ORGANIC CHEMISTRY

RESEARCH ARTICLE

View Article Online View Journal | View Issue

Cite this: Org. Chem. Front., 2015, 2, 1035

Carboxylate-assisted ruthenium(II)-catalyzed C-H activations of monodentate amides with conjugated alkenes[†]

Jie Li and Lutz Ackermann*

Received 22nd May 2015, Accepted 17th June 2015 DOI: 10.1039/c5qo00167f rsc.li/frontiers-organic Carboxylate assistance enabled efficient and chemoselective ruthenium(III)-catalyzed hydroarylations of α,β -unsaturated ketones *via* C–H activation on monodentate benzamides. Furthermore, the versatile ruthenium(III) catalyst set the stage for oxidative C–H functionalization on acetanilides, furnishing diversely decorated quinolines in a step-economical fashion.

Transition metal-catalyzed C-H functionalizations have been recognized as increasingly viable tools for the step-economical formation of C-C bonds.¹ Particularly, metal-catalyzed hydroarylation reactions² via C-H activation are attractive because of their excellent atom-economy.³ Early findings by Lewis and Smith⁴ as well as Murai and co-workers^{5,6} indicated the considerable power of ruthenium(0) complexes as effective catalysts for hydroarylations through chelation-assisted C-H activation, which were proposed to proceed by oxidative addition of the C-H bond. Practical advances were achieved by Darses and Genet and co-workers through the in situ formation of [RuH₂(PPh₃)₄] from [RuCl₂(*p*-cymene)]₂, NaO₂CH and PPh₃,⁷ thus avoiding sensitive and expensive ruthenium(0) complexes, such as $[Ru_3(CO)_{12}]$, $[RuH_2(PPh_3)_4]$, $[Ru(CO)_2(PPh_3)_3]$, or [RuH₂(CO)(PPh₃)₃]. As a part of our ongoing program on transition-metal-catalyzed C-H functionalizations,8 we recently developed ruthenium(II)-catalyzed hydroarylations via carboxylate-assisted C-H cleavages.9 Despite of these remarkable advances, the synthetically useful family of electron-deficient olefins,¹⁰ such as α , β -unsaturated ketones were thus far not viable substrates. While such transformations were accomplished with among others relatively expensive rhodium¹¹ or rhenium¹² catalysts, notable progress with ruthenium(II) complexes was very recently made by Chatani and co-workers highlighting that hydroarylations of α , β -unsaturated ketones could be realized, given that substrates displaying bidentate directing groups were employed.^{13,14} Herein, we report on an expedient access to β -aryl ketones and quinolines through ruthenium(II)catalyzed hydroarylations and oxidative cascade annulations

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.

E-mail: Lutz.Ackermann@chemie.uni-goettingen.de

†Electronic supplementary information (ESI) available. See DOI: 10.1039/ c5qo00167f with α , β -unsaturated ketones, respectively. It is noteworthy that the ruthenium(II)-catalyzed C–H activation strategy was realized with synthetically useful amides as atom-economical mono-dentate directing groups.

We initiated our studies by testing the feasibility of the envisioned ruthenium(π)-catalyzed C-H alkylation of benzamide **1a** with methyl vinyl ketone (**2a**) (Table 1). Interestingly, RuCl₂(PPh₃)₃, which was previously used for hydroarylations with bidentate directing groups,¹³ unfortunately, failed to deliver the desired product **3aa** with the assistance of the simple amide **1a** (entries 1 and 2). Similar trends were

Table 1 Optimization of ruthenium(II)-catalyzed C-H alkylation with benzamide $1a^{\rm a}$

([RuCl ₂ (<i>p</i> -cymene)] ₂ (5.0 mol %) additives solvent, 120 °C, 20 h	HN ^{/Me} O Me	
	1a	2a		3aa	0
Entry	Additive A	[mol%]	Additive B [equiv.]	Solvent	Yield ^b [%]
1	NaOAc (30)	_	PhMe	c
2	NaOAc (30)	_	H_2O	c
3	$KPF_6(20)$, ,	_	H_2O	_
4	$KPF_6(20)$		NaOAc (2.00)	H_2O	_
5	$PPh_3(15)$		$NaO_2CH(0.30)$	PhMe	_
6	KOAc (30)		HOAc (1.00)	H_2O	64
7	KO ₂ CMes	(30)	$MesCO_2H(0.30)$	H_2O	69
8	KO ₂ CMes	(30)	$MesCO_2H(1.00)$	H_2O	80
9	KO ₂ CMes	(30)	_	H_2O	51
10	KO ₂ CMes	(30)	$MesCO_{2}H(1.00)$	H_2O	d
11	—		$MesCO_2H(1.00)$	H_2O	29

 a General reaction conditions: **1a** (0.50 mmol), **2a** (1.00 mmol), [RuCl₂(*p*-cymene)]₂ (5.0 mol%), KO₂CMes (30 mol%), MesCO₂H (1.00 equiv.), solvent (2.0 mL), under N₂, 120 °C, 20 h. ^{*b*} Isolated yield. ^{*c*} RuCl₂(PPh₃)₃ (10 mol%). ^{*d*} Without [Ru].

Research Article

observed when employing $[RuCl_2(p-cymene)]_2$ in combination with various additives (entries 3–5).

A significant improvement was realized using cocatalytic amounts of KOAc and stoichiometric amounts of HOAc as the additives with H_2O as inexpensive and nontoxic reaction medium^{15,16} (entry 6). Improved yields of the target compound **3aa** were obtained when employing the bulky MesCO₂K and MesCO₂H as the cocatalysts (entry 7). Here, the use of stoichiometric MesCO₂H provided the optimal results (entry 8). Furthermore, it is worth noting that the omission of either of the two additives resulted in significantly reduced yields of the alkylated benzamide **3aa** (entries 9–11).

With the optimized reaction conditions in hand, we tested its versatility in the C–H alkylation with weakly coordinating^{17,18} amides **1** (Scheme 1). Notably, in these chelationassisted direct C–H alkylations, both electron-rich as well as electron-poor *para*-substituted benzamides **1a–1f** were identified as viable substrates. Moreover, a variation of the substitution pattern on the amide nitrogen with benzyl (**1g–i**), cyclohexyl (**1j**) or methoxyethyl (**1k**) groups, did not significantly alter the catalytic efficacy, while primary amides proved to be unsuitable substrates. More sterically hindered *ortho*-substituted benzamide **11** was successfully alkylated as well, albeit the desired product **3la** was obtained in a slightly reduced yield. The widely applicable ruthenium(π) catalyst was not limited to aromatic benzamides **1**, but the reaction of hetero-

Scheme 1 Scope of the ruthenium(u)-catalyzed hydroarylation via C–H activation.

Scheme 2 Site-selective hydroarylations with meta-substituted arenes 1a.

aromatic indole derivative **1m** also led to the site-selective C–H alkylation. In addition, among a representative set of α , β -un-saturated ketones, vinyl alkyl ketones **2b** and **2c** gave the alkylated products **3db** and **3dc**, respectively, in high yields. Interestingly, acetanilide **4a** was identified as a suitable substrate for hydroarylations likewise.

Intramolecular competition experiments with *meta*-methylor *meta*-trifluoromethyl-substituted arenes **1n–1p** were largely governed by steric interactions to site-selectively deliver the alkylated products **3na–3pa** at the sterically less hindered position (Scheme 2). In contrast, hydroarylations of the *meta*-substituted benzamides **1q** and **1r** featured a considerable *ortho*orienting effect¹⁹ of the heteroatom substituent, thus leading to the site-selective formation of the sterically more hindered compounds **3qa** and **3ra**, respectively, as the sole products.

Remarkably, the well-defined, single-component $[Ru(MesCO_2)_2(p\text{-cymene})]^{20}$ catalyst 7 furnished the desired product, which illustrated the importance of carboxylate assistance (Scheme 3).²¹

An intermolecular competition experiment between arenes with different directing groups clearly highlighted that amides **1** are more powerful than ketone **8** in the chelation-assisted C-H alkylation (Scheme 4).

Given the unique reactivity of our carboxylate-assisted ruthenium(II) catalysis, we performed mechanistic studies to

Scheme 3 C-H alkylation with single-component ruthenium(1) biscarboxylate catalyst 7.

Scheme 4 Competition experiment between amide 1 and ketone 8.

unravel its mode of action. To this end, strong evidence for a H/D exchange was gathered from C–H functionalization with starting material **1b** in the presence of the deuterated solvent D_2O (Scheme 5).^{9c} This observation can be rationalized in terms of a reversible C–H metalation step in the ruthenium(π)-catalyzed direct hydroarylation.

Moreover, the ruthenium-catalyzed C–H alkylation with isotopically labeled substrate [D₅]-**1a** showed a negligible kinetic isotope effect (KIE) of $k_{\rm H}/k_{\rm D} \approx 1.3$ for the intermolecular KIE experiment (Scheme 6). This data again suggests the C–H bond metalation not to be the rate-determining step.

Based on these experimental findings and previous mechanistic insight, we propose a plausible catalytic cycle to involve an initial reversible C–H bond activation by carboxylate assistance, subsequent migratory insertion, and rate-determining reductive elimination (Scheme 7).

Inspired by our previous work on oxidative alkenylations,²² we subsequently probed the oxidative annulation of differently decorated acetanilides **4** with α , β -unsaturated ketone **2a** (Scheme 8). Importantly, the catalytic system was not limited to the use of electron-rich *N*-phenylacetamides **4a–4c**, but also allowed for the transformation of electron-poor substrates **4**. Valuable electrophilic functional groups, such as fluoro,

Scheme 7 Proposed catalytic cycle for carboxylate-assisted hydroarylation.

Scheme 8 Scope of the oxidative alkene annulations with substituted acetanilides 4.

Scheme 9 Plausible catalytic cycle.

chloro, bromo and ester substituents, were well tolerated by the versatile ruthenium(π) catalyst. An intramolecular competition experiment with substrate **4h** bearing a *meta*-methyl substituent showed that the cyclization was governed by steric interactions to deliver the product **6ha** in high yield.

Based on our previous studies,²² we propose an initial C–H ruthenation to yield cycloruthenated complex **9** (Scheme 9). Thereafter, a migratory insertion of alkene **2** occurs to generate the intermediate **10**. Then, β -hydride-elimination furnishes the product of oxidative alkenylation **11**, while the catalytically active ruthenium(II) complex is regenerated by a sequence of reductive elimination and reoxidation. The desired quinoline **6** is obtained through an intramolecular nucleophilic attack of the anilide in intermediate **11**, followed by β -elimination of acetic acid to deliver the desired product **6**.

Conclusions

In summary, we have developed unprecedented ruthenium(II)catalyzed hydroarylations and oxidative annulations on benzamides 1 and acetanilides 4 with α , β -unsaturated ketones 2 through C–H activation. The use of benzamides with monodentate directing groups renders our approach highly atomeconomical, and the aqueous reaction conditions makes the process environmentally-benign. Detailed experimental mechanistic studies indicated a facile H/D-exchange. In addition, a cascade oxidative annulation of α , β -unsaturated ketones **2a** with acetanilides **4** was developed to deliver decorated quinolines **6** in a highly step-economic fashion.

Acknowledgements

Support by the European Research Council under the European Community's Seventh Framework Program (FP7 2007–2013)/ERC Grant agreement no. 307535, and the Chinese Scholarship Council (fellowship to J.L.) is gratefully acknowledged.

Notes and references

- (a) X. Cui, J. Mo, L. Wang and Y. Liu, Synthesis, 2015, 439– 459; (b) L. Ackermann, Org. Process Res. Dev., 2015, 19, 260– 269; (c) A. F. Noisier and M. A. Brimble, Chem. Rev., 2014, 114, 8775–8806; (d) X.-S. Zhang, K. Chen and Z.-J. Shi, Chem. Sci., 2014, 5, 2146–2159; (e) V. S. Thirunavukkarasu, S. I. Kozhushkov and L. Ackermann, Chem. Commun., 2014, 50, 29–39; (f) N. Kuhl, N. Schröder and F. Glorius, Adv. Synth. Catal., 2014, 356, 1443–1460; (g) P. B. Arockiam, C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012, 112, 5879– 5918; (h) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215–1292; (i) L. Ackermann, R. Vicente and A. Kapdi, Angew. Chem., Int. Ed., 2009, 48, 9792–9826; (j) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem., Int. Ed., 2009, 48, 5094–5115; and references cited therein.
- 2 (a) K. Gao and N. Yoshikai, Acc. Chem. Res., 2014, 47, 1208–1219; (b) N. A. Foley, J. P. Lee, Z. Ke, T. B. Gunnoe and T. R. Cundari, Acc. Chem. Res., 2009, 42, 585–597; (c) A. M. Echavarren and C. Nevado, Synthesis, 2005, 167–182; F. Kakiuchi and N. Chatani, Adv. Synth. Catal., 2003, 345, 1077–1101.
- 3 B. M. Trost, Science, 1991, 254, 1471-1477.
- 4 L. N. Lewis and J. F. Smith, *J. Am. Chem. Soc.*, 1986, **108**, 2728–2735.
- 5 S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda and N. Chatani, *Nature*, 1993, **366**, 529–531.
- 6 N. Chatani, T. Asaumi, S. Yorimitsu, T. Ikeda, F. Kakiuchi and S. Murai, *J. Am. Chem. Soc.*, 2001, **123**, 10935–10941.
- 7 (a) M.-O. Simon, R. Martinez, J.-P. Genet and S. Darses, J. Org. Chem., 2010, 75, 208–210; (b) R. Martinez, M. O. Simon, R. Chevalier, C. Pautigny, J. P. Genet and S. Darses, J. Am. Chem. Soc., 2009, 131, 7887–7895; (c) R. Martinez, J. P. Genet and S. Darses, Chem. Commun., 2008, 3855–3857; (d) R. Martinez, R. Chevalier, S. Darses and J. P. Genet, Angew. Chem., Int. Ed., 2006, 45, 8232–8235.
- 8 (a) L. Ackermann, Acc. Chem. Res., 2014, 47, 281–295;
 (b) L. Ackermann, Isr. J. Chem., 2010, 50, 652–663;
 (c) L. Ackermann, Synlett, 2007, 507–526.
- 9 (a) M. Schinkel, L. Wang, K. Bielefeld and L. Ackermann, Org. Lett., 2014, 16, 1876–1879; (b) M. Schinkel, J. Wallbaum, S. I. Kozhushkov, I. Marek and L. Ackermann,

Org. Lett., 2013, **15**, 4482–4484; (*c*) M. Schinkel, I. Marek and L. Ackermann, *Angew. Chem., Int. Ed.*, 2013, **52**, 3977–3980.

- 10 F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani and S. Murai, *Bull. Chem. Soc. Jpn.*, 1995, 68, 62–83.
- 11 (a) C. M. Filloux and T. Rovis, J. Am. Chem. Soc., 2015, 137, 508-517; (b) L. Yang, B. Qian and H. Huang, Chem. - Eur. J., 2012, 18, 9511-9515; (c) J. Ryu, S. Hwan Cho and S. Chang, Angew. Chem., Int. Ed., 2012, 51, 3677-3681; (d) F. W. Patureau, T. Besset and F. Glorius, Angew. Chem., Int. Ed., 2011, 50, 1064-1067; (e) L. Yang, C. A. Correia and C. J. Li, Org. Biomol. Chem., 2011, 9, 7176-7179; (f) F. W. Patureau and F. Glorius, J. Am. Chem. Soc., 2010, 132, 9982-9983; (g) D. A. Colby, R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc., 2006, 128, 5604-5605; (h) S.-G. Lim, J.-A. Ahn and C.-H. Jun, Org. Lett., 2004, 6, 4687-4690. For further transition metal catalysts, see also: (i) T. Shibata and H. Takano, Org. Chem. Front., 2015, 2, 383-387; (j) S. Pan, N. Ryu and T. Shibata, Adv. Synth. Catal., 2014, 356, 929-933; (k) Y. Kommagalla, K. Srinivas and C. V. Ramana, Chem. - Eur. J., 2014, 20, 7884-7889; (1) B. Zhou, P. Ma, H. Chen and C. Wang, Chem. Commun., 2014, 50, 14558-14561; (m) T. Shibata and T. Shizuno, Angew. Chem., Int. Ed., 2014, 53, 5410-5413; and references cited therein.
- 12 (a) H. Jin, Z. Zhu, N. Jin, J. Xie, Y. Chenga and C. Zhu, Org. Chem. Front., 2015, 2, 378–382; (b) Y. Kuninobu,
 K. Kikuchi, Y. Tokunaga, Y. Nishina and K. Takai, Tetrahedron, 2008, 64, 5974–5981; (c) Y. Kuninobu, Y. Nishina,
 K. Okaguchi, M. Shouho and K. Takai, Bull. Chem. Soc. Jpn., 2008, 81, 1393–1401.

- 13 G. Rouquet and N. Chatani, Chem. Sci., 2013, 4, 2201-2208.
- 14 For selected examples of using bidentate directing groups, see: (a) Q. Gu, H. H. Al Mamari, K. Graczyk, E. Diers and L. Ackermann, *Angew. Chem., Int. Ed.*, 2014, 53, 3868–3871;
 (b) W. Song, S. Lackner and L. Ackermann, *Angew. Chem., Int. Ed.*, 2014, 53, 2477–2480; (c) Y. Aihara and N. Chatani, *Chem. Sci.*, 2013, 4, 664–670; (d) V. G. Zaitsev, D. Shabashov and O. Daugulis, *J. Am. Chem. Soc.*, 2005, 127, 13154–13155.
- 15 B. Li and P. H. Dixneuf, *Chem. Soc. Rev.*, 2013, **42**, 5744–5767.
- 16 R. N. Butler and A. G. Coyne, *Chem. Rev.*, 2010, **110**, 6302– 6337.
- 17 S. De Sarkar, W. Liu, S. I. Kozhushkov and L. Ackermann, *Adv. Synth. Catal.*, 2014, **356**, 1461–1479.
- 18 K. M. Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012, 45, 788–802.
- 19 E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady and R. N. Perutz, *Acc. Chem. Res.*, 2011, 44, 333–348.
- 20 (a) L. Ackermann, R. Vicente and A. R. Kapdi, Angew. Chem., Int. Ed., 2009, 48, 9792–9826; (b) L. Ackermann, J. Pospech and H. K. Potukuchi, Org. Lett., 2012, 14, 2146– 2149; (c) S. Warratz, C. Kornhaaß, A. Cajaraville, B. Niepötter, D. Stalke and L. Ackermann, Angew. Chem., Int. Ed., 2015, 54, 5513–5517.
- 21 L. Ackermann, Chem. Rev., 2011, 111, 1315–1345.
- 22 Selected examples: (a) J. Li, M. John and L. Ackermann, *Chem. - Eur. J.*, 2014, 20, 5403-5408; (b) L. Ackermann, L. Wang, R. Wolfram and A. V. Lygin, *Org. Lett.*, 2012, 14, 728-731; a reiew: (c) S. I. Kozhushkov and L. Ackermann, *Chem. Sci.*, 2013, 4, 886-896.