Issue 104, 2015

Quantum chemical and experimental insights for the ionic liquid facilitated thermal dehydrogenation of ethylene diamine bisborane

Abstract

The current work reports the judicial selection and subsequent dehydrogenation reaction with ionic liquid (IL) facilitated ethylene diamine bisborane (EDAB). Quantum chemical based COSMO-SAC (COnductor like Screening MOdel Segment Activity Coefficient) model was initially used to screen the ILs as available from Sigma Aldrich. LUMO–HOMO calculation was then performed to analyze the stability of EDAB/IL complexes. The molecular modeling studies converged on the two ILs, namely 1-ethyl-3-methyl imidazolium acetate ([EMIM][OAc]) and 1-butyl-3-methyl imidazolium acetate ([BMIM][OAc]), which were subsequently chosen for the dehydrogenation experiments. The thermal dehydrogenation of EDAB was carried out at 95 °C and 105 °C under vacuum so as to prevent generation of oxygen moieties. A total of 3.96 and 3.52 equivalents of hydrogen were released from the desorption of EDAB/[BMIM][OAc] and EDAB/[EMIM][OAc], respectively, at 105 °C. The purity of released gas was confirmed by gas chromatographic analysis, while the catalytic activity of ILs was confirmed by 1H NMR characterization of pure EDAB, ILs and EDAB/IL complexes both before and after the reaction. 11B NMR analysis confirms the presence of trigonal boron (sp2) BH2 group as the only hydrogen containing boron moiety in dehydrogenated EDAB. Further, the two-stage release mechanism of EDAB was also verified by thermogravimetric analysis. High resolution mass spectrometry was able to detect the mass of cyclic repeat units in the polymeric chain containing an sp2 BH2 group.

Graphical abstract: Quantum chemical and experimental insights for the ionic liquid facilitated thermal dehydrogenation of ethylene diamine bisborane

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2015
Accepted
28 Sep 2015
First published
28 Sep 2015

RSC Adv., 2015,5, 85280-85290

Quantum chemical and experimental insights for the ionic liquid facilitated thermal dehydrogenation of ethylene diamine bisborane

B. Banerjee, D. Kundu, G. Pugazhenthi and T. Banerjee, RSC Adv., 2015, 5, 85280 DOI: 10.1039/C5RA10625G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements