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Transition metal-catalyzed C-H functionalizations have been
recognized as increasingly viable tools for the step-economical
formation of C-C bonds." Particularly, metal-catalyzed hydro-
arylation reactions® via C-H activation are attractive because
of their excellent atom-economy.® Early findings by Lewis
and Smith* as well as Murai and co-workers™® indicated the
considerable power of ruthenium(0) complexes as effective
catalysts for hydroarylations through chelation-assisted C-H
activation, which were proposed to proceed by oxidative
addition of the C-H bond. Practical advances were achieved by
Darses and Genet and co-workers through the in situ formation
of [RuH,(PPh;),] from [RuCl,(p-cymene)],, NaO,CH and PPh;,”
thus avoiding sensitive and expensive ruthenium(0) complexes,
such as [Ruz(CO);,], [RuH,(PPhj),], [Ru(CO),(PPhs);], or
[RuH,(CO)(PPh;);]. As a part of our ongoing program on tran-
sition-metal-catalyzed C-H functionalizations,® we recently
developed ruthenium(u)-catalyzed hydroarylations via carboxy-
late-assisted C-H cleavages.” Despite of these remarkable
advances, the synthetically useful family of electron-deficient
olefins,'® such as a,f-unsaturated ketones were thus far not
viable substrates. While such transformations were accom-
plished with among others relatively expensive rhodium'' or
rhenium'? catalysts, notable progress with ruthenium(i) com-
plexes was very recently made by Chatani and co-workers high-
lighting that hydroarylations of «,f-unsaturated ketones could
be realized, given that substrates displaying bidentate directing
groups were employed.">"* Herein, we report on an expedient
access to p-aryl ketones and quinolines through ruthenium/(u)-
catalyzed hydroarylations and oxidative cascade annulations
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Carboxylate-assisted ruthenium(i)-catalyzed
C-H activations of monodentate amides with
conjugated alkenes+

Carboxylate assistance enabled efficient and chemoselective ruthenium(i)-catalyzed hydroarylations of
o,p-unsaturated ketones via C—H activation on monodentate benzamides. Furthermore, the versatile
ruthenium(n) catalyst set the stage for oxidative C—H functionalization on acetanilides, furnishing diversely
decorated quinolines in a step-economical fashion.

with o,f-unsaturated ketones, respectively. It is noteworthy
that the ruthenium(u)-catalyzed C-H activation strategy was
realized with synthetically useful amides as atom-economical
mono-dentate directing groups.

We initiated our studies by testing the feasibility of the
envisioned ruthenium(u)-catalyzed C-H alkylation of benz-
amide 1a with methyl vinyl ketone (2a) (Table 1). Interestingly,
RuCl,(PPh3);, which was previously used for hydroarylations
with bidentate directing groups,'® unfortunately, failed to
deliver the desired product 3aa with the assistance of the
simple amide 1a (entries 1 and 2). Similar trends were

Table 1 Optimization of ruthenium(i)-catalyzed C-H alkylation with
benzamide 1a”

_Me [RuCly(p-cymene)], _Me
HN (5.0 mol %) HN
0 additives o
O™y e
H solvent, 120 °C, 20 h Me
o
1a 2a 3aa ©

Entry  Additive A [mol%] Additive B [equiv.] Solvent Yield” [%)]
1 NaOAc (30) — PhMe  —°
2 NaOAc (30) — H,0 —°
3 KPF; (20) — H,0 —
4 KPF (20) NaOAc (2.00) H,0 —
5 PPh; (15) NaO,CH (0.30) PhMe  —
6 KOAc (30) HOAc (1.00) H,0 64
7 KO,CMes (30) MesCO,H (0.30)  H,O 69
8 KO,CMes (30) MesCO,H (1.00)  H,0 80
9 KO,CMes (30) — H,0 51
10 KO,CMes (30) MesCO,H (1.00)  H,O —
11 — MesCO,H (1.00) H,0 29

“General reaction conditions: 1a (0.50 mmol), 2a (1.00 mmol),
[RuCl,(p-cymene)], (5.0 mol%), KO,CMes (30 mol%), MesCO,H (1.00
equiv.), solvent (2.0 mL), under N,, 120 °C, 20 h. ’Isolated yield.
¢ RuCl,(PPh;); (10 mol%). ¢ Without [Ru].
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observed when employing [RuCl,(p-cymene)], in combination
with various additives (entries 3-5).

A significant improvement was realized using cocatalytic
amounts of KOAc and stoichiometric amounts of HOAc as the
additives with H,O as inexpensive and nontoxic reaction
medium">'® (entry 6). Improved yields of the target compound
3aa were obtained when employing the bulky MesCO,K and
MesCO,H as the cocatalysts (entry 7). Here, the use of stoichio-
metric MesCO,H provided the optimal results (entry 8). Fur-
thermore, it is worth noting that the omission of either of the
two additives resulted in significantly reduced yields of the
alkylated benzamide 3aa (entries 9-11).

With the optimized reaction conditions in hand, we tested
its versatility in the C-H alkylation with weakly coordinat-
ing'”'® amides 1 (Scheme 1). Notably, in these chelation-
assisted direct C-H alkylations, both electron-rich as well as
electron-poor para-substituted benzamides 1a-1f were identi-
fied as viable substrates. Moreover, a variation of the substi-
tution pattern on the amide nitrogen with benzyl (1g-i),
cyclohexyl (1j) or methoxyethyl (1k) groups, did not signifi-
cantly alter the catalytic efficacy, while primary amides proved
to be unsuitable substrates. More sterically hindered ortho-sub-
stituted benzamide 11 was successfully alkylated as well, albeit
the desired product 3la was obtained in a slightly reduced
yield. The widely applicable ruthenium(u) catalyst was not
limited to aromatic benzamides 1, but the reaction of hetero-

[RuCly(p-cymene)]» _R?

(5.0 mol %)
r3 MesCOK (30 mol %) =~ | o
W MesCOzH H,O Y R®

120°C, Ny, 20h R

3 o
_Me _Bn _Cy
HN HN HN
o] o o
Me Me Me
R R Me
o) o) o
R=H (3aa) 80% R =OMe (3ga): 68% 3ja: 70%
R = Me (3ba): 70% R=F(3ha) 73%
R = OMe (3ca): 80% R=Cl3ia): 62%
R = Ph (3da). 79%
R=CF; (3ea): 73%
R = Br (3fa): 81%

OMe Me
HN/\/ HN™ HN
o
[e]

O Ol
M M
Me e e ’I‘ N
o (o] Me
3ka: 58% 3la: 45% 3ma: 50%
HN,Me HN,Me MeYO
NH
[¢] [¢]
/Cé\’rCy /@é\'r n-Pent /@L/\[f Me
Ph Ph Me
[e] [¢] [¢]
3db: 45% 3dc: 50% 5aa: 47%

Scheme 1 Scope of the ruthenium(i)-catalyzed hydroarylation via C—H
activation.
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[RuCly(p-cymene)], HN/RZ
(5.0 mol %) ;
o MesCOK (30 mol %) R °
\@ /\ﬂ/ MesCOzH Hx0 Me
120 °C, Ny, 20 h
2a 3 °©
_Me _Bn
HN HN
R Me
o o
Me Me
o] o]
R = Me (3na): 62% 3pa: 64%
R = CF; (30a): 62%
_Me _Me
HN HN
o o
Me Me
o]
F ) o o
3qa: 77% 3ra: 80%

Scheme 2 Site-selective hydroarylations with meta-substituted arenes 1a.

aromatic indole derivative 1m also led to the site-selective C-H
alkylation. In addition, among a representative set of «,f-un-
saturated ketones, vinyl alkyl ketones 2b and 2c gave the alkyl-
ated products 3db and 3dec, respectively, in high yields.
Interestingly, acetanilide 4a was identified as a suitable sub-
strate for hydroarylations likewise.

Intramolecular competition experiments with meta-methyl-
or meta-trifluoromethyl-substituted arenes 1n-1p were largely
governed by steric interactions to site-selectively deliver the
alkylated products 3na-3pa at the sterically less hindered posi-
tion (Scheme 2). In contrast, hydroarylations of the meta-sub-
stituted benzamides 1q and 1r featured a considerable ortho-
orienting effect’® of the heteroatom substituent, thus leading
to the site-selective formation of the sterically more hindered
compounds 3qa and 3ra, respectively, as the sole products.

Remarkably, the well-defined, single-component
[Ru(MesCO,),(p-cymene)]*® catalyst 7 furnished the desired
product, which illustrated the importance of carboxylate assist-
ance (Scheme 3)."

An intermolecular competition experiment between arenes
with different directing groups clearly highlighted that amides
1 are more powerful than ketone 8 in the chelation-assisted
C-H alkylation (Scheme 4).

Given the unique reactivity of our carboxylate-assisted
ruthenium(u) catalysis, we performed mechanistic studies to

Meo—©—i-Pr

|
.Me _Rui-g .Me
HN Mes”™ "O" NgP—pieq HN
(o] (7, 10 mol %) (o)
. /\H/Me
H MesCO,H, H,O Me
o 120 °C, 20 h
(0]
1a 2a 3aa: 76%

Scheme 3 C-H alkylation with single-component ruthenium(i) biscarb-
oxylate catalyst 7.
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_Me _Me
HN HN
2a (1.0 equiv)
o [RUCl,(p-cymene)], 0
Ve " (5.0 mol %) Me Me
1b MesCOK (30 mol %) 3ba: 39% o
MesCO,H
+ +
Me H,0, 120 °C, 20 h Me
Yo o
Me
Me H Me
8 o

each 0.5 mmol

Scheme 4 Competition experiment between amide 1 and ketone 8.

unravel its mode of action. To this end, strong evidence for a
H/D exchange was gathered from C-H functionalization with
starting material 1b in the presence of the deuterated solvent
D,O (Scheme 5).°° This observation can be rationalized in
terms of a reversible C-H metalation step in the ruthenium(u)-
catalyzed direct hydroarylation.

Moreover, the ruthenium-catalyzed C-H alkylation with iso-
topically labeled substrate [Ds]-1a showed a negligible kinetic
isotope effect (KIE) of ky/kp =~ 1.3 for the intermolecular KIE
experiment (Scheme 6). This data again suggests the C-H
bond metalation not to be the rate-determining step.

D: 94%
l _Me
H/D HN
. o D: 74%
2a (2.0 equiv) g
[RuCly(p-cymene)], e Mf\
_Me (5.0 mol %) o
: o]
HoHN MesCO,K (30 mol %) D:61% D: 70%
/@o MesCO,H [Dn]-3ba: 78%
+
D,0
Me H 120°C, 20 h D: 97%
1b l
_Ne
H/D HN
o]
Me HD <— D:97%
[Dn]-1b: 17%
Scheme 5 H/D exchange experiment.
2a (1.0 equiv)
[RuCly(p-cymene)],
_Me (5.0 mol %) _Me
Hi MesCO,K (30 mol %) HN
= o} MesCO,H = o)
HsDs—_ | DuH—_ |
X H,0, 120 °C, 1.0 h X Me
independent experiments o
1a/[Ds]-1a KIE~1.3 3aa/[D,]-3aa

Scheme 6 Kinetic isotope effect (KIE) studies.
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Based on these experimental findings and previous
mechanistic insight, we propose a plausible catalytic cycle to
involve an initial reversible C-H bond activation by carboxylate
assistance, subsequent migratory insertion, and rate-determin-
ing reductive elimination (Scheme 7).

Inspired by our previous work on oxidative alkenylations,**
we subsequently probed the oxidative annulation of differently
decorated acetanilides 4 with a,p-unsaturated ketone 2a
(Scheme 8). Importantly, the catalytic system was not limited
to the use of electron-rich N-phenylacetamides 4a-4c, but also
allowed for the transformation of electron-poor substrates 4.
Valuable electrophilic functional groups, such as fluoro,

Hn-Me o

- oLy
I
R H H
1

MesCO,H

MesCO,H

i-Pr—>—Me

OH

|
Me\N\wwRu\o_
o%\é ,Mes

A
N O
Py

Scheme 7 Proposed catalytic cycle for carboxylate-assisted hydroarylation.

Me_ O [RuCly(p-cymene)l;
(2.5-5.0 mol %)
AgSbFs (1020 mol %) o~ Ny Me

Cu(OAc),, 1,4-dioxane IS =
140 °C, Np, 20 h R

Me

NH
=
| v Z
R
4 2a 6
N Me
oo
Me =

N Me
o
o
MeO’

N Me
o
=
Ph

6aa: 66% 6ba: 69% 6ca: 52%
N Me N Me N Me
F = Cl = Br =
6da: 58% 6ea: 60% 6fa: 51%
N Me Me N Me
SO GO
AcO = Z

6ga: 51% 6ha: 62%

Scheme 8 Scope of the oxidative alkene annulations with substituted
acetanilides 4.
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Scheme 9 Plausible catalytic cycle.

chloro, bromo and ester substituents, were well tolerated by
the versatile ruthenium(u) catalyst. An intramolecular compe-
tition experiment with substrate 4h bearing a meta-methyl sub-
stituent showed that the cyclization was governed by steric
interactions to deliver the product 6ha in high yield.

Based on our previous studies,?” we propose an initial C-H
ruthenation to yield cycloruthenated complex 9 (Scheme 9).
Thereafter, a migratory insertion of alkene 2 occurs to generate
the intermediate 10. Then, p-hydride-elimination furnishes the
product of oxidative alkenylation 11, while the catalytically
active ruthenium(n) complex is regenerated by a sequence of
reductive elimination and reoxidation. The desired quinoline 6
is obtained through an intramolecular nucleophilic attack of
the anilide in intermediate 11, followed by p-elimination of
acetic acid to deliver the desired product 6.

Conclusions

In summary, we have developed unprecedented ruthenium(u)-
catalyzed hydroarylations and oxidative annulations on benz-
amides 1 and acetanilides 4 with o,f-unsaturated ketones 2
through C-H activation. The use of benzamides with mono-
dentate directing groups renders our approach highly atom-
economical, and the aqueous reaction conditions makes the
process  environmentally-benign. Detailed experimental
mechanistic studies indicated a facile H/D-exchange. In

1038 | Org. Chem. Front, 2015, 2, 1035-1039
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addition, a cascade oxidative annulation of a,B-unsaturated
ketones 2a with acetanilides 4 was developed to deliver deco-
rated quinolines 6 in a highly step-economic fashion.
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