.1002/cssc.201500920.
RSC Adv., 2015, 5, 80150–80157 | 80157

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5ra16679a

	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes
	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes
	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes
	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes
	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes
	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes
	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes

	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes
	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes
	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes
	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes

	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes
	Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes


