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A series of water soluble PEG based hyperbranched polymers were successfully synthesized by
homopolymerization of poly(ethylene glycol) diacrylate (PEGDA) (M, = 575 and 700 g mol™
respectively) via vinyl oligomer combination. The homopolymerization of diacrylate macromers

underwent a slow vinyl propagation combined with a polycondensation by coupling of reactive
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Accepted 7th April 2015 oligomers. At a high initiator-to-monomer ratio (e.g. 1: 2), high monomer conversions up to . were
achieved in concentrated reaction conditions (60% w/v) without gelation. The hyperbranched polymers

DOI: 10.1039/c5ra01253h obtained from homopolymerization of PEGDAs;s show concentration-dependent thermoresponsive
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Introduction

Controlled radical polymerization (CRP) of multivinyl mono-
mers (MVMs) has attracted considerable attention as it provides
possibilities to synthesize polymers with controlled 3D macro-
molecule structures, molecular weights, degree of branching
and crosslinking density. Since the “Strathclyde synthesis” was
introduced for the preparation of branched polymers,® the
majority of polymerizations involving MVMs have been carried
out in copolymerization systems containing a low percentage of
MVMs. Pioneering studies have been published by Armes's
group’™ and Matyjaszewski's group®™ reporting branched
polymers with long linear primary chains linked together. Until
recently, attention has been focused on the homopolymeriza-
tion of MVMs via CRP to produce polymers with linear,*
branched®** or cyclic structures.***® Homopolymerization had
not been widely explored previously because it is generally
accepted that the critical gelation happens when the average
number of crosslinkages (crosslinker in which both vinyl groups
have reacted) per primary chain exceeds unity if the primary
chains are uniform,'® according to Flory-Stockmayor's mean-
field theory. However, it has been shown by many experiments
that if the monomer conversion is kept incomplete and a portion
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of the divinyl cross-linker does not fully react, or is consumed by
intramolecular cyclization, gelation could be avoided. These
results provide us with two classical alternative polymer prod-
ucts, ie. either highly branched structure (no cyclization) at a
low conversion or cyclized products at a high conversion. Most
importantly, it has been realized by an increasing number of
researchers that intramolecular cyclization cannot be neglected
in the CRP of MVMs, including the homopolymerization and
copolymerization.””** The intramolecular cyclization could be
useful to create novel macromolecular structures, such as
knots**** or ladders.***> However, it consumes the vinyl func-
tional groups on the polymer chains and adds difficulties to the
syntheses of purely branched structures. Although many asym-
metrical divinyl monomers**~** were successfully employed for
the syntheses of hyperbranched polymers with pendant vinyl
groups, this approach suffers from its lack of versatility as it
implies tailor-synthesized asymmetrical divinyl monomers.

To avoid the ‘loops’ formed by the intramolecular cycliza-
tion, it is conceivable that an increase in polymer chain
concentration would favor the intermolecular branching. The
critical overlap concentration, c*, has been used to predict the
dominant interactions in the MVM system.'****® A concentra-
tion below c¢* implies the dominant interactions are intra-
molecular and a value above ¢* implies more intermolecular
branching. However, if chain concentration is raised by
reducing solvent proportion, the kinetic control for the CRP
could recede and gelation could occur in advance. Thus, we
sought to find another approach which is based on the increase
of the initiator concentration to quickly increase polymer chain
concentration. The advantages of high initiator concentration
are: firstly, the high ratio of initiator to divinyl monomer can
lead to extremely short primary chains and thus decrease the

RSC Adv., 2015, 5, 33823-33830 | 33823


http://crossmark.crossref.org/dialog/?doi=10.1039/c5ra01253h&domain=pdf&date_stamp=2015-04-10
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5ra01253h
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA005043

Open Access Article. Published on 07 April 2015. Downloaded on 1/17/2026 12:38:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

RSC Advances Paper
1 : 2/4/8 :
. Linear Branched
BBriB  PEGDAs7s or 700 PEGDA PEGDA
%Br é/: =9 nBr PMDETA= ,L\/\ /\/,L
N
0 Insitu DE-ATRP O I
fO/ Q  cucl,/PMDETA/AA 2  Q Q wZon o
AA=
? Butanone : /Z 2\ /HH
T=50°C
100r13 100r13 10 or 13
/ /i %j;
X W
%
_— + = [ \ \\x
e E ‘
Vinyl ollgomeﬁ \ g | \\A/'
combination Further /
growth
_ e
=z >
// / Further
( > combination
|
4
e Hyperbranched
e it
Scheme 1 Homopolymerization of PEGDA through vinyl oligomer combination.
chance of primary intramolecular cyclization at the early stage Aldrich), pentamethyldiethylenetriamine (PMDETA, 99%,

of reaction; secondly, the concurrent chain growth could create
a rapid increase in chain concentration for enhanced intermo-
lecular branching and thirdly, the high ratio of initiator to
divinyl monomer can delay the gelling point according to Flory-
Stockmayer's statistical theory'” in order to achieve a high
monomer conversion. Therefore, a new strategy ‘vinyl oligomer
combination’ has been developed for the preparation of
hyperbranched polymers through CRP of MVMs. In this
strategy, linear oligomers with pendant vinyl groups are formed
by the slow chain growth of divinyl monomers at an early stage
and as the reaction progresses these linear oligomer chains
combine through the pendant vinyl groups of other linear
oligomers to form highly branched polymers.

In this study, two poly(ethylene glycol) diacrylates (PEGDA)
(PEGDA;;5, average M,, = 575; PEGDA;, average M, = 700)
having different lengths of PEG spacers (n = 10 and 13
respectively, as shown in Scheme 1) were homopolymerized in a
concentrated solution ([PEGDA] = 60% w/v) via in situ deacti-
vation enhanced ATRP (DE-ATRP) to produce a series of water-
soluble hyperbranched polymers. The relative propensities for
intermolecular propagating/cross-linking reactions and intra-
molecular cyclization were assessed using gel permeation
chromatography (GPC)/viscometer and '"H NMR measurements.
Finally, the concentration-dependent phase transition behav-
iors of the obtained poly(PEGDA;;5)s were evaluated.

Experimental section

Materials

Poly(ethylene glycol) diacrylate (PEGDAs,5 and PEGDA;, 98%
Sigma-Aldrich), tert-butyl o-bromoisobutyrate (BBriB, 98%,

33824 | RSC Adv., 2015, 5, 33823-33830

Aldrich), copper(u) chloride (CuCl,, 97%, Aldrich), -ascorbic acid
(AA, 99%, Aldrich), d-chloroform (99.8%, Aldrich), 2-butanone
(HPLC grade, Aldrich), chloroform (HPLC grade, Aldrich) and
diethyl ether (ACS reagent grade, Aldrich) were used as received.

Synthesis of hyperbranched poly(PEGDA)

The polymers were prepared in two-neck round bottom flasks. 2-
Butanone, CuCl, (67.3 mg, 1 equiv.) and PMDETA (173 mg, 2
equiv.) were added into the flask, following the addition of the
required amount of PEGDA monomer and initiator. The
initiator-to-monomer ratios used are stated in Table 1, which are
1:2,1:4and1 : 8forboth poly(PEGDA;;5) and poly(PEGDA,,).
Oxygen was removed by bubbling argon through the solutions
for 20 min. AA solution (173 ul of 0.1 mg pl~* AA/H,O solution,
0.2 equiv.) was pipetted into the flasks under positive pressure of
argon before the flask was immersed in a pre-heated oil bath at
50 °C. The solution was stirred at 800 rpm and the polymeriza-
tion was conducted at 50 °C in an oil bath for the required
reaction time. The experiment was stopped by opening the flask
and exposing the catalyst to air. The solution was then diluted
with THF and precipitated into a large excess of cold diethyl ether
to remove the monomers. The precipitated mixture was dried
under laminar flow then re-dissolved in acetone, followed by
three times of passing through an Al,O3; column. The mixture
was then dried under vacuum.

Molecular weight determination by gel permeation
chromatography (GPC)

Samples were taken from the reaction mixture at specific time
intervals using a glass syringe with Luer needle under positive

This journal is © The Royal Society of Chemistry 2015
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Table1 Homopolymerization of PEGDA via in situ DE-ATRP, using tert-butyl a-bromoisobutyrate as initiator and 2-butanone as solvent with a

diacrylate concentration of 60% w/v at 50 °C

My (My/M,)
(kg mol ™)
Monomer  Yield® GPC- Vinyl content’  Branch ratio®  Initiator content”

Entry Diacrylate I:M® Time(h) conv.” (%) (%) GPCRI?  visco? (%) (%) (%) of

1 PEGDAs;s 1:2 4.5 95.6 68 403 (6.6) 531 (16.1) 37.3 62.7 411 0.40
2 1:4 6.0 94.1 65 153 (5.6) 279 (14.5) 52.7 47.3 27.8 0.34
3 1:8 6.0 76.9 54 94 (4.3) 177 (11.7) 61.8 38.2 19.0 0.32
4 PEGDA,y,, 1:2 4.5 90.5 45 53 (2.5) 71 (4.9) 40.7 59.3 442 0.35
5 1:4 6.0 93.2 50 132(8.8) 184 (11.1) 56.6 43.4 29.5 0.41
6 1:8 6.0 70.9 46 45 (3.2) 65 (3.8) 67.6 32.4 21.5 0.33

“ [M]/[1)/[CuCL,]/[PMDETA]/[AA] = 80/[I](=40; 20; 10)/1/2/0.2, M: polyethylene glycol diacrylate, I: tert-butyl a-bromoisobutyrate (BBriB), PMDETA:
1,1,4,7,7-pentamethyldiethylenetriamine, AA: r-ascorbic acid, solvent: 2-butanone. 5 Monomer conversion is determined by the integration of
polymer and monomer peaks in the GPC-RI trace. ¢ Diethyl ether-insoluble part. ¢ M, M, are determined by GPC equipped with triple
detectors using PMMA as standards in chloroform. ¢ Calculated by "H NMR as seen in Fig. 3 and eqn (S1) and (S2)./ Mole ratio of initiator/
PEGDA unit, calculated by "H NMR and eqn (S3). ¥ Mark-Houwink exponent .

pressure of argon. These aliquots were then diluted in chloro-
form and filtered through an Al,O; pipette for chromatography
followed by a 0.4 um filter before analysis. The molecular weight
and molecular weight distribution of each sample was deter-
mined using a GPC PL-50 (Agilent) instrument with triple
detectors (RI, viscometer and LS). Chromatography was per-
formed with tow sequential columns (30 cm PL gel Mixed-C
columns) at 40 °C using chloroform as eluent with a flow rate
of 1 ml min~'. The RI and viscosity detector were calibrated
with a series of 12 near-monodisperse PMMA standards (M,
from 690 to 1 944 000 g mol ™', Agilent).

Nuclear magnetic resonance (NMR) spectroscopy

The polymers were dissolved in CDCI; for "H NMR analysis. '"H
NMR analysis was carried out on a S4 300 MHz Bruker NMR
with MestReNova processing software. The chemical shifts were
referenced to the lock chloroform (7.26 ppm). The 'H NMR
spectrum confirmed the presence of each monomer in the
polymer structure and the presence of free vinyl groups.

Phase transition temperature measurement

The phase transition temperatures were determined in water by
turbidity measurement on a temperature-controlled UV-vis
spectrometer. The light transmittance of polymer aqueous
solutions of different concentrations was measured at 500 nm.
The phase transition temperatures were defined as the
temperature corresponding to 90% transmittance of aqueous
solution during the heating process.

Results and discussions

To facilitate the intermolecular branching, the molar ratios of
initiator to divinyl monomer were setas1:2,1:4and 1 : 8 for
both PEGDA;-; and PEGDA-,. The reaction conditions and the
characterization data of the polymer products were summarized
in Tables 1 and S1.7 It is known that in ATRP reaction, a high
initiator concentration will lead to a shift in equilibrium

This journal is © The Royal Society of Chemistry 2015

towards the active radicals. And this usually results in a high
concentration of radicals which terminate efficiently, leaving an
excess of X-Cu(u), known as the persistent radical effect (PRE).
To eliminate the termination, large amount of Cu(u) was
introduced initially to stabilize the equilibrium and keep the
radical concentration low. Therefore, despite of the high initi-
ator concentration, most of the initiators were in their dormant
state because of the enhanced deactivation. Meanwhile, 20% of
reducing agent and extra amount of ligand was used to (re)
generate Cu(1) and thus maintained the reaction rate to an
acceptable level. The polymer chain growth was monitored
using GPC at regular time intervals during the reaction (Fig. 1).
The traces showed similar evolution of molecule growth in the
reaction system. Multimodal peaks at the early stage (before
1.5 h) indicate the formation of monoadducts of monomer and
initiator as well as a certain portion of oligomers. The appear-
ance of more broadened peaks at later stages suggests that the
combination of lower molecular weight oligomers became the
dominant reaction pathway. It is likely that at later stages of the
reaction, when most of the monomers were already consumed,
the reaction conditions were more favorable for statistical
branching rather than for linear growth. Living character of the
growing chains was demonstrated by a peak shift in the GPC
trace from oligomers to larger molecules throughout the reac-
tion, while molecular weights and the polydispersity index
increased significantly (Table S17), indicating the formation of a
hyperbranched structure. It can be seen from the GPC trace that
the monomer conversion is high (Table 1), especially for the
higher ratio of initiator to monomer (1:2 and 1:4). By
precipitation in diethyl ether, the monomers and some lower
molecular weight polymers were removed, leaving only the
highly branched polymers with higher average molecular
weight (as seen from the insertion of Fig. 1). Thus, the molec-
ular weight of the final products (Table 1) is significantly higher
than that monitored during the reactions (Table S17). In order
to develop a useful method for the effective preparation of
branched polymers, it is desirable to find a reaction condition
which allows a higher monomer concentration to be used. Our

RSC Adv., 2015, 5, 33823-33830 | 33825
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Fig. 1 GPC traces of the polymerization mixtures taken at different reaction times for the homopolymerizations of poly(PEGDA)s at different
initiator-to-monomer ratios. The inserts are the GPC traces of the final products after purification.

attempts have demonstrated that both high monomer conver-
sion and hyperbranched polymer structure could be obtained
by homopolymerization of diacrylates with a high ratio of
initiator at a high monomer concentration (60% w/v).

Characterization of the obtained poly(PEGDA)s was con-
ducted by GPC/RI and GPC/viscometer to overcome the erro-
neous results caused by different hydrodynamic volumes of
molecules in different solvents. The weight-average molecular
weights for all of the poly(PEGDA)s - as determined by GPC/
viscometer - are apparently higher than those obtained from
GPC/RI (Table 1), indicating that the products possess highly
branched structures rather than linear structures. The Mark-
Houwink plots for the obtained poly(PEGDA)s and a linear
counterpart (Fig. 2) show that as the molecular weight
increases, the viscosity of the obtained poly(PEGDA) solutions
increases less than that of the linear poly(PEGMA) synthesized
by the same method. The Mark-Houwink exponents of poly-
(PEGDA)s are significantly low (« = 0.3-0.5), indicating a more
compact dense structure.

33826 | RSC Adv., 2015, 5, 33823-33830

"H-NMR analysis (Fig. 3 and eqn (S1)-(S3) in ESI{) for the
poly(PEGDA)s demonstrates the existence of a high amount of
vinyl functional groups at characteristic peaks between 6.5 ppm
and 5.7 ppm. The vinyl content and branch ratio is outlined in
Table 1. The vinyl content decreases reasonably with increasing
the initiator-to-monomer ratio because more vinyl groups are
consumed by the addition to the halogen-containing initiator at
the early stage and by the chain combination at the later stage.
The calculations also showed that these polymers possess a
high degree of branching, with the highest value of 62.7% for
poly(PEGDA;;s) 1:2 (Table 1). This value indicates that ~6
branching unit exists for every 10 PEGDA units linked together
in a -C-C- chain. The initiator contents of the polymers were
also summarized in Table 1. The ratios of the initiator/PEGDA
units were generally proportional to their initial feed ratios.
The polymers with initial feed ratios of 1:4 and 1 : 8 contain
higher initiator contents than the theoretical contents due to
the high initiation efficiency and the incomplete conversion of
PEGDA monomers. In contrast, the polymers with initial feed

This journal is © The Royal Society of Chemistry 2015
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ratios of 1:2 contain lower initiator contents than the theo-
retical contents possibly because of the consumption of initi-
ator from the termination reaction at the early stage due to the
high initiator concentration. The initiator content in the poly-
mer products is lower than the content of the branching unit for
all the poly(PEGDA)s, indicating that more than one connection
per primary chain exists and that there is still a certain number
of ‘loops’ existing in the polymer products. The formation of the
‘loops’ could be attributed to the secondary intramolecular
reaction at later stage when the local concentration of both
pendent vinyl and initiation site increased. The flexibility of the
PEGDA units and the increasing mobility of macromolecules at
later stage also might account for the intramolecular reaction.
The proportion of the ‘loops’ in the polymer can be calculated as
the proportion of the branching units over the initiator units. It
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is noteworthy that the proportions of ‘loops’ in poly(PEGDAs;5)s
(~20%) are higher than that in poly(PEGDA;)s (~15%), giving
the speculation that the diacrylate with shorter lengths of PEG
spacers may induce more intramolecular reaction due to higher
local concentration of pendent vinyl groups. Free vinyl groups
were also left within the poly(PEGDA)s (Fig. 3), which can be
used for post functionalization via thiol-ene click chemistry
approach.

Both poly(PEGDA;;5)s and poly(PEGDA;,)s were soluble in
polar solvents (including water and methanol) as well as in
many organic solvents (e.g. THF and chloroform). The products
obtained from PEGDA;y, show good solubility in aqueous
solution due to the longer PEG chains which can provide a
higher hydrophilicity to the molecules, whereas the products
from PEGDA;,;; were found to exhibit a characteristic
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thermoresponsive property in distilled water. When the
temperature was raised to a certain value, the polymers from
PEGDAs;;5s were precipitated out from water and settled into
another layer after several minutes. The polymers were also able
to reversely dissolve when the temperature dropped back. The
thermally induced phase separation behavior in water was
monitored by raising the temperature from 15 to 80 °C and
measuring the temperature at the onset of cloudiness. It is well
known that thermoresponsive polymer chains in solution adapt
an expanded coil conformation and they collapse at phase
transition temperature to form compact globules. The globules
aggregate in the absence of mechanisms that reduce surface
tension, subsequently causing turbidity and the formation of
visible particles.’” Many previous studies have explored the
phase transition temperature for PEG based polymers in a low
polymer concentration (typically 0.2% w/v). However, we found
that the phase transition temperature of the poly(PEGDA5;s5)s is
also strongly dependent on polymer concentration.*”

As shown in Fig. 4(a), the lower critical solution tempera-
tures (LCSTs) for the poly(PEGDA;,5)s with different initiator/
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monomer ratio (1:2, 1:4 and 1:8) appear at the polymer
concentration of ~2.5% w/v. The LCST values are 9 °C, 21 °C
and 31 °C for poly(PEGDAs,5) 1 : 2, poly(PEGDA;,s) 1:4 and
poly(PEGDA;;5) 1 : 8, respectively. The initiator end group and
the carbon-carbon backbone are hydrophobic components,
whereas the PEG chains are hydrophilic components. We
believe that the difference in LCST is mainly attributed to the
different hydrophobic/hydrophilic composition of the products,
since more PEGDA units would enhance the polymer-water
hydrogen bonding interaction and thus expand the temperature
range of miscibility, whereas more initiator end group or longer
backbone would lower the LCSTs by bringing higher thermo-
dynamic cost of solvation. It is worth mentioning that as the
backbone length increases, the number of PEG chains will also
increase and thus the influence of the backbone is less signifi-
cant than that of the initiator which makes the main hydro-
phobic contribution on different polymers.

It can be noted that the phase transition temperature for all
of the three poly(PEGDAs;;5)s changed with a similar trend, but
with different changing rates. The poly(PEGDAs;s) 1:4
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Fig. 4 Thermoresponsive properties of the obtained poly(PEGDAss)s: (a) phase transition temperature of the poly(PEGDAs7s)s in distilled water
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increased dramatically from 21 °C to 65 °C with the polymer
concentration raised from 2.5% to 60% w/v. However, the
increase is more gentle for the poly(PEGDA;s,s) 1:2 and the
poly(PEGDAs;5) 1:8. It is known that the phase transition
temperature of a polymer is dependent upon a series of factors
affecting solubility. And it has been reported that increasing
molecular weight (M,,) tends to depress the phase transition
temperature and broadens the phase transition lines due to an
increasing energy cost of solvation.*®**° This could explain why
the poly(PEGDA;,5) 1 : 2 which has a M,, of 403 kDa shows a
more steady line than the poly(PEGDA;;5) 1 : 4 which has a M,,
of 153 kDa. This tendency is well confirmed in Fig. 4(b), in
which the phase transition behavior of poly(PEGDA;;s) 1:4
with different M,, were studied. The polymers were prepared at
different time points of polymerization and summarized in
Table S2.f The branch ratios for these polymers were similar but
the molecular weight showed a significant difference. As can be
seen in Fig. 4(b), with an increase in M,, the phase transition
temperature drops slightly at each polymer concentration and
the phase transition line becomes broader.

The poly(PEGDAs;5) 1: 8 also showed a steady change of
phase transition temperature despite of having the lowest M,,.
This could be attributed to the longer hydrophobic backbone in
the poly(PEGDAs;;5) 1 : 8. It can be noted that the phase tran-
sition temperature for the poly(PEGDAs;5) 1 : 8 is maintained
between 30 °C to 40 °C for a wide range of concentration. This
phase transition property around body temperature holds great
potential for biomedical applications in various areas such as
smart hydrogels and drug delivery.

Conclusion

A series of water soluble hyperbranched polymers were
prepared by homopolymerization of PEGDA through enhanced
intermolecular branching. High monomer conversions (up to
96%) and hyperbranched polymer structure were both achieved
by increasing the ratio of initiator/monomer, which results in a
high chain concentration and a smaller chain dimension before
the crosslinking reaction occurs. The poly(PEGDA;)s show
good solubility in aqueous solution whereas the poly(PEGDA;-5)
s show a characteristic thermoresponsive property, which is
highly dependent on the polymer concentration and the poly-
mer composition. These water-soluble thermoresponsive vinyl
functional polymers have the potential for further modification
towards applications in drug delivery or biosensors. The poly-
merization strategy described here could be broadly applicable
to a large number of polymerization techniques and different
MVMs, favoring the production of veritable hyperbranched
polymers in one pot reactions.
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