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The activity of two cyclooxygenase-2 enzyme inhibitors, Celecoxib
and Lumiracoxib, could be suppressed by coupling to photo-labile
protecting groups, so-called photocages. These groups could be
further functionalized with a peptide targeting vector for specific
cellular delivery. The enzyme inhibition potential of the cyclo-
oxygenase-2 inhibitors could be regained upon two-photon exci-
tation with tissue-transparent near-IR light at 800 nm.

Enzymes are important drug targets, and thus understanding
the (indirect) outcome of their inhibition is of fundamental
significance.”” It would therefore be highly desirable to have
biochemical tools, which allow for spatio-temporally con-
trolled release of enzyme inhibitors in living cells or organ-
isms. Photo-labile protecting groups (PLPGs), also known as
photocages, have been shown in different fields of research to
enable the release of molecules of interest upon UV-
irradiation.>® Very importantly, two-photon (TP) cages have
recently allowed for the release of compounds upon simul-
taneous TP excitation in the near-IR range.” Consequently,
higher spatial precision (sub-cellular) and deeper tissue pene-
tration are possible.’® A few caged enzyme inhibitors with the
potential to be two-photon-uncaged have been reported."'**
However, for those compounds, either no biological TP experi-
ments were performed,” the irradiation times needed were
very long (several hours),""'* the enzyme activity upon un-
caging was only moderately changed,'" or the uncageable con-
centrations were physiologically irrelevant.™® In this article, we
fill this gap and report the TP controlled inhibition of cyclo-
oxygenase-2 (COX-2) by the inhibitors Celecoxib and
Lumiracoxib.

Based on a TP cage developed by Goeldner and co-

workers,"” which has already been used on HeLa cells,'® we
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developed PLPGs 1 and 2 (see Scheme 1, and ESIf for their
synthesis) to cage Celecoxib and Lumiracoxib. Of note,
although the main effect of the two compounds is COX-2
inhibition, their indirect effects are quite different. Lumira-
coxib is active against certain cancer cells, while Celecoxib is
not. The reasons behind this difference are not yet understood.
This highlights even further the need for novel biochemical
tools as the one developed in this study. Importantly, in view
of potential selective drug delivery, we designed the cage struc-
tures to allow for the sub-sequent attachment of targeting
vectors, as previously performed by our group for a single
photon caged Re complex.'” The carboxylic acid of Lumira-
coxib and sulfonamide function of Celecoxib were caged to the
alcohol and carboxylic acid moieties of 1 and 2, respectively, to
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Scheme 1 Caging of the COX-2 selective inhibitors Lumiracoxib (top)
and Celecoxib (bottom), exemplary attachment of a targeting peptide to
caged Celecoxib (bottom right), and the previously reported caged
glutamate (top right).® Reaction conditions: (a) N,N'-dicyclohexyl-
carbodiimide, DMAP, Lumiracoxib, CH,Cl,, 0 °C to rt, 20 h, 80%; (b) 1-
(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, DMAP,
Celecoxib, CH,Cl,, rt, 2 h, 54%; (c) CuSO,, sodium ascorbate, IFLLWQR
(Pra)RR, THF/H,O 2:1, rt to 60 °C, 30 h. DMAP: 4-dimethylaminopyri-
dine; Pra: (5)-2-amino-4-pentynoic acid.
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give caged Lumiracoxib 3 and caged Celecoxib 4, respectively.
Other cage structures with carboxylic acid attachment groups
have been reported before,'® but to the best of our knowledge,
2 is the first biphenyl nitro cage capable of caging via a car-
boxylic acid function. Consequently, a modified reaction
mechanism has to be assumed, possibly in analogy to the un-
caging mechanism postulated for 7-nitroindolinyl based
groups, with subsequent decarboxylation.'® The biphenyl-core
of both cages carries a tetraethylene glycol chain to increase
solubility in aqueous media, a critical parameter for the hydro-
phobic TP cages.>® The terminal azide group can be used to
additionally attach any alkyne-containing targeting bio-
molecules via click chemistry. This gives the opportunity to
target the biological effect with two orthogonal methods, i.e.
(1) by directing the caged compound towards the intended
tissue or organelle with the targeting vector and (2) by light
activation. Importantly, the attachment of the targeting moiety
to the caged compounds is by design the last step in the syn-
thesis and hence conveniently adjustable. To exemplify this, a
peptide, which was shown to bind to annexin1 and to function
as a targeting moiety towards certain cancer cells in mice,*"
was attached to caged Celecoxib 4, producing targeted caged
Celecoxib 5 (see Scheme 1).

The hydrolytic stability of 3, 4 and 5 in the dark at room
temperature was monitored by HPLC and UV/Vis. After 24 h in
solution (acetonitrile/PBS 1:1, pH = 7.4), no degradation was
observed. The photo-physical properties were characterized
and the results are summarized in Table 1. Notably, although
photo-degradation of azides to reactive nitrene groups was pre-
viously reported,® such reactions were never observed for 3 or
4, neither upon UV nor fs-pulsed near-IR irradiation. The
single photon uncaging quantum yields were determined
upon irradiation with a frequency-tripled Nd-YAG laser at
355 nm with azobenzene as reference, as discussed in recent
articles on the accurate determination of uncaging quantum
yields.”** The caged glutamate by Goeldner et al. (Scheme 1)
was shown to have a quantum yield of 0.1 at 313 nm."’ For 3,
which links the bio-active compound also via an ester to the
same cage chromophore, a similar uncaging quantum yield of
0.094 was determined. 4, which has a sulfonamide as linking
group, has a significantly lower quantum yield of 0.013. The
quantum yield of 5 is with 0.0047 in the range of 4, but still

Table 1 Photophysical uncaging properties of the caged compounds 3,
4, 5 and of the literature-known caged glutamate®®

Compound @ (A =355 nm)* 5.®, (4 =800 nm)”
Caged glutamate 0.1 (A=313 nm)"’ 0.45 GM

3 0.094 + 0.02 0.37 £ 0.04 GM

4 0.013 + 0.001 0.063 + 0.008 GM
5 0.0047 = 0.0004 0.053 + 0.008 GM

“Acquired with a Nd-YAG laser, relative to the photoisomerizaion of
azobenzene.”** ? Acquired with a fs-pulsed laser with 5 kHz
repetition rate relative to 7-hydroxycoumarin-4-ylmethyl acetate;***’
for further details on both methods, see ESI.
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smaller. This difference demonstrates a moderate effect of the
targeting moiety on the single-photon uncaging. Low single-
photon uncaging rates are in principle desired for two-photon
cages since unwanted photolysis under ambient conditions is
suppressed. However, in this case, the differences between the
compounds are mostly due to the chemical reactions following
photo-excitation since the biphenylnitro core is the same for
all three compounds. Consequently, also lower TP uncaging
action cross-sections (5,®,) can be expected for 4 and 5, com-
pared to 3. 5,®, were determined upon irradiation at 800 nm
with a fs-pulsed laser with a 5 kHz repetition rate using the
known reference 7-hydroxycoumarin-4-ylmethyl acetate.”®?’
As expected, 5,8, of 4 (0.063 GM) and 5 (0.053 GM) were
found to be lower than the one of 3 (0.37 GM). Importantly,
the attachment of the targeting peptide was found to not
majorly influence the TP uncaging efficiency. As for the single
photon uncaging, the value for 3 is in the same range as the
one for caged glutamate.’® Notably, §,®@, of a dye attached
to the same biphenylnitro cage core was shown to be more
than an order of magnitude greater at wavelengths around
740 nm.'® Thus, using lower wavelength light would likely
also lead to a more efficient release. However, with respect to
future applications, the better tissue transparency at 800 nm>®
suggests that investigations at this wavelength are more
significant.

In a study which investigated TP uncaging at 740 nm, it was
stated that 5,9, of at least 0.1 GM are required for biological
applications.*® Accordingly, the TP uncaging of 4 and 5 could
be insufficient for biological studies. However, for afore-
mentioned reasons, it cannot be taken for granted that this is
valid at 800 nm. The minimum value certainly depends on the
wavelength. Furthermore, additional laser properties, such as
the repetition rate of the laser, play a role. Most TP uncaging
studies used lasers with MHz repetition rates.>’>° However,
10° smaller repetition rates (kHz), like in this study, have also
been used before."> With the same average powers and peak
lengths, the peak photon densities differ therefore by the
same factor of 10°. Thus, the commonly quoted paradigm that
TP uncaging only occurs in the focal point of a laser beam is
not generally true. Indeed, we, and others before,'® found that
with a laser beam like the one used in this study it is not
necessary to focus the beam since the photon density is
sufficient with a collimated beam. Furthermore, undesired
light phenomena such as white light generation, which was
observed if the laser beam was focused, are avoided with a col-
limated laser beam. These remarks raise the question if bio-
logically relevant uncaging is still possible with TP uncaging
cross-sections below 0.1 GM at 800 nm, and if biological struc-
tures can withstand such powerful irradiation. To this end, the
inhibition potential of COX-2 by the caged compounds 4 and
5, whose uncaging efficiencies are clearly below 0.1 GM, was
tested with a fluorescent inhibitor screening assay (see Fig. 1).
An irradiation time of 15 min was chosen since this time
frame was used in biological studies before.>**° Notably, this
time is significantly shorter than what was required in other
reports on uncaging of drugs.’"'*?! To test if the high photon
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Fig. 1 Inhibition constants of Celecoxib, 4, and 5, without and upon

irradiation with a pulsed laser at 800 nm for 15 min. The values are rela-
tive to the initial concentrations of caged compound, or released Cele-
coxib, as indicated.

densities influence biomolecules, the enzyme was irradiated
using these experimental conditions and its activity tested in
comparison to a non-irradiated sample. The activity of the
enzyme was found to be unaffected by the pulsed laser light.
In addition, Celecoxib was irradiated. No decomposition could
be detected by HPLC analysis and its inhibitory potential
towards COX-2 remained unchanged at around 60-70 nM.
Likewise, solutions of the caged compounds 4 and 5 were
tested. Before uncaging, no inhibition of COX-2 could be
detected within the limits given by the solubility of the caged
compounds. After 15 min of irradiation, the amount of free
Celecoxib was determined by HPLC. The uncaging progress
was around 70% for 4 and 40% for 5. The IC;, values relative
to the released Celecoxib are for both 4 and 5 identical to the
non-caged Celecoxib. Relative to the caged starting materials,
the ICs, values are slightly higher due to the incomplete
release in the given timeframe. Nevertheless, at least five- and
ten-fold increases for 4 and 5, respectively, were observed.

To assess if the targeting vector afforded the expected
selectivity towards specific cancer cells, we prepared a deriva-
tive of 5, which contains an additional fluorescein moiety (16,
see ESIT for structure and experimental details). By monitoring
fluorescence, we could follow the uptake of the bioconjugate
into cells. To this end, we selected A549 human lung adeno-
carcinoma epithelial cells, which express high levels of
annexinl, and HEK 293 human embryonic kidney cells, which
have low levels of annexin1 expression.’>*? Unfortunately, the
anticipated preferential uptake of 16 into A549 cells could not
be observed (see Fig. S8 and S9%). In a previous study of our
group, a luminescent rhenium complex was shown to be taken
better up by cells targeted with a peptide attached to a related
single photon cage. This suggests that, possibly, biasing
caused by the luminescent label itself could be responsible for
this observation.*® An effect based on the two-photon cage
itself can, however, not be ruled out completely. Nevertheless,
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this does not alter the fact that the photocages presented in
this article allow for biomolecules to be easily attached.

In summary, we could demonstrate that targetable TP un-
caging can be employed to control enzyme activity. The two
drugs Celecoxib and Lumiracoxib, which both selectively
inhibit COX-2, were deactivated by conjugation to TP cages. A
targeting peptide was attached to the cage. Importantly, the
peptide did neither significantly alter photorelease nor enzyme
inhibition. The uncaging process was shown to allow for
efficient control over the inhibition of an enzyme with near-IR
light in an in vitro assay. The concept holds great promise for
the future, not only for chemical biological studies on enzyme
function, but potentially also for applications in therapeutic
targeted drug delivery. Currently, Photodynamic Therapy
(PDT) is the most prominent method which utilizes light in a
medicinal context in the treatment of certain skin conditions
and cancers.”>*” PDT, however, depends on the generation of
reactive oxygen species, although many cancerous tissues are
hypoxic.’®?° Therapeutic TP uncaging, with the ability to acti-
vate virtually any drug without depending on additional
factors such as oxygen, could therefore further promote non-
invasive light based therapies.
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