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Introduction

Furans belong to a unique class of five membered aromatic
oxygen heterocycles which constitute the core structure of
numerous natural products, drugs and other bioactive mole-
cules." The diverse biological properties exhibited by furan
containing compounds are well-documented in the literature.>
The wide applicability of furans as valuable synthons in multi-
step reactions, including total synthesis, is well-recognized.?
Among the several methods reported for the synthesis
of furans,® Paal-Knorr synthesis (from 1,4-dicarbonyl
compounds)® and Feist-Benary synthesis (typically from a-hal-
oketones and B-dicarbonyl compounds)® are the prominent
ones. Many highly efficient transition metal catalyzed cyclo-
isomerization strategies have emerged in recent years.”
Despite the availability of numerous methods, development
of novel and efficient diversity oriented approaches for the
synthesis of functionalized and fused furans would be very
valuable both from synthetic and biological perspectives. As
part of the studies on the Morita-Baylis-Hillman (MBH)? and
Rauhut-Currier (RC)° reactions of nitroalkenes and the appli-
cations of the products,’** we and others have utilized the
MBH acetates of nitroalkenes 1 (LG = OAc) for the synthesis of
several carbocycles' and heterocycles.”** The methodology
involves a cascade Sy2’ reaction of a binucleophile with MBH
acetate 1 followed by an intramolecular Michael addition taking
advantage of the 1,2 or 1,3-bi-electrophilic character of 1 as
outlined in Scheme 1a. We and Chen et al. have reported the
synthesis of furans via base mediated addition of 1,3-dicarbonyl
compounds and arenols to the 1,2-bielectrophilic MBH acetates
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Hillman and Rauhut-Currier adducts of nitroalkenes with active methylene compounds. The reactions
Michael
substitution take place in a regioselective manner to afford synthetically and biologically useful furans in

addition or Michael addition-intra-molecular nucleophilic

1 (Scheme 1b).** Herein we report the role of o-nitro-
acetophenone 4 as the bi-nucleophile towards the MBH acetates
1 resulting in synthetically and biologically useful highly
substituted nitrofurans 5 as single regioisomers (Scheme 1c).
The vinylogous MBH (Rauhut-Currier, RC) reaction of nitro-
alkenes™ and its applications for the synthesis of novel carbo-
cyclic and heterocyclic scaffolds have also been of interest to us.
We and others have employed RC adducts of nitroalkenes for
the synthesis of functionalized pyrazoles,'® decalins,' cyclo-
alkanones,"” spirocycles™ and bridged heterobicyclics such as
epibatidine.” The reactivity profile of a representative RC

Nu Nu') Nu
- NO, N NO, = NO,
a) | ‘\4— — |
R " 12 R! \Li 13 R ’_\
1 I
Nu~
R'=EWG Bielectrophile

(o}
n

o
i"(’: R
NO ™
b) —_— E o) .
3

DABCO, THF or -
AcO” E ;
© Cs,COs, CHyCN

Previous work

n = 6-membered
or open chain

E = CO,Et

R
R/\tENoz Ar)k/N% ) NO,
4 |
KEWES T T E 0T N
¢ [Fresemiwend :
E = CO,Et
Scheme 1

This journal is © The Royal Society of Chemistry 2015


http://crossmark.crossref.org/dialog/?doi=10.1039/c5ra11471c&domain=pdf&date_stamp=2015-08-15
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5ra11471c
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA005086

Open Access Article. Published on 10 August 2015. Downloaded on 1/19/2026 3:49:17 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Nu- Nu-

’ ) NO ’ ) NO
R NO, R 2 R 2

R
E+
a) _j 4’\
o o ¢
6

Dienophile/ Electrophile”

Nucleophile

Bielectrophile

pyrrolidine (40 mol%)
—_—

Dipolarophile
p-methoxybenzoic
acid (20 mol%), RT

NO
R 2 e
0 + é

o

DABCO

EtOH, 80 oC

Previous work

o
Ph
Base, Solvent 7\ R
Reflux O R
Present work 12

Scheme 2

adduct 6, derived from the imidazole/LiCl mediated RC reaction
of nitroalkene with MVK, is outlined in Scheme 2a. Recently, we
have reported a highly diastereoselective Michael initiated
intramolecular aldol reaction involving compound 6 and
cyclohexanone 7 for the synthesis of highly substituted trans-
decalins 8 (Scheme 2b)."* The compound 6 reacts as a
1,4-electrophile-nucleophile in this case. Chen et al. have
reported the formation of spirocyclic compound 10 upon
addition of indane-1,3-dione 9 to compound 6 in which
compound 6 reacted as a 1,5-bielectrophile.”® Surprisingly,
when a 1,3-cyclohexanedione such as 11 (R = Me, dimedone) is
added to compound 6, a new reactivity profile emerges in which
compound 6 reacts as a 1,2-bielectrophile without the partici-
pation of the ketoalkyl moiety to provide fused furans 12, the
results of which are also reported here.

Results and discussion

Initially, acetate 1a and nitroketone 4 were selected as model
substrates for our optimization studies for the synthesis of
nitrofurans 5a (Table 1). In the presence of 1 equiv. of DABCO,
at room temperature, in dichloromethane as solvent, we iso-
lated furan 5a in low yield (17%, entry 1). The increase in the
amount of base to 2 equiv. rendered the product 5a in improved
yield (36%) and in lower reaction time (18 h, entry 2). Further
improvement in the yield to 45% and decrease in reaction time
to 12 h were observed when the solvent was changed to THF
(entry 3). The reaction in the presence of a non-polar solvent
such as toluene also resulted in low product yield (24%, entry 4).
Next, we screened Et;N in THF which afforded the product only
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in low yield (22%, entry 5). However, the yield improved to 40%
when the solvent was changed to dichloromethane (entry 6). In
the same solvent (dichloromethane), various other organic
amine bases such as diisopropylamine, Hiinig's base, DMAP
and DBU either provided lower yields or complex reaction
mixtures (entries 7-10). The reaction in the presence of inor-
ganic bases such as K,CO; and Cs,COj3 also resulted in complex
reaction mixtures (entries 11-13). Finally, the effect of temper-
ature in the DABCO mediated reaction was investigated by
carrying out the reaction in THF at elevated temperatures (45 °C
and 65 °C, entries 14-15). Although the reaction rate improved,
the yield remained unaffected at 45 °C (entries 3 and 14). At
65 °C, appreciable drop in the yield to 25% with considerable
decomposition was observed (entry 15). Interestingly, the
weakest base among the above, DABCO (pK, 8.7), was best
suited for nitroacetophenone 4 (pK, 5.4), affording the product
5a in highest yield suggesting that slow generation of the eno-
late was desirable in our reaction.

After screening different conditions, we identified DABCO as
the best base and THF as the best solvent to afford the desired
product 5a. Thus, the above optimized conditions, viz. 2 equiv.
of DABCO, in THF, at room temperature (Table 1, entry 3), were
employed to explore the scope of the reaction between different
MBH acetates la-i and o-nitroacetophenone 4 (Table 2).
Besides compound 1a which provided the product 5a in 45%
yield (entry 1), MBH acetates bearing sterically and electroni-
cally diverse aryl groups 1b-i have been treated with compound
4 under our optimized conditions to afford tetrasubstituted

Table 1 Optimization studies®

O=N Ar
ArT N NO, o base (2 equiv) /
" Ph NO, solvent, RT Ph \
AcO CO,Et ’ o)
1a 4 sa GOt

Entry Base Solvent Time (h) % yield®
1 DABCO® DCM 26 17
2 DABCO DCM 18 36
3 DABCO THF 12 45
4 DABCO PhCH, 22 24
5 NEt, THF 20 22
6 NEt; DCM 22 40
7 iPr,NH DCM 18 16
8 iPr,EtN DCM 25 18
9 DMAP DCM 24 —4
10 DBU DCM 20 26
11 Cs,CO; DCM 22 S
12 Cs,CO; THF 24 —d
13 K,CO; DCM 28 —d
14¢ DABCO THF 9 44
15" DABCO THF 6 25

“ The reactlons were carried out with 0.3 mmol each of 1a and 4 in 4 mL
solvent. ? After sﬂlca gel column chromatography ¢1 equivalent of
DABCO was used. Complex mixture.  Reaction temperature 45 °C.
f Reaction temperature 65 °C.
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furans 5b-i (entries 2-9). These include MBH acetate bearing
parent phenyl group 1b, those bearing strongly electron
donating substituents 1c,d and weakly electron donating
substituent 1e, fused aromatic substituent 1f, weakly and
strongly electron withdrawing substituents 1g,h and a hetero-
aryl substituent 1i. Although no appreciable substituent effect
was discernible and the isolated yields of these nitrofurans
5 were consistently moderate (52-59%) in all the cases, the fact
that such furans with well-defined substitution pattern could be
easily synthesized from readily available compound 1 and
compound 5a made our approach very attractive.

The structure and regiochemistry of products 5a-i were
confirmed by detailed spectral analysis. A peak for ester group
at 1736-1740 cm ™' and two peaks for the nitro group at 1504-
1519 and 1350-1366 were characteristic in the IR spectra. The
protons of CH, group attached to furyl appeared, in general, as
singlets at 4 3.51-3.92 in "H NMR. However, these protons
appeared as AB spin systems in 5f and 5h which was attributable
to atropisomerism due to restricted rotation about the C-C bond
connecting the furyl moiety and the aryl group at position 3.
Surprisingly, such a pattern is not observed in the case of 5c.
The methylene carbon attached to furyl appeared at 6 32.8-34.0

n *C NMR. Finally, the regiochemistry was unambiguously
established from a medium NOE interaction observed between
the deshielded anisyl protons (meta to methoxy) and the
methylene protons attached furyl in 5a by 'H-'H NOESY
experiment.

The proposed mechanism for the formation of highly
substituted furans 5 is outlined in Scheme 3. DABCO mediated
nucleophilic addition of a-nitroketone 4 to acetate 1 followed by
elimination of acetate group in an overall Sy2’ fashion generates
intermediate III. A second enolization of the nitroketone moiety
in III, facilitated by DABCO, followed by an intramolecular oxa-
Michael addition in a 5-exo-trig fashion generates intermediate

Table 2 Scope of MBH-acetates 1¢

O,N
/I )k/ DABCO (2 equiv) Ar
THF RT ph—d/ |
COzEt o
4 5 Co,Et
Entry 1, Ar Time (h) 5 % yield”
1 1a, 4-OMeCgH, 12 5a 45
2 1b, CHs 13 5b 53
3 1c, 2,4-(OMe),CeH; 7 5¢ 57
4 1d, 3,4-(OCH,0)C4H; 8 5d 57
5 le, 4-MeCgH, 8 5e 56
6 1f, 1-naphthyl 7 5f 59
7 1g, 4-CIC¢H, 8 5g 54
8 1h, 2-NO,CgH, 7 5h 58
9 1i, 2-furyl 9 5i 52

“ The reactions were carried out with 0.3 mmol each of 1 and 4 in 4 mL
THF. ? After silica gel column chromatography. No side products were
observed in these reactions.
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IV which further undergoes DABCO assisted elimination of
HNO, to afford highly substituted furans 5.

Having synthesized a variety of nitrofurans 5 in satisfactory
yield from the MBH acetates of nitroalkenes 1, we turned to RC
adducts 6 as the key precursors for the synthesis of fused furans
12 as mentioned before (see Scheme 2) using six-membered
cyclic 1,3-dicarbonyl compounds based on our own previous
experience that 5-membered and 6-membered 1,3-dicarbonyls
behaved differently in such reactions (see Scheme 1b).>

We have chosen compound 6a and compound 11a as the
model substrates for our optimization studies (Table 3). When
this reaction was performed in the presence of 1 equiv. of K,CO;
in CH;CN under reflux conditions, fused furan 12a was isolated
in 23% yield within 9 h (entry 1). In order to improve the yield
further, we screened various bases and solvents as summarized
below.

The yields of furan 12a remained low (15-22%) when the
reaction was conducted in CH3;CN under reflux in the presence
of 1 equiv. of different amine bases such as DABCO and Et;N
(entries 2-3). Attempted improvement in the yield using
Brgnsted acid additives in conjunction with amine bases such
as p-anisic acid and TFA met with only limited success (entries

-5). Changing the base to NaOAc and KOAc, the latter even
with p-anisic acid as additive, did not improve the yield
(28-33%, entries 6-8). At this juncture, a reaction was carried
out in the presence of 2 equiv. of KOAc which led to the
formation of furan 12a in 42% yield (entry 9). This could be
further improved to 68% by employing non-acidic workup
conditions (entry 10). Other solvents such as THF and EtOH
were less effective for our reaction (entries 11-12). Increasing
the amount of base to 3 equiv. was detrimental as the yield
dropped to 35% (entry 13).

As in the previous scheme (Tables 1 and 2), the weakest base,
KOAc (pK, 4.7), appeared to give the best results in the addition
of compound 11a (pK, 5.2) to compound 6a. The complex
reaction pattern in the presence of stronger bases, including
DABCO, leading to lower yields of the desired product 12a is
attributable to side reactions involving the enolizable ketone
side chain. Finally, the optimal conditions for the reaction, 2
equiv. of KOAc in CH;CN under reflux, were employed to study
the scope of the reaction as reported in Tables 4 and 5.

/\ﬁ« .

5-exo-trig
DABCO Ar NO, DABCO
AcO”) TCO.Et S2
1 m CO,Et
Ph Ph
O,N ON-__~
~ 0 DABCO o
H CO,Et 2 —
¢ - HNO, A CO,Et
Ar NO2 r
v 5

Scheme 3 Plausible pathway for the formation of tetrasubstituted
furans 5.
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Table 3 Optimization studies®

NO
Ph X 2 ii
o
6a o 11a

Base, Solvent

== -

Reflux

Entry Base (equiv.) Solvent Time (h) % yield”
1 K,CO; (1) MeCN 9 23
2 DABCO (1) MeCN 10 15
3 Et;N (1) MeCN 9 22
4 Et;N (1)° MeCN 9 45
5 DBU (1)? MeCN 3.5 20
6 NaOAc (1) MeCN 9 29
7 KOAc (1) MeCN 7 33
8 KOAc (1)° MeCN 3.5 28
9 KOAc (2) MeCN 8 42¢
10 KOAc (2) MeCN 8 68"
11 KOAc (2) THF 8 42
12 KOAc (2) EtOH 8 51
13 KOAc (3) MeCN 7 35

“ The reactions were carried out with 0.92 mmol of Ga and 0.92 mmol

(1 equiv.) of 11a in 3 mL of solvent under reflux. ” After silica gel

column chromatogra ?hy. °+20 mol% p-anisic acid. ¢ +10 mol% TFA.
¢ With acid work up./ Without acid work up.

Table 4 Synthesis of furans 12 from RC adduct 6 and dimedone 11a“

(o}
NO. Ar
ArT O 2 )
KOACc (2 equiv) / \
- —_— 5>
o 0 CH3CN, Reflux o (o}
6 O 11a 12
Entry 6, Ar Time (h) 12 % yield”
1 6a, C¢Hs 9 12a 68
2 6b, 4-MeCgH, 11 12b 31
3 6¢, 3-OMeCgH, 15 12¢ 37
4 6d, 4-OMeC¢H, 6 12d 52
5 6e, 3,4-(OMe),CsH; 4 12e 37
6 6f, 3,4-(OCH,0)CeH; 5 12f 34
7 6g, 4-CICcH, 7 12g 55
8 6h, 4-BrC¢H, 2 12h 35
9 6i, 2-thienyl 15 12i 29
10 6j, 1-naphthyl 17 12j 39

“ The reactions were carried out with 0.92 mmol of 6, 0.92 mmol of 11a
1.80 mmol of KOAc in acetonitrile, reflux. ® After silica-gel column
chromatography. No side products were observed in these reactions.

The reaction of dimedone 11a with different RC adducts 6a-j
was undertaken to obtain fused furans 12a-j (Table 4). Besides
the RC adduct bearing parent phenyl group 6a which afforded
the product 12a in 68% yield (entry 1), the RC adducts with aryl
groups possessing a strongly electron donating substituent and

This journal is © The Royal Society of Chemistry 2015
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Table 5 Synthesis of furans 13 from RC adducts 6 and 1,3-cyclo-
hexanedione 11b“

o
Ar,
/J/i:\L KOAG (2 equiv) R
0 CH3CN, Reflux o o)
13

Entry 6, Ar Time (h) 13 % yield”
1 6a, CoHs 12 13a 33
2 6b, 4-MeCgH, 8 13b 46
3 6¢, 3-OMeCgH,y 22 13¢ 38
4 6d, 4-OMeCgH, 4 13d 46
5 6e, 3,4-(OMe),CsH, 4 13e 30
6 6h, 4-BrC¢H, 5 13f 42
7 6i, 2-thienyl 7 13g 15

6j, 1-naphthyl 20 13h 44

“ The reaction were carried out with 0.92 mmol of 6, 0.92 mmol of 11b
and 1.80 mmol of KOAc in acetonitrile, reflux. > After silica-gel column
chromatography; no side products were observed in these reactions.

a weakly electron withdrawing substituent at the para position,
6d and 6g, respectively, delivered the corresponding products
13d and 13g in decent yields (52% and 55%, entries 4 and 7).
The yields of fused furans from other RC adducts possessing
various electron donating and withdrawing substituents on the
aromatic ring viz. 6b,c, 6e,f and 6h, remained low (31-37%,
entries 2-3, 5-6 and 8). While low yield of the product 12i was
encountered in the case of heteroaryl compound 6i (entry 9), the
product yield was moderate (39%) in the case of a fused arylated
compound 6j (entry 10).

After the successful demonstration of the reactivity of
different types of RC adducts 6 with dimedone 11a, we focused
our attention for the reaction of 1,3-cyclohexanedione 11b with
different types of RC adducts 6 and the results are summarized
in Table 5.

In this reaction, when Ar was Ph, the product was formed in
poor yield (33%, entry 1) and electron donating groups on the
phenyl ring of RC adducts provided poor to moderate yield of
the products (30-46%, entry 2-5). RC adducts bearing bromo
and naphthyl substituents also provided moderate yields
(42-44%, entries 6 and 8) and in the case of heteroaryl
substituent, a substantial decrease in the yield to 15% was
observed (entry 7).

It may be noted that the reaction of 6i with 11a and 11b
afforded the corresponding products 12i and 13g in lowest
yields (29% and 15%, respectively, Table 4, entry 9 and Table 5
entry 7). This may be due to side reactions such as intermo-
lecular Diels-Alder reaction between the thiophene moiety as
the diene and the nitroalkene moiety as the dienophile under
our experimental conditions.

As in the case of 5, the structure and regiochemistry of
products 12 and 13 were established by analysis of their spectral
data. While the saturated carbonyl appears in IR at 1713-
1717 cm™ ', the unsaturated carbonyl appears at 1672-1679 cm ™.

RSC Adv., 2015, 5, 69990-69999 | 69993
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Scheme 4 Plausible mechanism of furan formation.

The two isolated methylene protons in 12 appear, in general, as
singlets at 6 2.34-2.36 and 2.71-2.74. The corresponding protons
in 12j appear as AB spin system presumably due to atropiso-
merism about the C-C bond connecting the furyl and the aryl
group at position 3. The regiochemistry was amply evident from a
medium NOE interaction between the phenyl protons and the
deshielded methylene protons of the oxobutyl side chain in 12a.

Scheme 4 outlines the plausible mechanism for the one-pot
synthesis of furan by the present protocol. KOAc mediated
Michael addition of 1,3-dicarbonyl compound 11 to compound
6 affords intermediate V. In the next step, an intramolecular
oxa-Mannich type reaction takes place in a 5-exo-trig manner
affording the intermediate VI, which on elimination affords the
desired product 12 or 13.>

Conclusions

Novel methods for the synthesis of highly substituted furans
from the Morita-Baylis-Hillman and Rauhut-Currier adducts
of nitroalkenes have been developed. These include a cascade
Sx2’-intramolecular oxa-Michael addition and a cascade
Michael-intramolecular oxa-Mannich reaction. Although the
yields in these reactions are moderate, our approach is distin-
guished by the convenient access to highly functionalized and
fused furans from readily available MBH and RC adducts of
nitroalkenes.

Experimental section
General experimental details

The melting points recorded are uncorrected. NMR spectra ("H,
'H decoupled *C and "H-"H NOESY) were recorded with TMS
as the internal standard. The coupling constants (J values) are
given in Hz. High resolution mass spectra were recorded under
ESI Q-TOF conditions. MBH acetates 1,>* nitroacetophenone 4 >
and RC adducts 6 (ref. 14) were prepared by literature methods.

General procedure for the preparation of tetrasubstituted furans 5
from MBH acetates 1 and o-nitroacetophenone 4

To a stirred solution of compound 1 (0.1 mmol) and compound 4
(33 mg, 0.2 mmol, 2 equiv.) in THF (3 mL) at room temperature
was added DABCO (22 mg, 0.2 mmol, 2 equiv.) and the stirring

69994 | RSC Adv., 2015, 5, 69990-69999
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was continued till the completion of the reaction (monitored by
TLC, see Table 2). The reaction mixture was concentrated in vacuo
and the crude residue was purified by silica gel column chro-
matography by eluting with 4-10% ethyl acetate/petroleum ether
(gradient elution).

Ethyl-2-(3-(4-methoxyphenyl)-4-nitro-5-phenylfuran-2-yl)acetate
(5a)

Yellow oily liquid; yield 17 mg, 45%; IR (KBr, cm™') 1739 (s),
1514 (vs.), 1360 (m); "H NMR (400 MHz, CDCl;) 6 7.81-7.84 (m,
2H), 7.46-7.50 (m, 3H), 7.28 (d, J = 8.8 Hz, 2H), 6.97 (d,/ = 8.8
Hz, 2H), 4.20 (q,J = 7.1 Hz, 2H), 3.84 (s, 3H), 3.65 (s, 2H), 1.27
(t,J = 7.1 Hz, 3H); ">*C NMR (100 MHz, CDCl;) 6 14.3, 32.8, 55.4,
61.8,114.2,121.2,121.3, 127.6, 128.3, 128.6, 130.6, 130.9, 131.4,
144.8, 151.4, 159.8, 168.6; MS (ES’, Ar) m/z (rel intensity) 404
(MNa', 30), 399 (M + H,0]",49), 382 (MH', 100); HRMS (ES', Ar)
caled for C,H,oNOs, (MH') 382.1291, found 382.1301.
Confirmed by "H-'H NOESY experiment.

Ethyl-2-(4-nitro-3,5-diphenylfuran-2-yl)acetate (5b)

Yellow oily liquid; yield 19 mg, 53%; IR (KBr, cm™ ') 1740 (vs.),
1513 (m), 1358 (m); "H NMR (400 MHz, CDCl;) 6 7.81-7.84 (m,
2H), 7.46-7.50 (m, 3H), 7.41-7.45 (m, 3H), 7.34-7.37 (m, 3H),
4.20 (q,] = 7.1 Hz, 2H), 3.66 (s, 2H), 1.27 (t, ] = 7.1 Hz, 3H); °C
NMR (100 MHz, CDCl;) § 14.3, 32.9, 61.8, 121.8, 127.6, 128.4,
128.7, 128.7, 128.8, 129.3, 129.7, 130.7, 134.6, 144.9, 151.6,
168.5; MS (ES") m/z (rel intensity) 413 ([M + Na + K]*, 100), 390
(MK", 35), 374 (MNa', 91), 343 (15); HRMS (ESI) calcd for
C,0H;7,NNaO; (MNa*) 374.0999, found 374.1002.

Ethyl-2-(3-(2,4-dimethoxyphenyl)-4-nitro-5-phenylfuran-2-yl)
acetate (5¢)

Yellow oily liquid; yield 23 mg, 57%; IR (KBr, cm ') 1738 (vs.),
1511 (s), 1366 (m); "H NMR (400 MHz, CDCl3) § 7.83-7.80 (m,
2H), 7.48-7.45 (m, 3H), 7.24 (d, ] = 8.3 Hz, 1H), 6.57 (dd, ] = 8.3,
2.3 Hz, 1H), 6.52 (d, ] = 2.3 Hz, 1H), 4.20 (q,] = 7.1 Hz, 2H), 3.85
(s, 3H), 3.72 (s, 3H), 3.65 (s, 2H), 1.29 (t, /] = 7.1 Hz, 3H); *C
NMR (100 MHz, CDCl;) 6 14.3, 33.0, 55.5, 55.6, 61.8, 99.1, 104.8,
111.0, 118.1, 127.8, 128.4, 128.6, 130.4, 131.1, 144.5, 150.9,
158.3, 161.6, 168.8; MS (ES") m/z (rel intensity) 450 (MK", 69),
434 (MNa', 78), 413 ([M + 2]', 100), 391 (10); HRMS (ES") caled
for C,,H,;NNaO, (MNa') 434.1210, found 434.1211.

Ethyl-2-(3-(benzo[d][1,3]dioxol-5-yl)-4-nitro-5-phenylfuran-2-
yl)acetate (5d)

Light yellow oily liquid; yield 67 mg, 57%; IR (KBr, cm™ ') 1738
(vs.), 1504 (vs.), 1359 (s); "H NMR (400 MHz, CDCl;) 6 7.81-7.79
(m, 2H), 7.48-7.46 (m, 3H), 7.25 (s, 1H), 6.88-6.82 (m, 3H), 6.02
(s, 1H), 4.23-4.18 (q,J = 7.2 Hz, 2H), 3.65 (s, 2H), 1.28 (t, ] = 7.2
Hz, 3H); >C NMR (100 MHz, CDCl;) 6 14.3, 32.8, 61.9, 101.5,
108.6, 110.2, 121.4, 122.6, 123.4, 127.6, 128.4, 128.7, 130.7,
145.0, 148.0, 148.1, 151.4, 168.5; MS (ES') m/z (rel intensity) 434
(MK, 60), 418 (MNa", 100), 393 (M — 2]", 51), 355 (11), 331 (10),
307 (9); HRMS (ES") caled for C,;H;;NNaO, (MNa') 418.0897,
found 418.0898.

This journal is © The Royal Society of Chemistry 2015


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5ra11471c

Open Access Article. Published on 10 August 2015. Downloaded on 1/19/2026 3:49:17 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Ethyl-2-(4-nitro-5-phenyl-3-p-tolylfuran-2-yl)acetate (5e)

Light yellow oily liquid; yield 61 mg, 56%; IR (KBr, cm ') 1738
(vs.), 1513, 1358 (m); "H NMR (400 MHz, CDCl;) 6 7.83-7.80
(m, 2H), 7.44-7.41 (m, 3H), 7.29-7.21 (m, 4H), 4.20 (q, ] = 7.2
Hz, 2H), 3.65 (s, 2H), 2.41 (s, 3H), 1.28 (t, ] = 7.2 Hz, 3H); *C
NMR (100 MHz, CDCl;) § 14.3, 21.5, 32.9, 61.8, 121.7, 126.2,
127.7, 128.4, 128.7, 129.3, 129.5, 130.4, 130.6, 138.6, 144.8,
151.5, 168.6; MS (ES") m/z (rel intensity) 404 (MK, 23), 388
(MNa*, 100), 366 (MH", 25), 301 (20); HRMS (ES") caled for
C,1H;,NNaO; (MNa') 388.1155, found 388.1155.

Ethyl-2-(3-(naphthalen-1-yl)-4-nitro-5-phenylfuran-2-yl)acetate
(56)

Light yellow oily liquid; yield 71 mg (59%); IR (KBr, cm ') 1739
(vs.), 1510 (vs.), 1354 (m); "H NMR (400 MHz, CDCl,) § 7.96-7.92
(m, 4H), 7.75 (d, J = 8.0 Hz, 1H), 7.57-7.46 (m, 7H), 4.14-4.08 (q,
J = 7.2 Hz, 2H), 3.59, 3.53 (AB, J = 17.0 Hz, 2H), 1.19 (t, / = 7.2
Hz, 3H); *C NMR (100 MHz, CDCl3) 6 14.2, 32.8, 61.7, 119.9,
125.1,125.5, 126.4, 126.9, 127.7, 128.4, 128.7 (x 2), 128.7, 129.5,
130.8, 132.5, 133.7, 135.4, 145.9, 152.2, 168.3; MS (ES") m/z (rel
intensity) 440 (MK, 77), 424 (MNa', 100), 397 (20), 357 (23), 301
(35), 243 (69), 213 (100); HRMS (ES™) caled for C,,H;oNNaO;
(MNa®) 424.1155, found 424.1154.

Ethyl-2-(3-(4-chlorophenyl)-4-nitro-5-phenylfuran-2-yl)acetate (5g)

Light yellow oily liquid; yield 62 mg, 54%; IR (KBr, cm ') 1739
(m), 1514 (m), 1358 (w), 739 (vs.); "H NMR (400 MHz, CDCl;) 6
7.83-7.80 (m, 2H), 7.50-7.47 (m, 3H), 7.42, 7.31 (AB, ] = 8.5 Hz,
4H), 4.20 (q,J = 7.1 Hz, 2H), 3.63 (s, 2H), 1.28 (t,/ = 7.1 Hz, 3H);
C NMR (100 MHz, CDCl;) 6 14.3, 32.8, 62.0, 120.8, 127.5,
127.8, 128.6, 128.7, 129.0, 130.9, 131.1, 134.9, 145.1, 152.1,
168.4; MS (ES") m/z (rel intensity) 426 ([M + 2]K", 10), 424 (MK',
30), 413 (100), 410 (M + 2]Na’, 5), 408 (MNa", 15), 386 (MH", 80);
HRMS (ES") caled for C,,H;,CINO; (MH') 386.0790, found
386.0784.

Ethyl-2-(4-nitro-3-(2-nitrophenyl)-5-phenylfuran-2-yl)acetate (5h)

Light yellow oily liquid; yield 69 mg, 58%, mixture of atro-
pisomers; IR (KBr, cm™") 1736 (vs.), 1527 (vs.), 1512 (vs.), 1350
(vs.); "H NMR (400 MHz, CDCl;) 6 8.26-8.22 (m, 1H), 8.14-8.10
(m, 0.5H, due to atropisomerism), 7.90-7.86 (m, 2H), 7.74-7.69
(m, 1H), 7.66-7.60 (m, 1.5H, due to atropisomerism), 7.53-7.46
(m, 4 + 1H), 4.15 (q, ] = 7.1 Hz, 2H), 3.62, 3.51 (AB, ] = 16.9 Hz,
2H), 1.24 (t,J = 7.1 Hz, 3H); *C NMR (100 MHz, CDCl;) 6 14.2,
33.0, 62.1, 118.8, 125.4, 127.4, 128.6, 129.2, 130.2, 130.4, 131.1,
132.9, 133.7, 134.4, 144.8, 148.8, 153.2, 168.0; MS (ES*) m/z (rel
intensity) 435 (MK, 16), 419 (MNa®, 100), 397 (14), 303 (23);
HRMS (ES") caled for C,oH 6N,NaO, (MNa') 419.0850, found
419.0848.

Ethyl-2-(4'-nitro-5'-phenyl-2,3’-bifuran-2’-yl)acetate (5i)

Yellow oily liquid; yield 18 mg (52%); IR (KBr, cm™ ') 1739 (vs.),
1519 (s); "H NMR (400 MHz, CDCl,) 6 7.78-7.74 (m, 2H), 7.50
(dd,J = 1.8, 0.6 Hz, 1H), 7.49-7.45 (m, 3H), 6.67 (dd, ] = 3.4, 0.6
Hz, 1H), 6.50 (m, J = 3.4, 1.8 Hz, 1H), 4.20 (q,J = 7.1 Hz, 2H),
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3.92 (s, 2H), 1.28 (t, ] = 7.1 Hz, 3H); "*C NMR (100 MHz, CDCl;) 6
14.3, 34.0, 42.5, 61.9, 110.9, 111.5, 127.2, 128.3, 128.8, 130.8,
142.8,143.2, 145.5, 151.8, 168.4; MS (ES') m/z (rel intensity) 380
(MK, 34), 364 (MNa*, 58), 360 (39), 349 (100); HRMS (ES") caled
for C1gH;5sNNaOg (MNa') 364.0792, found 364.0792.

Representative procedure for the synthesis of substituted
furans 12 and 13

To a stirred solution of 1,3-diketone 11 (0.92 mmol) in MeCN (3
mL) was added potassium acetate (0.180 g, 1.84 mmol, 2 equiv.)
followed by Rauhut-Currier adduct 6 (0.92 mmol, 1 equiv.). The
resulting reaction mixture was refluxed till the completion of
the reaction. After the completion of the reaction (monitored by
TLC, see Tables 4 and 5), the reaction mixture was concentrated
in vacuo and the crude residue was purified by silica gel column
chromatography (pet ether: ethyl acetate 5-10%, gradient
elution).

6,6-Dimethyl-2-(3-oxobutyl)-3-phenyl-6,7-dihydrobenzofuran-
4(5H)-one (12a)

White solid; yield 194 mg, 68%; mp 88-89 °C; IR (KBr, cm ')
1717 (s), 1678 (vs.); "H NMR (CDCl;, 400 MHz) 6 7.39-7.28 (m,
5H), 2.93 (t,J = 7.0 Hz, 2H), 2.78 (t, ] = 7.0 Hz, 2H), 2.74 (s, 2H),
2.36 (s, 2H), 2.13 (s, 3H), 1.15 (s, 6H); *C NMR (CDCl;, 100 MHz)
6 20.5, 28.7, 30.0, 35.1, 37.8, 41.8, 53.1, 118.7, 119.6, 127.4,
128.1, 129.9, 131.4, 151.2, 165.2, 193.6, 207.1; MS (ES*) m/z (rel
intensity) 333 (MNa', 75), 311 (MH', 100), 254 (6), 253 (29);
HRMS (ES") caled for C,oH,30; (MH") 311.1647, found
311.1651.

3-(4-Methylphenyl)-6,6-dimethyl-2-(3-oxobutyl)-6,7-dihydro-
benzenefuran-4(5H)-one (12b)

Brown solid; yield 92 mg, 31%; mp 128-130 °C; IR (KBr, cm )
1717 (s), 1677 (vs.); "H NMR (CDCly, 400 MHz) 6 7.25, 7.18 (AB, J
= 7.9 Hz, 4H), 2.93 (t, / = 7.1 Hz, 2H), 2.77 (t,/ = 7.1 Hz, 2H),
2.73 (s, 2H), 2.36 (s, 3H), 2.35 (s, 2H), 2.13 (s, 3H), 1.15 (s, 6H);
3C NMR (CDCl;, 100 MHz) § 20.5, 21.4, 28.8, 30.0, 35.1, 37.8,
41.8, 53.2, 118.8, 119.5, 128.3, 128.9, 129.8, 137.1, 151.0, 165.1,
193.6, 207.1; MS (ES') m/z (rel intensity) 347 (MNa', 38), 325
(MH", 100), 268 (10), 267 (48); HRMS (ES") calcd for C,;H,50;
(MH"), 325.1804, found 325.1797.

3-(3-Methoxyphenyl)-6,6-dimethyl-2-(3-oxobutyl)-6,7-dihydro-
benzofuran-4(5H)-one (12c)

Yellow brown amorphous solid; yield 116 mg, 37%; IR (KBr,
cm ) 1714 (s), 1678 (vs.); "H NMR (CDCl;, 500 MHz) 6 7.28 (t, ]
= 7.9 Hz, 1H), 6.94 (d, J = 2.2 Hz, 1H), 6.93 (d, J = 7.9 Hz, 1H),
6.85 (dd,J = 7.9, 2.4 Hz, 1H), 3.82 (s, 3H), 2.94 (t, ] = 7.5 Hz, 2H),
2.77 (t,] = 7.5 Hz, 2H), 2.73 (s, 2H), 2.36 (s, 2H), 2.13 (s, 3H), 1.15
(s, 6H); "*C NMR (CDCl;, 125 MHz) 6 20.6, 28.8, 30.0, 35.1, 37.8,
41.8, 53.2, 55.4, 113.3, 115.7, 119.5, 122.4, 129.1, 132.7, 151.3,
159.3, 165.2, 193.5, 207.1; MS (ES*) m/z (rel intensity) 379 (MK",
100), 363 (MNa', 30), 341 (MH', 5); HRMS (ES") calcd for
C1H,40,K (MK"), 379.1306, found 379.1306.
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3-(4-Methoxyphenyl)-6,6-dimethyl-2-(3-oxobutyl)-6,7-
dihydrobenzofuran-4(5H)-one (12d)

Yellow solid; yield 163 mg, 52%; mp 109-110 °C; IR (KBr, cm ™)
1716 (s), 1675 (vs.); "H NMR (CDCl;, 400 MHz) 6 7.29 (d, J = 9.5
Hz, 2H), 6.91 (d, J = 9.5 Hz, 2H), 3.82 (s, 3H), 2.92 (t,] = 7.1 Hz,
2H), 2.77 (t, ] = 7.1 Hz, 2H), 2.72 (s, 2H), 2.35 (s, 2H), 2.13
(s, 3H), 1.15 (s, 6H); ">C NMR (CDCl;, 100 MHz) § 20.5, 28.7,
30.0, 35.0, 37.8, 41.8, 53.1, 55.4, 113.6, 118.7, 119.2, 123.6, 131.0,
150.8, 159.0, 165.1, 193.7, 207.2; MS (ES") m/z (rel intensity) 363
(MNa’, 60), 341 (MH", 100), 284 (19), 283 (85), 190 (4); HRMS
(ES") caled for Cy,H,504 (MH'), 341.1753, found 341.1750.

3-(3,4-Dimethoxyphenyl)-6,6-dimethyl-2-(3-oxobutyl)-6,7-
dihydrobenzofuran-4(5H)-one (12¢)

Yellow solid; yield 126 mg, 37%; 112-113 °C; IR (KBr, cm™')
1716 (s), 1676 (s); "H NMR (CDCl;, 400 MHz) 6 7.00 (s, 1H), 6.89,
6.86 (AB, ] = 8.2 Hz, 2H), 3.89 (s, 3H), 3.88 (s, 3H), 2.94 (t,/ = 7.8
Hz, 2H), 2.79 (t, J = 7.8 Hz, 2H), 2.72 (s, 2H), 2.35 (s, 2H), 2.13
(s, 3H), 1.14 (s, 6H); ">C NMR (CDCl;, 100 MHz) § 20.5, 28.6,
29.9, 34.9, 37.7, 41.5, 53.1, 55.9, 56.0, 110.7, 113.6, 118.5, 119.2,
122.0, 123.8, 148.3, 150.7, 165.1, 193.6, 207.0; MS (ES") m/z (rel
intensity) 393 (MNa', 10), 371 (MH', 100), 314 (7), 313 (29);
HRMS (ES') caled for C,,H,,05 (MH'), 371.1858, found
371.1873.

3-(Benzo[d][1,3]dioxol-5-y1)-6,6-dimethyl-2-(3-oxobutyl)-6,7-
dihydrobenzofuran-4(5H)-one (12f)

Yellow solid; yield 111 mg, 34%; mp 109-111 °C; IR (KBr, cm ")
1716 (s), 1677 (vs.); "H (CDCl;, 400 MHz) 6 6.84 (s, 1H), 6.81-6.77
(m, unresolved AB, 2H), 5.95 (s, 2H), 2.90 (t,/ = 7.4 Hz, 2H), 2.76
(t,J = 7.4 Hz, 2H), 2.71 (s, 2H), 2.34 (s, 2H), 2.13 (s, 3H), 1.14
(s, 6H); "*C NMR (CDCl;, 100 MHz) 6 20.5, 28.7, 30.0, 35.0, 37.8,
41.7,53.1,101.1, 108.1, 110.6, 118.7, 119.3, 123.3, 125.0, 147.0,
147.4,151.0, 165.1, 193.6, 207.1; MS (ES") m/z (rel intensity) 393
(MK", 100), 377 (MNa®, 25); HRMS (ES") caled for C,;H,,05K
(MK") 393.1099, found 393.1098.

3-(4-Chlorophenyl)-6,6-dimethyl-2-(3-oxobutyl)-6,7-dihydro-
benzofuran-4(5H)-one (12g)

White solid; yield 174 mg, 55%; mp 86-88 °C; IR (KBr, cm ")
1713 (s), 1672 (vs.), 737 (s); "H NMR (CDCl;, 400 MHz) 6 7.34,
7.31 (AB, J = 8.6 Hz, 4H), 2.90 (t,] = 7.4 Hz, 2H), 2.78 (t,] = 7.4
Hz, 2H), 2.73 (s, 2H), 2.35 (s, 2H), 2.14 (s, 3H), 1.15 (s, 6H); *C
NMR (CDCl;, 100 MHz) § 20.4, 28.7, 30.0, 35.1, 37.8, 41.5, 53.1,
118.5, 118.6, 128.3, 129.9, 131.3, 133.4, 151.4, 165.4, 193.7,
206.9; MS (ES") m/z (rel intensity) 347 (M + 2]H', 35), 345 (MH',
100), 289 (27), 287 (81), 242 (4), 192 (7); HRMS (ES") caled for
C,0H,,ClO; (MH') 345.1257, found 345.1259.

3-(4-Bromophenyl)-6,6-dimethyl-2-(3-oxobutyl)-6,7-dihydro-
benzofuran-4(5H)-one (12h)

Brown solid; yield 125 mg, 35%; mp 109-110 °C; IR (KBr, cm )
1716 (s), 1677 (vs.), 758 (m); 'H NMR (CDCl,, 500 MHz) 6 7.51
(d,] = 8.4 Hz, 2H), 7.27 (d, ] = 8.4 Hz, 2H), 2.92 (t, ] = 7.4 Hz,
2H), 2.79 (t, J = 7.4 Hz, 2H), 2.75 (s, 2H), 2.37 (s, 2H), 2.16 (s,
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3H), 1.17 (s, 6H); >*C NMR (CDCl;, 125 MHz) 6 20.4, 28.7, 30.0,
35.1, 37.8, 41.5, 53.1, 118.5, 118.6, 121.6, 130.4, 131.3, 131.6,
151.4, 165.4, 193.7, 206.9; MS (ES") m/z (rel intensity) 429 (MK +
2]", 90), 427 (MK", 91), 413 ([MNa + 2], 98), 411 (MNa*, 100), 129
(12); HRMS (ES") caled for C,oH,;03;BrNa (MNa') 411.0566,
found 411.0570.

6,6-Dimethyl-2-(3-oxobutyl)-3-(thiophen-2-yl)-6,7-
dihydrobenzofuran-4(5H)-one (12i)

Black solid; yield 84 mg, 29%; mp 128-130 °C; IR (KBr, cm )
717 (s), 1677 (s); "H NMR (CDCl;, 400 MHz) 6 7.36 (dd, J = 3.5
Hz,] = 1.1 Hz, 1H), 7.30 (dd,J = 5.2 Hz, ] = 1.1 Hz, 1H), 7.05 (dd,
J=5.2Hz,J=3.5Hz, 1H), 3.07 (t,] = 7.2 Hz, 2H), 2.81 (t,] = 7.2
Hz, 2H), 2.72 (s, 2H), 2.38 (s, 2H), 2.16 (s, 3H), 1.15 (s, 6H); **C
NMR (CDCl;, 100 MHz) 6 21.2, 28.7, 30.0, 34.9, 37.8, 41.7, 53.2,
113.1, 118.6, 125.4, 127.2, 128.6, 131.9, 151.9, 165.3, 193.4,
207.0; MS (ES") m/z (rel intensity) 317 (MH', 84), 259 (100);
HRMS (ES') caled for C;3H,;0;S (MH') 317.1211, found
317.1218.

6,6-Dimethyl-3-(naphthalen-1-yl)-2-(3-oxobutyl)-6,7-dihydro-
benzofuran-4(5H)-one (12j)

Brown solid; yield 129 mg, 39%; mp 116-118 °C; IR (KBr, cm )
1717 (s), 1679 (vs.); "H NMR (CDCl;, 400 MHz) 6 7.86 (t, ] = 7.2
Hz, 2H), 7.59 (d, J = 8.5 Hz, 1H), 7.52-7.35 (m, 4H), 2.85, 2.80
(AB,J = 16.0 Hz, 2H), 2.78-2.71 (m, 2H), 2.70-2.62 (m, 2H), 2.45,
2.33 (AB, J = 16.0 Hz, 2H), 2.00 (s, 3H), 1.21 (s, 3H), 1.18 (s, 3H);
3C NMR (CDCl;, 100 MHz) § 20.6, 28.8, 28.8, 29.8, 35.2, 37.8,
41.6, 52.7,117.1, 120.4, 125.3, 125.7, 125.8, 126.0, 127.9, 128.3,
128.4,129.5,132.7,133.6, 152.2, 164.9, 192.9, 206.9; MS (ES") m/
z (rel intensity) 399 (MK", 399), 383 (MNa", 100), 361 (20), HRMS
(ES") caled for C,,H,,0;Na (MNa') 383.1618, found 383.1617.

2-(3-Oxobutyl)-3-phenyl-6,7-dihydrobenzofuran-4(5H)-one
(13a)

Dark brown solid; yield 86 mg, 33%; mp 63-65 °C; IR (KBr,
cm ') 1716 (s), 1676 (vs.); "H NMR (CDCl;, 500 MHz) 6 7.38-7.28
(m, 5H), 2.92 (t,J = 7.5 Hz, 2H), 2.86 (t, ] = 6.4 Hz, 2H), 2.76 (t, ]
= 7.5 Hz, 2H), 2.46 (t, ] = 6.4 Hz, 2H), 2.16 (quint, J = 6.4 Hz,
2H), 2.12 (s, 3H); *C NMR (CDCl,, 125 MHz) 6 20.4, 22.6, 23.8,
29.9, 38.7, 41.7, 119.7, 119.9, 127.4, 128.1, 129.9, 131.5, 150.9,
166.1, 194.1, 207.0; HRMS (ES") caled for C;gH;30;Na (MNa")
305.1148 found 305.1150.

2-(3-Oxobutyl)-3-p-tolyl-6-7-dihydrobenzenefuran-4(5H)-one
(13b)

Brown solid; yield 125 mg, 46%; mp 91-92 °C; IR (KBr, cm )
1716 (s), 1677 (s); "H NMR (CDCl;, 400 MHz) 6 7.25, 7.18 (AB, ] =
8.0 Hz, 4H), 2.91 (t, ] = 7.3 Hz, 2H), 2.86 (t, ] = 6.2 Hz, 2H), 2.76
(t,J = 7.3 Hz, 2H), 2.46 (t, J = 6.2 Hz, 2H), 2.36 (s, 3H), 2.16
(quint,J = 6.2 Hz, 2H), 2.12 (s, 3H); **C NMR (CDCl;, 100 MHz) 6
20.4, 21.4, 22.6, 23.8, 30.0, 38.8, 41.8, 119.6, 120.0, 128.4, 128.9,
129.7, 137.1, 150.7, 166.0, 194.1, 207.1; MS (ES") m/z (rel
intensity) 297 (MH", 90), 239 (100), 204 (5), 200 (7); HRMS (ES")
caled for Cy9H,,0; (MH') 297.1491, found 297.1493.
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3-(3-Methoxyphenyl)-2-(3-oxobutyl)-6,7-dihydrobenzofuran-
4(5H)-one (13c)

Brown solid; yield 109 mg, 38%; mp 117-119 °C; IR (KBr, cm ™)
1716 (s), 1676 (vs.); "H NMR (CDCl;, 500 MHz) 6 7.27 (t,] = 7.9
Hz, 1H), 6.94 (dd, J = 2.4, 1.5 Hz, 1H), 6.91 (dd, J = 7.9, 1.5 Hz,
1H), 6.85 (dd,J = 7.9, 2.4 Hz, 1H), 3.81 (s, 3H), 2.93 (t,J = 7.5 Hz,
2H), 2.86 (t, ] = 6.4 Hz, 2H), 2.76 (t, ] = 7.5 Hz, 2H), 2.46 (t, ] =
6.4 Hz, 2H), 2.16 (quint, J = 6.4 Hz, 2H), 2.12 (s, 3H); "°C NMR
(CDCl;, 125 MHz) 6 20.5, 22.6, 23.9, 30.0, 38.8, 41.7, 55.4, 113.3,
115.6, 119.6, 119.9, 122.3, 129.0, 132.8, 151.0, 159.3, 166.1,
194.0, 207.0; MS (ES') m/z (rel intensity) 351 (MK', 98), 335
(MNa', 100); HRMS (ES') caled for CyoH,,04Na (MNa')
335.1254, found 335.1253.

3-(4-Methoxyphenyl)-2-(3-oxobutyl)-6,7-dihydrobenzofuran-
4(5H)-one (13d)

Yellow solid; yield 132 mg, 46%; mp 136-137 °C; IR (KBr, cm™ ")
1716 (m), 1673 (s); "H NMR (CDCls, 400 MHz) 6 7.29 (d, ] = 8.6 Hz,
2H), 6.90 (d, J = 8.6 Hz, 2H), 3.81 (s, 3H), 2.90 (t, ] = 7.8 Hz, 2H),
2.86 (t,/ = 6.3 Hz, 2H), 2.76 (t, ] = 7.8 Hz, 2H), 2.46 (t,] = 6.3 Hz,
2H), 2.17 (quint, ] = 6.3 Hz, 2H), 2.12 (s, 3H); >*C NMR (CDCl,,
100 MHz) 6 20.4, 22.6, 23.9, 30.0, 38.8, 41.8, 55.4, 113.6, 119.3,
120.0, 123.7, 131.0, 150.5, 158.9, 166.0, 194.3, 207.1; MS (ES") m/z
(rel intensity) 335 (MNa', 50), 313 (MH", 100), 256 (18), 255 (96);
HRMS (ES") caled for CyoH,,0,4 (MH') 313.1440, found 313.1437.

3-(3,4-Dimethoxyphenyl)-2-(3-oxobutyl)-6,7-
dihydrobenzofuran-4(5H)-one (13e)

Yellow solid; yield 94 mg, 30%; mp 113-114 °C; IR (KBr, cm ")
1716 (s), 1674 (vs.); '"H NMR (CDCl;, 400 MHz) § 7.00 (s, 1H),
6.90-6.88 (unresolved AB, 2H), 3.90 (s, 6H), 2.95 (t, ] = 7.0 Hz,
2H), 2.88 (t, ] = 6.1 Hz, 2H), 2.78 (t, ] = 7.0 Hz, 2H), 2.48 (t, ] =
6.1 Hz, 2H), 2.18 (quint, J = 7.0 Hz, 2H), 2.14 (s, 3H); "*C NMR
(CDCl;, 100 MHz) 6 20.5, 22.6, 23.9, 30.0, 38.8, 41.7, 56.0, 56.1,
110.8, 113.7, 119.5, 119.9, 122.0, 124.0, 148.4, 150.6, 166.1,
194.3, 207.1; MS (ES') m/z (rel intensity) 365 (MNa', 60), 343
(MH", 88), 286 (21), 285 (100); HRMS (ES") caled for C,oH,305
(MH") 343.1545, found 343.1545.

3-(4-Bromophenyl)-2-(3-oxobutyl)-6,7-dihydrobenzofuran-
4(5H)-one (13f)

Brown solid; yield 139 mg, 42%; mp 90-92 °C; IR (KBr, cm™ )
1717 (s), 1676 (vs.), 762 (m); "H NMR (CDCls, 500 MHz) 6 7.49 (d,
J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 2.90 (t, ] = 7.4 Hz, 2H),
2.87 (t,J = 6.4 Hz, 2H), 2.76 (t,] = 7.4 Hz, 2H), 2.47 (t,] = 6.4 Hz,
2H), 2.17 (quint, J = 6.4 Hz, 2H), 2.13 (s, 3H); **C NMR (CDCl;,
125 MHz) 6 20.2, 22.4, 23.7, 29.9, 38.5, 41.4, 118.6, 119.6, 121.5,
130.3, 131.1, 131.4, 150.9, 166.1, 194.0, 206.7; MS (ES") m/z (rel
intensity) 385 ([M + 2]Na’, 100), 383 (MNa", 98); HRMS (ES")
caled for C;3H;,05BrNa (MNa") 383.0253 found 383.0253.

2-(3-Oxobutyl)-3-(thiophen-2-yl)-6,7-dihydrobenzofuran-4(5H)-
one (13g)

Black solid; yield 40 mg, 15%; mp 104-105 °C; IR (KBr, cm ™)
1715 (s), 1676 (s); "H NMR (CDCl;, 400 MHz) 6 7.31-7.29 (m,
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2H), 7.05 (dd, J = 5.1, 3.6 Hz, 1H), 3.04 (t, ] = 6.9 Hz, 2H), 2.85 (t,
J = 6.1 Hz, 2H), 2.79 (t, ] = 6.9 Hz, 2H), 2.48 (t, ] = 6.1 Hz, 2H),
2.21-2.14 (m, 2H), 2.15 (s, 3H); “*C NMR (CDCl;, 100 MHz) 6
21.0, 22.4, 23.8, 30.0, 38.8, 41.7,113.1, 119.8, 125.5, 127.2, 128.5,
131.9, 151.7, 166.1, 194.0, 207.0; MS (ES") m/z (rel intensity) 289
(MH", 70), 233 (5), 232 (15), 231 (100), 220; HRMS (ES") calcd for
C16H,703S (MH') 289.0898, found 289.0887.

3-(Naphthalen-1-yl)-2-(3-oxobutyl)-6,7-dihydrobenzofuran-
4(5H)-one (13h)

Dark brown solid; yield 134 mg, 44%; mp 91-93 °C; IR (KBr,
em™ ') 1715 (m), 1678 (vs.); "H NMR (CDCl;, 500 MHz) 6 7.85 (t, ]
= 8.2 Hz, 2H), 7.59 (d, J = 8.2 Hz, 1H), 7.49-7.33 (m, 4H), 2.95
(AB,J = 6.4 Hz, 2H), 2.78-2.70 (m, 2H), 2.68-2.58 (m, 2H), 2.50-
2.38 (m, 2H), 2.24-2.18 (m, 2H), 2.00 (s, 3H); *C NMR (CDCl,,
125 MHz) 6 20.6, 22.7, 23.9, 29.8, 38.5, 41.6, 117.3, 121.7, 125.4,
125.8, 125.8, 126.1, 127.9, 128.4, 128.5, 129.6, 132.7, 133.7,
151.9, 165.8, 193.7, 207.0; MS (ES") m/z (rel intensity) 371 (MK",
12), 355 (MNa', 100), 305 (4); HRMS (ES") caled for C,,H,,0;Na
(MNa") 355.1305, found 355.1303.
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