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Low pressure carbon dioxide is used as the carbonation agent in a
simple, safe and efficient procedure for the synthesis of 6-membered
cyclic carbonates from 1,3-diols. Using readily available reagents and
proceeding at room temperature, this route offers a novel mild
alternative to phosgene derivatives.

Unlike aromatic polycarbonates, aliphatic polycarbonates
(APCs) have been little explored commercially. However, their
low toxicity and biodegradability make them excellent candi-
dates for biomedical applications." Recently, they have also
been investigated as thermoplastics,”> binders for photovol-
taics,® polymer electrolytes* and adhesives.®

Part of this renewed attention stems from the possibility to
obtain APCs via the copolymerisation of CO, and epoxides,® an
attractive reaction which uses an abundant and virtually free
source of carbon, but is limited by the scope of usable epoxides.
APCs can also be synthesised by polycondensation of diols with
phosgene derivatives or dialkyl carbonates,” but the control of
the polymer molecular weight is highly sensitive to the reaction
conditions. Hence, Ring-Opening Polymerisation (ROP) of
cyclic carbonates has become the method of choice for APC
synthesis,'®® as the development of ROP catalysts® has enabled
controlled polymerisation of highly functionalised monomers*
under mild conditions (usually 6-, 7-,** or strained 5-membered
rings™).

A common preparation of cyclic carbonate monomers
involves the transesterification of diols with phosgene,*** a toxic
reagent synthesised from CO and Cl, in an energy intensive
process. Nevertheless, phosgene is still widely employed due to
its efficiency and the lack of a more versatile and sustainable
alternative. Safer phosgene derivatives™ include di-ter¢-butyl
dicarbonate,”®  1,1'-carbonyldiimidazole,’ and aromatic
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carbonates,"” but these reagents all derive from phosgene, and
can lead to unwanted side reactions, low reactivity and difficult
workups.

Alternative methods, such as the Pd-catalysed oxidative
carbonylation of diols using CO pressure,'” or the catalytic
coupling of CO, with oxetanes," have also been reported. The
latter however, is limited by the availability of oxetanes.*
Transesterification of diols with urea, industrially produced
from CO,, is also described but with moderate success.>*

Using CO, as a C1-carbonation agent is an attractive goal for
phosgene related emissions mitigation and direct CO, uti-
lisation. The direct coupling of CO, with diols, where water is
the sole by-product, would be an attractive process. However,
the reaction is generally not kinetically and thermodynamically
favoured. Therefore, a catalyst and an efficient stoichiometric
dehydrating strategy (e.g. nitriles, zeolites, orthoesters, or Mit-
sunobu reagents) are necessary for the reaction to proceed.”
Despite recent advances, such as the use of CeO, catalyst in
tandem with a large excess of 2-cyanopyridine as a dehydrating
agent,” or the in situ introduction of a leaving group based on
dibromomethane, high CO, pressures (10-50 bar) and high
temperatures (70-140 °C) are still required, particularly for the
synthesis of 6-membered rings.

Herein, we report a safe and efficient one-pot procedure for
the synthesis of 6-membered cyclic carbonates directly from
1,3-diols, which uses CO, as the carbonation agent instead of
phosgene derivatives. This methodology proceeds at room
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Scheme1 Strategy for the synthesis of cyclic carbonate from 1,3-diols
and CO, (R*=R* are the various substituents of 1,3-diols used, see
Table 2).
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temperature, needs only 1 atm. of CO, and common lab
reagents (Scheme 1), and does not require the preliminary
preparation of oxetanes or chloroalcohols.*®

In 2005, Jessop and coworkers reported the reversible
carbonation of alcohols with CO, promoted by 1,8-diazabicyclo-
[5.4.0]-undec-7-ene (DBU).*® The conversion was later found to
depend on the choice of solvent with almost full conversion of
1-hexanol being achieved in CDCl;.”” Inspired by these reports,
we investigated the selective mono-insertion of CO, into one
alcohol moiety of 1,3-diols in various solvents. The slow addi-
tion of DBU under 1 atm of CO, to solutions of (+)-1,3-buta-
nediol (1a) was monitored and the conversion to alkyl carbonate
species assessed by '"H NMR (Table 1). Regardless of the solvent
used, the carbonation of 1a by CO, proceeded quickly at low
pressure and room temperature, with good selectivity towards
the mono-insertion products (ca. 90% of products). A slight
preference for the primary alcohol moiety was also observed, in
agreement with DFT calculations (see ESI Fig. S41). In neat diol,
the conversion was limited by the increased viscosity upon CO,
insertion (Table 1, Entry 1), but even in solution and with the
addition of ionic liquid bmimPFs, as used by Lim et al. (Table 1,
Entry 5),>* full conversion of 1a was not observed with only one
DBU equivalent. Apolar toluene-dg gave less conversion than
more polar solvents, whereas more dicarbonated product was
obtained in acetonitrile-d; (Table 1, Entry 2 and 4). Overall,
optimal results were obtained in CDCl;, and despite it not being
a desirable solvent which should be replaced in the future,
chloroform was used in the rest of our study. Addition of DBU at
low temperature resulted in no further improvement in mono-

Table 1 Reaction of 1,3-butanediol 1a with DBU under 1 atm of CO,*

i i i it
CO(Tatm) pguy
e S0 C._..HDBU DBUH._ _C C.__.HDBU
OH OH DBU (1 equiv.) ‘o 0 @7 O OFTO  IOF 05
solvent HON )\AOH )\)

1a 1'a 1'ay 1'apis

Conv. into carbonated products”

(%)

Entry Solvent T (°C) [1a] (M) Total 1any 1a; 1ay 1ap
1 Neat 25 n/a 47 44 30 14 3
2 C;Dg 25 1.7 60 56 37 19 4
3 CDCl; 25 1.7 78 69 46 23 9
4 CD;3;CN 25 1.7 73 58 40 18 15
5¢ CDCl; 25 1.7 69 52 35 17 17
6 CDCl; 25 0.1 78 73 49 24 5
74 cpcl;  —-78 1.7 77 68 45 23

8° CDCl, 25 1.7 62 56 37 19 6
9 CDCl; 25 1.7 >99 57 40 17 43

% Reactions conditions: diol (5.6 mmol, 1.7 M), DBU (5.6 mmol), room
temperature, CO, (1 atm), 2 h (saturation). ” Based on diol conversion
and determined by relative integration of methine signals in '"H NMR
(e.g- 4.64 ppm for 1'ay/see ESI Fig. S1-S3). © Addition of 1-butyl-3-
methylimidazolium hexafluorophosphate (bmimPFg, 5.6 mmol); [diol]
= 0.4 M. ¢ Addition of DBU at T = —78 °C then rt. ¢ 1 equiv. of TBD
was used instead of DBU.” 3 equiv. of DBU were used.
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insertion selectivity (Table 1, Entry 7), while increasing the
temperature promoted decarboxylation. A lower concentration
of diol slightly decreased the amount of disubstituted product
(Table 1, Entry 6) but did not affect the global conversion. The
use of stronger base 1,5,7-diazabicyclo[4.3.0]-undec-7ene (TBD)
in place of DBU resulted in less conversion, which is attributed
to an increased sensitivity to moisture (Table 1, Entry 8). The
use of triethylamine resulted in no carbonation of 1a.

Further DFT calculations showed that the direct coupling of
1a and CO, to form cyclic carbonate 2a is slightly thermody-
namically disfavoured (AAG = +3.0 kcal mol ). Following the
DBU-aided insertion of CO,, the activation barriers are then too
high for the cyclisation of 1'a; (or 1'ay) to proceed under mild
conditions (61.1 and 42.2 kcal mol™" via an Sy2 or addition/
elimination mechanism, respectively) (see Fig. S47). An in situ
leaving group strategy was thus applied experimentally to
overcome the kinetic as well as the thermodynamic limitation of
the reaction. After the selective mono-insertion of CO, into 1a in
CDCl; at low concentration, 1 equivalent of tosyl chloride and
triethylamine were added to the reaction mixture and stirred at
room temperature overnight. Rapidly, the cyclic carbonate 2a
was detected by "H NMR (addition of triethylamine alone did
not result in any product). The pure product was later isolated
by column chromatography in a 44% yield, i.e. 60% conversion
based on the mono-CO, inserted products (Table 2}, Entry 1). A
higher concentration of diol (1.7 M), despite being slightly
detrimental to the first step of the procedure, proved to lead to a
higher isolated yield of cyclic carbonate (68%, i.e. 99% conver-
sion based on CO, mono-insertion, Table 2, Entry 2). This
compares well with the traditional phosgene-based method
(50%)*® as well as oxidative carbonylation methods (45%).'*
The procedure was found to be robust: CO, from sublimed dry
ice could be used and yielded cyclic carbonate 2a, albeit in lower
yield (48%, Table 2, Entry 3). The reaction also proceeded
without solvent (30% yield). Investigation into the scope of the
procedure was carried out with various 1,3-diols. The cyclisation
step proceeded efficiently from the CO,-mono insertion prod-
ucts and all cyclic carbonates were isolated in moderate yields
(Table 2), comparative with phosgene-based and alternative
methods. For example, the isolation of 2d from 2,2-dimethyl-
1,3-propanediol (53%, Table 2, Entry 8) was previously repor-
ted using phosgene derivatives (60%),* oxidative carbonylation
(50%),'®* and metal free cyclisation (50%).>* O-isopropylidene-
xylose was also successfully transformed, though isolation
proved challenging (11%, Table 2, Entry 12).

As cyclisation happens readily, reaction intermediates could
not be isolated, but DFT calculations on model compound (R)-
1a and additional experiments with optically active diols were
carried out to investigate the reaction mechanism. After inser-
tion of CO,, tosylation can occur at the carbonate or at the
remaining alcohol group, so that cyclisation proceeds via either
an addition/elimination or a Sy2 pathway, leading to retention
or inversion of stereochemistry (see Scheme 2). However, the
exclusive formation and isolation of (R,R)-cyclic carbonate 2b
from (R,R)-2,4-pentanediol, as well as the optical activities of the
cyclic carbonates obtained from enantiopure (R) and (S)-1,3-
butanediol (Table 2, Entries 4-6),* both indicated an addition/

RSC Adv., 2015, 5, 39404-39408 | 39405
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Table 2 Synthesis of various cyclic carbonates from 1,3-diols and CO,

o
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CO,(1atm)  NEts (1 equiv.) ey
OH. OH DBU (1 equiv.) TsCI (1 equiv.) Q Q
R1J\(‘\R3 CHCl, 2 h, 1t 16 h, 1t RA\H\RS
R2 R?
1 2
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“ Isolated yield based on starting diol. ” Spectroscopic conversion of CO, mono-insertion products 1’ into cyclic carbonate 2. ¢ [Diol] = 0.1 M. ¢ CO,
from the sublimation of dry ice was used.
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Calculated Gibbs Free Energy AG/ kcal.mol”!

|
(R)-2a C

~— 00 oH (S)-2a
Stereochemistry Stereochemistry
retention (R)-1"a) ", inversion
HDBU Ts
| | NEt q
U 1l
_C NEtTsCl  CL N\ H c
0“0 OoH > 0" o . 0" o
K)\ - DBUHCI K/I\ - TsOHNEt; k/K

(R)-1'a, (R)-2a

Scheme 2 DFT computed pathways (6-31+G(d)/rvb97xD/cpcm =
chloroform/298 K protocol) and mechanism for the cyclisation of 1'a,
to 2a, as supported by experiments and calculations (see ESI Fig. S4+
for full details of calculations).

elimination pathway, with no racemisation or inversion of
stereochemistry being observed.

DFT calculations supported these conclusions and gave
supplementary insight into the selectivity. Scheme 2 illustrates
the computed pathways for the cyclisation of 1'a; to 2a. As
expected with a tosyl leaving group, the formation of the cyclic
carbonate is strongly favoured (AAG = —36.7 kcal mol %)
Additionally, the activation energy barriers for both the nucle-
ophilic addition/elimination and Syx2 ring-closing mechanisms
are similar and low enough to happen at room temperature
(AAG™ = +18.9 and +22.3 kcal mol ™ respectively). The tosyla-
tion of the second alcohol moiety is however more favoured
thermodynamically than that of the carbonate (AAG = —25.4 vs.
= —2.3 keal mol ™). Yet, the activation barrier for the tosylation
of the carbonate is lower than that of the alcohol moiety (AAG™
= +23.8 and +29.7 kcal mol ™" respectively). Hence, we believe
that the addition/elimination pathway, resulting in stereo-
chemical retention, is kinetically favoured over the Sy2 (AAG™
= +5.9 keal mol ™).

In conclusion, in the wider context of an ever-growing need
for innovative materials and CO, emissions mitigation and
utilisation, a novel one-pot procedure that uses safe and readily
available reagents yielded 6-membered cyclic carbonates
directly from abundant 1,3-diols and carbon dioxide under mild
conditions (room temperature and low pressure), and
compared well with toxic or expensive alternative methods.
Computational and experimental evidence shows that the
reaction proceeds through an addition/elimination pathway.

This journal is © The Royal Society of Chemistry 2015
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On-going work is now aiming at replacing chloroform for a
more environmental benign solvent and making the procedure
catalytic in order to reduce the amount of salts produced.
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of diol (0.5 g, 1 equiv.) in dry chloroform (1.7 M). After stirring at room temper-
ature for 2 hours, triethylamine (1 equiv.) was added dropwise to the resulting
viscous solution. A solution of TsCl in chloroform (1 equiv., 0.5 M) was then added
slowly and the mixture stirred overnight. Removal of volatiles in vacuo afforded an
oily residue, which was purified by column chromatography.
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