

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

Cite this: *Org. Chem. Front.*, 2015, **2**, 1546

DOI: 10.1039/c5qo90045j
rsc.li/frontiers-organic

Correction: Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations

Jun Gu,^a Xuan Wang,^a Weichao Xue^b and Hegui Gong^{*a,b}

Correction for 'Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations' by Jun Gu *et al.*, *Org. Chem. Front.*, 2015, **2**, 1411–1421.

On page 1416, due to an incorrect conclusion being drawn regarding the rate-determining steps, the authors regret that the following sentence in the original text:

Therein the reductive elimination becomes rate-determining with an energy barrier of ~ 10 kcal mol $^{-1}$. Given the small energy difference between the possible mechanisms, subtle changes of the reaction parameters (*e.g.* concentrations) may favor one of the reaction pathways.

Should be corrected to:

Therein the rate-determining steps may arise from oxidative addition of aryl halides to the low valent Ni complexes (~ 9 – 18 kcal mol $^{-1}$ of energy barriers). The energy barriers for the reductive elimination steps were ~ 10 kcal mol $^{-1}$. Calculations using the UB3LYP/LANL2DZ method generated a small energy difference (14.7 *vs* 15.7 kcal mol $^{-1}$) in the rate-determining steps between the two possible mechanisms. Subtle changes of the reaction parameters (*e.g.* concentrations) may favor one of the reaction pathways.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aSchool of Materials Science and Engineering, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China

^bDepartment of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China. E-mail: hegui_gong@shu.edu.cn