Issue 15, 2015

Carbon-supported hollow palladium nanoparticles with enhanced electrocatalytic performance

Abstract

Carbon-supported palladium nanoparticles (NPs) with hollow interiors (hPdNPs/C) are fabricated via a facile approach. In this strategy, core–shell NPs with an Ag core and an Ag–Pd alloy shell (Ag@Ag–Pd) are first synthesized in oleylamine by a galvanic replacement reaction between Ag seed particles and Pd2+ ion precursors. Then the core–shell Ag@Ag–Pd NPs are loaded on the XC-72 carbon supports and refluxed in acetic acid to remove the original organic surfactant. The carbon-supported core–shell Ag@Ag–Pd NPs are subsequently agitated in saturated Na2S or NaCl solution for 24 h to eliminate the Ag component from the core and shell regions, leading to the formation of hPdNPs/C. Specifically, the hPdNPs/C generated by NaCl treatment exhibit superior catalytic activity and durability for formic acid oxidation reaction (FAOR) and oxygen reduction reaction (ORR), compared with the commercial Pd/C catalysts from Johnson Matthey, mainly due to the high electrochemically active surface areas (ECSAs) of the hollow structure, whereas the hPdNPs/C obtained by Na2S treatment display very poor catalytic performance due to the serious poisoning induced by S2− adsorption.

Graphical abstract: Carbon-supported hollow palladium nanoparticles with enhanced electrocatalytic performance

Supplementary files

Article information

Article type
Paper
Submitted
12 Nov 2014
Accepted
07 Jan 2015
First published
07 Jan 2015

RSC Adv., 2015,5, 10944-10950

Carbon-supported hollow palladium nanoparticles with enhanced electrocatalytic performance

D. Chen, P. Cui, H. He, H. Liu, F. Ye and J. Yang, RSC Adv., 2015, 5, 10944 DOI: 10.1039/C4RA14353A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements