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The serum half-life of a drug can be increased by conjugation
to various entities." In general, strategies operate by increasing
the size of the overall construct to minimise renal clearance or
through enabling recycling via the neonatal Fc receptor
(FcRn)." Thus, human serum albumin is an excellent conju-
gation candidate for serum half-life extension as it offers both
of these features (t1,, albumin ~ 19 days).> Accordingly the use
of albumin for drug delivery has been proven in the clinic and
GSK has launched Eperzan® (2014), which is an albumin-
GLP-1 fusion for the treatment of type 2 diabetes mellitus in
adults.>?

Owing to the favourable properties of albumin, various
strategies have been employed to extend the circulatory half-
life of numerous entities by engaging them covalently or trans-
iently with this protein.” As albumin has a single free thiol
(cysteine 34) available for conjugation, covalent conjugation
via reaction at this position has proved to be a very popular
strategy for attachment.” This strategy has been used to extend
the half-life of various protein-based drugs, including granulo-
cyte colony stimulating factor (G-CSF),* Kringle domain,”
DARPin domain,® the antiretroviral gp41 targeting peptide C34
(PC-1505),” insulin,® the opioid agonist dynorphin A
(CJC-1008),” YY peptide'® and GLP-1/exendin-4 (CJC-1131 and
CJC-1134-PC).™ Lysine modification strategies have also been
trialled,> however, these approaches result in hetereogeneous
mixtures (due to a large number of surface accessible lysines
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Herein we report the use of bromomaleimides for the construction of stable albumin conjugates via
conjugation to its native, single accessible, cysteine followed by hydrolysis. Advantages over the classical
maleimide approach are highlighted in terms of quantitative hydrolysis and absence of undesirable retro-

on albumin), limit solubility (by removal of charged groups)
and may result in denaturing.'?

Cysteine 34 is located close to the surface of the albumin
protein in a shallow crevice (Fig. 1). It is situated in a rather
anionic environment and has relatively limited solvent accessi-
bility.>"* This environment infers some unique properties on
the thiol, and it has a pK, of approximately 8.5 in the absence
of external factors in vivo."?

Historically, for conjugation to a free thiol on cysteine,
maleimide chemistry has been used. Thus, it is no surprise
that maleimides have been shown to react with the thiolate of
cysteine 34 of albumin 1 in an efficient manner to form succi-
nimide-albumin conjugates, 2 (Scheme 1).>*** A pH of 7.4 is
generally used to ensure that there is enough of the thiolate
available whilst minimizing deprotonation of ammonium
groups, ie. to perturb side-reactions of the protein amino
groups with maleimide. However, it has recently come to light
that the thioether bond on the resultant succinimide is not
robust."* The succinimide can revert back to maleimide and
free thiol via a retro-Michael pathway. Thus, highly undesir-
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Fig. 1 Structure of albumin, highlighting cysteine 34 and key features.
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Scheme 1 Classical approach to albumin conjugation, highlighting
limitations and alternative pathways.

ably, the released maleimide may react with other thiol reac-
tive species and the released thiol may react with other com-
pounds in vivo.™*

To avoid retro-Michael reactivity, the succinimide may be
hydrolysed to succinic acid 3, effectively locking the conjugate
to be thiol-stable."® The property of thiol-stability by hydrolysis
is desirable as it would ensure that there was no undesirable
thiol transfer taking place in various environments in vivo. To
this end, we constructed bioconjugate 2 (R = Me) and
attempted to selectively hydrolyse the succinimide ring under
a range of hydrolysis conditions (e.g. temperature and pH).
However, the yield of the hydrolysed thiol-stable conjugate was
only in the order of 50-60% due to a competing retro-Michael
pathway during hydrolysis (see ESIT and Fig. 2). Although
retro-Michael deconjugation affords the starting materials
initially, the free maleimide is also hydrolysed irreversibly
under the reaction conditions, which limits yield (see
Scheme 1). Strategies have been developed to address this issue
but they require highly specific linkers and their success tends
to be protein and protein local microenvironment specific.'®

To supersede conventional maleimide-bioconjugation we
would require a moiety that did not suffer from competing
retro-Michael mediated deconjugation during hydrolysis whilst
retaining the favourable characteristics of efficient and chemo-
selective reaction with maleimides. To this end, we set about
exploring monobromomaleimides in this context."® Our choice
of using monobromomaleimides was motivated mainly by the
fact that reaction with a thiol proceeds via an addition-elimi-
nation sequence, i.e. rather than addition only. This affords a

Albumin 1 Conjugate 3
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Fig. 2 Deconvoluted mass spectrum obtained upon attempted hydro-
lysis of conjugate 2 at pH 9 showing a mixture of albumin 1 and conju-
gate 3.
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Fig. 3 (a) Conjugation of N-methyl monobromomaleimide to albumin

to form bioconjugate 4, and subsequent hydrolysis to afford 5; (b)
deconvoluted MS data for maleimide—albumin bioconjugate 4; (c)
deconvoluted MS data for maleamic acid-albumin bioconjugate 5.

thioether maleimide motif, for which the retro-Michael
pathway is no longer mechanistically feasible (Fig. 3). Our
study began by appraising the efficiency and selectivity of con-
jugation with a monobromomaleimide. We were delighted to
find that N-methyl monobromomaleimide reacted within the
same time-frame and with the same specificity as a classical
maleimide (Fig. 3b, see ESI} for further details).

We next treated thioether maleimide conjugate 4 under
basic conditions to see if we only observed hydrolysed product
5. Gratifyingly, this was the only product that was observed
under the reaction conditions, thus providing an elegant and
simple solution to making a thiol-stable construct on albumin.
The rate of hydrolysis was similar to that observed for the
succinimide analogue.

To confirm the absence of thiol reactivity of maleamic acid-
albumin bioconjugate 5, it was incubated with 50 equivalents
of glutathione (1 mM) at pH 7.4 in PBS (Fig. 4) for 4 h. Consist-
ent with our previous studies, no thiol exchange was observed
after incubation.’®® In fact, no significant transfer was
observed even after 95 h. This is in sharp contrast to succini-
mide bioconjugate 2 (where R = Me), where significant thiol
exchange was observed after 4 h (see ESIT, Fig. S151). Actually,
the only succinimide conjugate that remained attached to
albumin after this time was the hydrolysed construct, which is
known to be thiol stable."

Following our work on developing a thiol stable construct,
we set about incorporating simple, modular ‘click’ chemistry
into our strategy through the use of N-propargyl monobromo-
maleimide and Alexa Fluor® 488 azide (see Scheme 2, see ESI
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Fig. 4 (a) Thiol stability of maleamic acid—albumin bioconjugate 5; (b)

deconvoluted MS data for maleamic acid-albumin bioconjugate 5 after
4 hours of incubation; and (c) deconvoluted MS data for maleamic acid-
albumin bioconjugate 5 after 95 hours of incubation.
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Scheme 2 Click functionalisation strategy for creating thiol-stable
albumin conjugate 7.

for further details). If successful, this would result in a facile
method for forming various thiol-stable functional bioconju-
gates. Pleasingly, clicking N-propargyl monobromomaleimide
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with Alexa Fluor® 488 azide followed by conjugation to
albumin 1 afforded bioconjugate 6 by MS and UV-Vis absorp-
tion. This species was then hydrolysed to thiol-stable bioconju-
gate 7 without any deconjugation, thus highlighting how our
platform can incorporate a ‘click’ modification strategy.

Conclusions

In conclusion, an elegant, robust, high yielding and thiol-
stable alternative to classical maleimide conjugation to human
serum albumin has been described. Classical maleimide con-
jugation has been shown to be reversible and methods for
hydrolysis to thiol-stable thioether succinimides were shown
to be unsuccessful as they led to significant retro-Michael
mediated deconjugation. The use of monobromomaleimides
results in rapid and selective conjugation, and hydrolysis leads
to thiol-stable maleamic acid only, due to the absence of a
retro-Michael pathway mechanistically. The exemplification of
the chemistry via a ‘click’ strategy highlights how it may be
readily utilised in various applications in a rapid manner. As
well as providing a general, efficient approach to creating
thiol-stable cysteine conjugates, this works sets the foundation
for a platform for half-life extension by the use of stable
human serum albumin conjugation.
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