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Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metal-
loenzymes with catalytic versatility, having as substrates CO,,
COS, CS,, cyanamide, carboxylic, phosphoric and thiocar-
boxylic esters. ™ Although their main physiological functions
are related to the inter-conversion between CO,, bicarbonate
and protons, they play crucial functions in pH regulation, elec-
trolyte secretion, biosynthetic reactions, and carcinogenesis,
among others.”® Of the 15 isoforms described in humans
(hCA I-XIV), many are drug targets for pharmacological agents
such as diuretics,’ antiglaucoma drugs,'® antiepileptics,'" anti-
obesity’” and ultimately, antitumor drugs/cancer diagnostic
agents.”® The transmembrane isoforms CA IX and XII are over-
expressed in hypoxic tumors as a consequence of the HIF-1a
(hypoxia inducible factor-1a) activation pathway, and their
inhibition by small molecules/antibodies was recently
shown to lead to significant antitumor action.'>'* Further-
more, as these enzymes are present in normal tissues in a very
small concentration compared to the tumors, they can also be
used for imaging hypoxic tumors."® Recently, a sulfonamide
CA inhibitor (CAI) targeting CA IX and XII entered phase I
clinical trials for the treatment of advanced metastatic
solid tumors."®
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substituted isatins and 2-, 3- or 4-aminobenzenesulfonamide, showed low nanomolar inhibitory
activity against the tumor associated carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII — recently
validated antitumor drug targets, being much less effective as inhibitors of the off-target cytosolic iso-

Results and discussion
Chemistry

Sulfonamides (RSO,NH,) constitute the most important and
investigated class of CAIs."”

A large number of structurally diverse sulfonamides were
investigated for their CA inhibitory properties.'”'® However
the main problem with sulfonamides is their promiscuous be-
havior as strong inhibitors of many of the 15 CA isoforms of
human (h) origin."”*® As isoforms hCA I and II are widespread
and play important physiological functions,"™ it is of great
interest to design inhibitors targeting the tumor-associated
isoforms hCA IX and XII, which, at the same time, show weak
affinity for the off-target isoforms hCA I and II. Some Schiff
bases incorporating sulfonamide moieties were among the
first types of CAIs showing selective inhibition of some CA iso-
forms of interest for medicinal chemistry applications,'®>°
and this is the reason why we explore here these types of com-
pounds which incorporate substituted isatin moieties
(Scheme 1). Reaction of isatins with aromatic sulfonamides
was in fact investigated earlier by our and other groups, >*
and a limited number of such compounds have been reported.
Here we extend the previous studies, reporting a series of 23
such derivatives which incorporate orthanilamide, metanila-
mide or sulfanilamide moieties, as well as isatin or N-methyl-
isatins substituted with methyl, halogens, nitro or trifluoro-
methyloxy moieties at the heterocyclic ring. We have chosen
these substitution patterns at the isatin fragment of the mole-
cule in order to investigate the structure-activity relationship
(SAR) for the inhibition of four CA isoforms (hCA I, II, IX and
XII) with this class of derivatives.>®

Enzyme inhibition data

hCA I was inhibited moderately by the reported compounds
irrespective of the substitution pattern, with Kis ranging
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Scheme 1 Preparation of  2/3/4-[(2-oxo-1,2-dihydro-3H-indol-3-
ylidene)amino]benzenesulfonamides.

between 146 and 816 nM. The same was true for the cytosolic
dominant isoform hCA II; for which the inhibition constants
were in the range of 101-728 nM (Table 1). All K; values were
in the lower nanomolar region, in a narrow range, for both
tumor-associated hCA isozymes (hCA IX: 1.0-15.6 nM; hCA XII:
2.8-53.8 nM; Table 1). The K; values for the widespread hCA
I/II were significantly larger (hCA I: 146-816 nM; hCA II
101-728 nM) and thus, the new compounds showed a discrete
selectivity for the tumor-associated isozymes (Table 1). The
difference in K; values is relatively small for the tumor-associ-
ated isozymes (hCA IX: ~15-fold; hCA XII: ~19-fold) and a con-
clusive SAR analysis is difficult to perform. Compound 4b
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drew our attention since it shows very low K;j values for the
tumor-associated isozymes (hCA IX: 1.1 nM; hCA XII: 3.3 nM)
and it shows the highest selectivity for the tumor-associated
isozymes compared to the widely distributed hCA I and II
(Table 1).

Molecular modelling studies

Compound 4b has one of the lowest measured K; values for
hCA IX and shows the highest selectivity towards hCA IX com-
pared to the other isozymes (Table 1). Molecular modelling
studies were applied to suggest a rationale for this selectivity.
Available crystal structures of hCA isozymes with sulfonamide-
containing ligands such as acetazolamide bound to their
active site indicate that the sulfonamide moiety is oriented in
a very similar way to the Zn>*-ion of the hCA active sites. The
nitrogen atom of the SO,NH™ group is coordinated to the
Zn**-ion and forms a hydrogen bond with the side-chain of
Thr199, whereas one of the sulfonamide oxygen atoms forms a
hydrogen bond with the backbone NH of the same residue. A
similar orientation and binding-interactions were enforced
upon the ligands in our docking studies.

Docking studies on hCA IX. The docked pose of compound
4b in the active site of hCA IX reveals that the vicinal nitrogen
and carbonyl group of the indole ring form hydrogen bonds
with the side-chains of GIn67 and GIn92, respectively (Fig. 1).
The other analogs with sulfonamide groups on the meta posi-
tion of the phenyl ring (compound series 4) adopted similar
docked poses and the range of K; values was 1.1-9.8 nM. The
various substituents on the isatin ring did not form any

Table 1 hCA/|, II, IX and XII inhibition data of compounds 3, 4 and 5 by a stopped-flow CO, hydrase assay®®

Compounds K; (nM) Selectivity ratio

# R1 R2 I I X XII I/IX I/1X I/X1I 1I/X1L
3a H H 816 728 9.3 53.8 88 78 15 14
3b CH; H 600 711 4.2 49.7 143 169 12 14
3c F H 652 428 1.2 41.3 543 357 16 10
3d Cl H 778 652 5.7 52.5 136 114 15 12
3e OCF; H 742 683 10.3 53.0 72 66 14 13
4a H H 579 618 8.4 43.9 69 74 13 14
1b CH; H 510 565 1.1 3.3 464 514 155 171
4c F H 426 264 1.3 30.8 328 203 14 9
4ad Cl H 490 547 4.8 41.1 102 114 12 13
4e OCF; H 539 484 9.8 36.5 55 49 15 13
af NO, H 378 250 5.7 3.1 66 44 122 81
5a H H 422 523 6.5 29.3 65 80 14 18
5b H CH; 586 549 5.9 6.7 99 93 87 82
5¢ CH; H 414 454 1.0 18.5 414 454 22 25
5d CH; CH; 536 491 4.1 39.7 131 120 14 12
5e F H 375 468 4.0 32.5 94 117 12 14
5f F CH; 259 432 1.6 36.4 162 270 7 12
5g Cl H 249 309 3.3 25.2 75 94 10 12
5h Cl CH; 368 462 4.7 44.6 78 98 8 10
5i Br CH; 457 514 15.6 37.8 29 33 12 14
5j OCF; H 295 236 3.9 3.8 76 61 78 62
5k NO, H 229 164 4.9 2.8 47 33 82 59
51 NO, CH; 146 101 4.2 4.3 35 24 34 23
AZ — — 250 12 25.0 5.7 10 0 44 2
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Fig. 1 The docked poses of compounds 4b (magenta) and 5c¢ (green) in
the active site of hCA IX. Interactions of the sulfonamide group with the
protein are not shown for clarity. Hydrogen bonds are indicated with red
dashed lines. The Zn®*-ion is indicated with a turquoise sphere.

additional interactions except for compound 4f, which has a
NO, group capable of forming a hydrogen bond with Trp5.

Compound 5c is very similar to 4b, except for the fact that
the sulfonamide is substituted on the para position instead of
the meta position. This reorients the isatin fragment to form
hydrogen bonds with GIn92 via the imine group between the
2-indolinone and the phenyl ring (Fig. 1). In addition, hydro-
phobic interactions were observed between the isatin moiety
and the sidechain of Val131. The analogs with a sulfonamide
in the para position (compound series 5) showed a similar
docked pose. Their range of K; values is 1.0-15.6 nM and the
varying substituents do not form additional interactions with
the active site, as they point towards the solvent.

Differences in active sites between hCA IX and hCA
XII. Gln67 and GIn92 are involved in hydrogen bonding to
compound 4b and are believed to be responsible for the low Ky
value observed for this compound. GIn67 is not conserved
amongst the other hCA isozymes (Table 2). hCA XII has a
Lys67 instead of the GIn67 of hCA IX and the ligand cannot
form the same interactions as observed in Fig. 1. GIn92 is con-
served in both structures and the backbone is located at a
similar position, but the sidechain conformation is slightly
different. As such, no hydrogen bond is observed in the
docking, but it should be possible after sidechain
reorientation.

Differences in active sites between hCA IX and hCA 1. The
bulky His67 is present in hCA I instead of the GIn67 of hCA IX
(Table 2). In addition, Val131 and Thr200 of hCA IX are
replaced by the larger Leu131 and His200 in hCA I (Table 2).
The presence of His200 forces a reorientation of Trp5, which

This journal is © The Royal Society of Chemistry 2015
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Table 2 The differences and similarities in the active site lining of the
investigated hCA isozymes

hCA IX hCA X1 hCA1 hCA Tl
Trp5¢ Trp5 Trp5 Trp5
GIn67 Lys67 His67 Asn67
Gln92¢ GIn92 GIn92 GIn92
Val131 Ala131 Leul31 Phe131
Thr199 Thr199 His200 Thr199

“This residue is conserved but has a different orientation in at least
one crystal structure.

enters the active site more deeply and sterically interferes with
the docked ligands. These changes in the binding site do not
allow for the adoption of similar poses as observed in Fig. 1.

Differences in active sites between hCA IX and hCA
II. Asn67 and Phe131 are present in hCA II (Table 2). Asn67 is
shorter than its Gln67 counterpart observed in hCA IX, while
Phe131 points into the active site to a larger degree compared
to Val131.

Experimental
Synthetic procedures

Melting points were estimated with a Buchi 540 melting point
apparatus in open capillaries and are uncorrected. Elemental
analyses were performed on a Thermo Finnigan Flash EA 1112
elemental analyzer. IR spectra were recorded on KBr discs,
using a Perkin-Elmer Model 1600 FT-IR spectrometer.
'"H-NMR, D,0-exch., HSQC and HMBC spectra were obtained
on Varian"™"™ INOVA 500 and Bruker Avance DPX 400 spectro-
photometers using DMSO-ds.

Synthesis of 2/3/4-[(2-ox0-1,2-dihydro-3H-indol-3-ylidene)-
amino]benzenesulfonamides (3a-e, 4a-f, 5a-1). Equimolar
quantities of 1H-indole-2,3-diones (1) (0.01 mol) and 2-amino-
benzenesulfonamide/3-aminobenzenesulfonamide/4-amino-
benzenesulfonamide (2) were refluxed in glacial acetic acid
(10 ml) for 6 h. The reaction mixture was allowed to stand for
24 h at room temperature. The product was filtered and recrys-
tallized from ethanol.*!

2-[(2-Oxo0-1,2-dihydro-3H-indol-3-ylidene)amino]benzenesul-
fonamide (3a). Yellow powder, yield 66%; m.p. 249-250 °C;
IR (KBr) (v, cm™"): 3291, 3180 (NH), 1735 (C=0), 1337, 1151
(5=0); "H-NMR (DMSO-dg, 400 MHz) § (ppm): 6.68-8.25 (10H,
m, Ar-H, SO,NH,), 10.58, 10.96 (1H, 2s, indole NH). Anal.
Caled for C;4H,,N;05S (301.32): C, 55.80, H, 3.68; N, 13.95; S,
10.64. Found: C, 55.51; H, 3.94; N, 13.84; S, 10.50.

2-[(5-Methyl-2-oxo0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (3b). Orange powder, yield 24%;
m.p. 235-236 °C; IR (KBr) (v, cm™"): 3274, 3192 (NH), 1732
(C=0), 1327, 1160 (S=0); 'H-NMR (DMSO-ds, 500 MHz)
§ (ppm): 1.94, 2.29 (3H, 2s, 5-CH3), 6.09-7.65 (6H, m, Ar-H),
6.94, 7.03 (2H, 2s, SO,NH,), 7.80, 7.95 (1H, 2d, J = 7.81 Hz,
phenyl C¢-H), 10.68, 10.86 (1H, 2s, indole NH). Anal. Calcd for
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C15H,3N;0,8 (315.34): C, 57.13, H, 4.16; N, 13.33; S, 10.17.
Found: C, 57.55; H, 4.44; N, 13.14; S, 9.90.
2-[(5-Fluoro-2-o0x0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (3c). Orange powder, yield 85%; m.p.
269-271 °C; IR (KBr) (v, cm™): 3290, 3187 (NH), 1731 (C=0),
1338, 1168 (S=0); "H-NMR (DMSO-d,, 500 MHz) 5 (ppm): 6.81
(1H, d, J = 7.32 Hz, phenyl C;-H), 6.83 (1H, t, J = 7.81 Hz,
phenyl Cs-H), 6.86 (1H, dd, J = 8.29, 4.39 Hz, indole C,-H),
7.15 (1H, dt, J = 9.26, 2.93 Hz, indole Cs-H), 7.32-7.36 (2H, m,
indole C,~H, phenyl C,-H), 7.51 (1H, dd, J = 7.81, 0.98 Hz,
phenyl C¢-H), 7.64, 8.36 (2H, 2s, SO,NH,, D,O exch.), 10.64
(1H, s, indole NH, D,O exch.). HSQC (DMSO-ds) & (ppm):
111.73 (d, J = 7.66 Hz, indole C;), 114.36 (d, J = 25.87 Hz,
indole C,), 117.07 (phenyl C;), 117.53 (d, J = 23.48 Hz, indole
Ce), 118.29 (phenyl C;), 123.42 (phenyl Cs), 123.95
(phenyl C,), 130.98 (d, J = 8.15 Hz, indole Cs,), 133.81
(phenyl C,), 138.10 (indole C;,), 138.11 (indole Cj),
143.81 (phenyl G,), 158.50 (d, J = 237.71, indole Cs), 174.00
(indole C,). Anal. Caled for C;4H;oFN;0;S (319.31): C,
52.66, H, 3.16; N, 13.16; S, 10.04. Found: C, 52.52; H, 3.13; N,
13.12; S, 10.11.
2-[(5-Chloro-2-0x0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (3d). Orange powder, yield 40%; m.p.
248-250 °C; IR (KBr) (v, em™"): 3266, 3197 (NH), 1731 (C=0),
1328, 1156 (S=0); "H-NMR (DMSO-ds, 500 MHz) 5 (ppm): 6.82
(1H, t, J = 7.81 Hz, phenyl Cs-H), 6.89 (1H, d, J = 8.29 Hz,
indole C,-H), 7.35 (1H, dd, J = 7.81, 1.46 Hz, phenyl C;-H),
7.36 (1H, dd, J = 8.29, 2.44 Hz, indole C4-H), 6.86, 8.41 (2H, 2s,
SO,NH,, D,0 exch.), 7.52 (1H, dd, J = 7.81, 2.44 Hz, phenyl C,-
H), 7.54 (1H, d, J = 2.44 Hz, phenyl C¢-H), 7.64 (1H, s, indole
C,-H), 10.75 (1H, s, indole NH, D,O exch.). Anal. Calcd for
C14H;,CIN;0,8 (335.76): C, 50.08, H, 3.00; N, 12.51; S, 9.55.
Found: C, 49.77; H, 3.12; N, 12.35; S, 9.48.
2-[(2-Oxo-5-(trifluoromethoxy)-1,2-dihydro-3H-indol-3-ylidene)-
amino]benzenesulfonamide (3e). Orange powder, yield 30%;
m.p. 261-263 °C; IR (KBr) (v, cm™'): 3289, 3187 (NH), 1733
(C=0), 1339, 1163 (S=O0); 'H-NMR (DMSO-ds, 500 MHz)
S (ppm): 6.82 (1H, d, J = 8.29 Hz, indole C,-H), 6.86 (1H, d, J =
7.81 Hz, phenyl C;-H), 6.95 (1H, d, J = 8.29 Hz, indole Cs-H),
7.32 (1H, dd, J = 8.29, 1.95 Hz, indole C,~H), 7.36 (1H, dd, J =
7.81, 1.46 Hz, phenyl Cs-H), 7.52 (2H, dd, J = 7.81, 1.46 Hz,
phenyl C,¢-H), 7.66, 8.46 (2H, 2s, SO,NH,), 10.81 (1H, s,
indole NH). HMBC (DMSO-d¢) 6 (ppm): 111.86 (indole C-),
117.10 (phenyl Cs), 118.41 (indole C,), 119.49 (OCF;), 120.57
(indole Cg), 123.37 (phenyl Cj), 124.07 (phenyl Cg), 124.46
(phenyl C;), 130.99 (indole Cj,), 132.69 (indole Cs), 133.86
(phenyl C,), 141.09 (indole Cj;), 143.73 (phenyl C,), 143.85
(indole C,), 174.05 (indole C,). Anal. Caled for C;5H;(F3N3;0,4S
(385.32): C, 46.76, H, 2.62; N, 10.91; S, 8.32. Found: C, 46.44;
H, 2.84; N, 10.56; S, 8.32.
3-[(2-Ox0-1,2-dihydro-3H-indol-3-ylidene)amino]benzenesul-
fonamide (4a). Yellow powder, yield 24%; m.p. 263-264 °C; IR
(KBr) (v, em™'): 3361, 3259 (NH), 1725, 1746 (C=0), 1330,
1147 (S=0); "H-NMR (DMSO-d,, 500 MHz) § (ppm): 6.32-7.69
(8H, m, Ar-H), 7.33, 7.41 (2H, 2s, SO,NH,), 10.88, 10.98 (1H,
2s, indole NH). Anal. Caled for C;,H;;N305S (301.32): C, 55.80,
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H, 3.68; N, 13.95; S, 10.64. Found: C, 55.89; H, 4.06; N, 13.64;
S, 10.65.
3-[(5-Methyl-2-0x0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (4b). Orange powder, yield 32%; m.p.
243-245 °C; IR (KBr) (v, cm™): 3269, 3175 (NH), 1731 (C=0),
1326, 1154 (S=0); '"H-NMR (DMSO-d,, 500 MHz) § (ppm):
1.95, 2.24 (3H, 2s, 5-CH3;), 6.16-7.70 (7H, m, Ar-H), 7.33, 7.43
(2H, 2s, SO,NH,), 10.77, 10.88 (1H, 2s, indole NH). Anal. Caled
for C,5H,5N;05S (315.34): C, 57.13, H, 4.16; N, 13.33; S, 10.17.
Found: C, 56.83; H, 4.14; N, 12.82; S, 10.01.
3-[(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (4c). Orange crystals, yield 43%; m.p.
247-250 °C; IR (KBr) (v, cm™): 3274, 3180 (NH), 1731 (C=O0),
1329, 1156 (S=0); 'H-NMR (DMSO-ds, 500 MHz) & (ppm):
5.97-7.33 (4H, m, indole C,¢-H, phenyl C, ;~H), 6.90, 6.92 (1H,
2dd, J = 8.30, 4.39 Hz, indole C,-H), 7.34, 7.44 (2H, 2s, SO,NH,),
7.48, 7.66 (1H, 2t, J = 7.80 Hz, phenyl Cs-H), 7.56, 7.71 (1H, 2d,
J = 7.80 Hz, phenyl Cs-H), 10.90, 11.02 (1H, 2s, indole NH).
Anal. Caled for C,,H;oFN;05S (319.31): C, 52.66, H, 3.16; N,
13.16; S, 10.04. Found: C, 52.29; H, 3.58; N, 13.18; S, 10.38.
3-[(5-Chloro-2-0x0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (4d). Orange powder, yield 43%; m.p.
252-254 °C; IR (KBr) (v, cm™): 3284, 3173 (NH), 1733 (C=0),
1325, 1148 (S=0); '"H-NMR (DMSO-d,, 500 MHz) § (ppm):
6.87-7.73 (7H, m, Ar-H), 7.35, 7.46 (2H, 2s, SO,NH,), 11.10,
11.12 (1H, 2s, indole NH). Anal. Caled for C;,H;,CIN;0;S
(335.76): C, 50.08, H, 3.00; N, 12.51; S, 9.55. Found: C, 49.96;
H, 3.01; N, 12.32; S, 9.79.
3-[(2-Oxo-5-(trifluoromethoxy)-1,2-dihydro-3H-indol-3-ylidene)-
amino]benzenesulfonamide (4e). Orange powder, yield 25%;
m.p. 205-207 °C; IR (KBr) (v, cm™): 3338, 3282 (NH), 1667,
1733 (C=0), 1327, 1150 (S=0); 'H-NMR (DMSO-d;, 500 MHz)
5 (ppm): 7.31 (2H, s, SO,NH,), 7.42-7.71 (6H, m, Ar-H), 8.13
(1H, s, indole C,~H), 10.19 (1H, s, indole NH). Anal. Calcd for
C1sH,oF3N;0,S (385.32): C, 46.76, H, 2.62; N, 10.91; S, 8.32.
Found: C, 46.97; H, 2.32; N, 10.76; S, 8.27.
3-[(5-Nitro-2-oxo0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (4f). Orange powder, yield 30%; m.p.
175-178 °C; IR (KBr) (v, cm™): 3311, 3262 (NH), 1748 (C—=0),
1307, 1154 (S—0). '"H-NMR (DMSO-de, 400 MHz) & (ppm):
7.31, 7.42 (2H, 2s, SO,NH,), 6.97-8.65 (7H, m, Ar-H), 10.19,
11.26 (1H, 2s, indole NH). Anal. Caled for C;4H;(N,OsS
(346.32): C, 48.55, H, 2.91; N, 16.18; S, 9.26. Found: C, 48.74;
H, 3.04; N, 16.18; S, 9.46.
4-(2-Ox0-1,2-dihydro-3H-indol-3-ylidene)amino]benzenesulfo-
namide (5a).”> Yellow powder, yield 68%; m.p. 278-279 °C;
IR (KBr) (v, cm™"): 3324, 3233 (NH), 1723, 1750 (C=O),
1329, 1144 (S=0); '"H-NMR (DMSO-d,, 500 MHz) § (ppm):
6.33, 7.60 (1H, 2d, J = 7.81 Hz, indole C,-H), 6.73, 7.06 (1H, 2t,
J = 7.81 Hz, indole C,-H), 6.86, 6.89 (1H, 2d, J = 7.81 Hz,
indole C,-H), 7.08, 7.15 (2H, 2d, J = 8.30 Hz, phenyl C; s-H),
7.28, 7.35 (2H, 2s, SO,NH,), 7.35, 7.46 (1H, 2t, J = 7.81 Hz,
indole C5-H), 7.73, 7.89 (2H, 2d, J = 8.30 Hz, phenyl C, ¢-H),
10.89, 11.00 (1H, 2s, indole NH). Anal. Calcd for C;4,H;;N303S
(301.32): C, 55.80; H, 3.68; N, 13.95; S, 10.64. Found: C, 56.05;
H, 4.05; N, 13.86; S, 10.53.
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4-[(1-Methyl-2-oxo0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (5b).>* Orange powder, yield 62%; m.p.
252-253 °C; IR (KBr) (v, em™"): 3328, 3213 (NH), 1725 (C=0),
1321, 1154 (S=O0); 'H-NMR (DMSO-ds, 500 MHz) § (ppm):
3.07, 3.19 (3H, 2s, 1-CH;), 6.36, 7.64 (1H, 2d, J = 7.81 Hz,
indole C,-H), 6.80-7.16 (4H, m, indole C, ¢-H, phenyl C; s-H),
7.30, 7.36 (2H, 2s, SO,NH,), 7.46, 7.56 (1H, 2t, ] = 7.81 Hz,
indole Cs-H), 7.74, 7.90 (2H, 2d, J = 8.29 Hz, phenyl C, ¢~H).
Anal. Caled for Cy5H 3N;0,S (315.34): C, 57.13, H, 4.16; N,
13.33; S, 10.17. Found: C, 57.37; H, 4.57; N, 13.20; S, 10.34.
4-[(5-Methyl-2-ox0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (5¢).>* Orange powder, yield 58%; m.p.
265-266 °C; IR (KBr) (v, cm™"): 3323, 3232 (NH), 1723, 1751
(C=0), 1320, 1147 (S=O0); 'H-NMR (DMSO-d;, 500 MHz)
§ (ppm): 2.24, 2.27 (3H, 2s, 5-CH3), 5.77, 6.11 (1H, 2s, indole
C,-H), 6.57, 6.79 (2H, 2d, J = 8.79 Hz, phenyl C, ;-H), 6.85,
7.36 (2H, 2s, SO,NH,, D,O exch.), 7.07, 7.29 (1H, 2d, J = 8.29
Hz, indole C¢-H), 7.14, 7.28 (1H, 2d, J = 8.29 Hz, indole C,-H),
7.38, 7.43 (2H, 2d, J = 8.79 Hz, phenyl C,¢-H), 10.78, 10.89
(1H, 2s, indole NH, D,O exch.). Anal. Caled for C;5H;3N;03S
(315.34): C, 57.13, H, 4.16; N, 13.33; S, 10.17. Found: C, 56.89;
H, 4.14; N, 12.95; S, 10.53.
4(1,5-Dimethyl-2-oxo0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (5d). Orange powder, yield 20%; m.p.
223-225 °C; IR (KBr) (v, em™): 3325, 3235 (NH), 1723, 1753
(C=0), 1328, 1147 (S=O0); 'H-NMR (DMSO-ds, 500 MHz)
§ (ppm): 1.99, 2.31 (3H, 2s, 5-CH3), 3.04, 3.17 (3H, 2s, 1-CHj3),
6.14, 7.47 (1H, 2s, indole C,-H), 6.98, 7.07 (1H, 2d, J = 8.30 Hz,
indole C4-H), 7.01, 7.14 (2H, 2d, J = 8.30 Hz, phenyl C; 5-H),
7.18, 7.28 (1H, 2d, J = 8.30 Hz, indole C,-H), 7.29, 7.37 (2H, 2s,
SO,NH,), 7.73, 7.89 (2H, 2d, J = 8.30 Hz, phenyl C, ¢-H). Anal.
Caled for C,6H,;5N;0,S (329.37): C, 58.34, H, 4.59; N, 12.76; S,
9.74. Found: C, 58.01; H, 4.90; N, 12.34; S, 9.65.
4-[(5-Fluoro-2-o0xo0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (5e). Orange powder, yield 20%; m.p.
275-277 °C; IR (KBr) (v, cm™"): (C=0); 1H-NMR (DMSO-ds,
500 MHz) § (ppm): 6.08, 7.52 (1H, 2dd, J = 7.81, 4.32 Hz,
indole C,-H), 6.95, 6.99 (1H, 2dd, J = 8.78, 2.44 Hz, indole C¢-
H), 7.18, 7.25 (2H, 2d, J = 8.30 Hz, phenyl C; s-H), 7.34, 7.40
(1H, 2dd, J = 8.78, 2.44 Hz, indole C,~H), 7.37, 7.46 (2H, 2s,
SO,NH,), 7.81, 7.98 (2H, 2d, ] = 8.30 Hz, phenyl C, c-H), 10.97,
11.11 (1H, 2s, indole NH). Anal. Caled for C;;H;oFN;03S
(319.31): C, 52.66, H, 3.16; N, 13.16; S, 10.04. Found: C, 52.99;
H, 3.17; N, 12.90; S, 9.85.
4-[(5-Fluoro-1-methyl-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-
amino]benzenesulfonamide (5f). Orange powder, yield 44%;
m.p. 247-249 °C; IR (KBr) (v, cm™): 3327, 3225 (NH), 1734
(C=0), 1322, 1155 (S=O0); 'H-NMR (DMSO-ds, 500 MHz)
§ (ppm): 3.06, 3.19 (3H, 2s, 1-CH3), 6.03-7.52 (5H, m, indole
Ca6--H, phenyl Cs5), 7.31, 7.40 (2H, 2s, SO,NH,), 7.75, 7.92
(2H, 2d, J = 8.29 Hz, phenyl C,¢H). Anal. Caled for
C15H1,FN;05S (333.33): C, 54.05, H, 3.63; N, 12.61; S, 9.62.
Found: C, 54.06; H, 3.71; N, 12.46; S, 9.70.
4-[(5-Chloro-2-oxo0-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (5g).>° Yellow powder, yield 61%; m.p.
271-272 °C; IR (KBr) (v, em™'): 3330, 3259 (NH), 1723, 1745
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(C=0), 1328, 1151 (S=0); 'H-NMR (DMSO-ds, 500 MHz)
6 (ppm): 6.28-7.50 (3H, m, indole C,¢,-H), 7.11, 7.17 (2H,
2dd, J = 6.83, 1.95 Hz, phenyl C;s-H), 7.29, 7.40 (2H, 2s,
SO,NH,), 7.74, 7.91 (2H, 2dd, J = 6.83, 1.95 Hz, phenyl C, ¢-H),
11.03, 11.14 (1H, 2s, indole NH). Anal. Caled for
C14H;0CIN;05S (335.76): C, 50.08, H, 3.00; N, 12.51; S, 9.55.
Found: C, 49.96; H, 3.24; N, 12.48; S, 9.20.
4-[(5-Chloro-1-methyl-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-
amino]benzenesulfonamide (5h). Orange crystals, yield 40%;
m.p. 221-223 °C; IR (KBr) (v, cm ~'): 3341, 3235 (NH), 1678,
1727 (C=0), 1332, 1157 (S=0); 'H-NMR (DMSO-d;, 500 MHz)
§ (ppm): 3.07, 3.20 (3H, 2s, 1-CH3), 6.30-7.62 (5H, m, indole
Cse-—H, phenyl C;s-H), 7.30, 7.41 (2H, 2s, SO,NH,), 7.75,
7.92 (2H, 2dd, J = 8.78, 1.95 Hz, phenyl C, s-H). Anal. Calcd for
C15H,,CIN;0;8 (349.79): C, 51.51, H, 3.46; N, 12.01; S, 9.17.
Found: C, 49.05; H, 3.93; N, 11.56; S, 9.53.
4-[(5-Bromo-1-methyl-2-0x0-1,2-dihydro-3H-indol-3-ylidene)-
amino]benzenesulfonamide (5i). Orange crystals, yield 16%;
m.p. 235-237 °C; IR (KBr) (v, cm™): 3336, 3234 (NH), 1676,
1729 (C=0), 1331, 1156 (S=0); 'H-NMR (DMSO-dg, 500 MHz)
8 (ppm): 3.19 (3H, s, 1-CH;), 7.11 (1H, 2dd, J = 8.78, 3.42 Hz,
indole C¢-H), 7.17 (1H, d, J = 8.78 Hz, indole C,-H), 7.30 (1H,
s, indole C,~H), 7.41 (2H, s, SO,NH,), 7.75 (2H, d, J = 8.30 Hz,
phenyl C; 5-H), 7.92 (2H, d, J = 8.30 Hz, phenyl C, c—H). Anal.
Caled for C,5H;,BrN;05S (394.24): C, 45.70, H, 3.07; N, 10.66;
S, 8.13. Found: C, 45.72; H, 3.24; N, 10.96; S, 8.17.
4-[(2-Oxo-5-(trifluoromethoxy)-1,2-dihydro-3H-indol-3-ylidene)-
amino]benzenesulfonamide (5j). Yellow powder, yield 20%;
m.p. 193-195 °C; IR (KBr) (v, cm™"): 3370, 3289, 3212 (NH),
1736 (C=0), 1331, 1158 (S=0); 'H-NMR (DMSO-d,, 400 MHz)
§ (ppm): 7.19 (2H, s, SO,NH,), 7.65 (4H, s, Ar-H), 6.55-7.89
(3H, m, indole C,,-H), 10.24 (1H, s, indole NH). Anal. Calcd
for C;5H,,F3N;0,S (385.32): C, 46.76, H, 2.62; N, 10.91; S, 8.32.
Found: C, 46.66; H, 2.85; N, 10.78; S, 8.50.
4-[(5-Nitro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)amino]-
benzenesulfonamide (5k).>®> Orange powder, yield 15%; m.
p. 257-259 °C; IR (KBr) (v, em™): 3339, 3263 (NH), 1752
(C=0), 1335, 1153 (S=0); 'H-NMR (DMSO-ds, 400 MHz)
5 (ppm): 7.32, 7.43 (2H, 2s, SO,NH,), 7.05-8.37 (7H, m, Ar-H),
11.59, 11.70 (1H, 2s, indole NH). Anal. Calcd for C;4H;(N,05S
(346.32): C, 48.55, H, 2.91; N, 16.18; S, 9.26. Found: C, 48.56;
H, 3.28; N, 16.27; S, 9.56.
4-[(1-Methyl-5-nitro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-
amino]|benzenesulfonamide (51). Yellow powder, yield 27%);
m.p. 230-232 °C; IR (KBr) (v, em™): 3312, 3241 (NH), 1678,
1741 (C=0), 1339, 1157 (S=0); 'H-NMR (DMSO-ds, 500 MHz)
8 (ppm): 3.16, 3.20 (3H, 2s, 1-CH;), 7.17-8.47 (9H, m, SO,NH,
and Ar-H). Anal. Caled for C;5H,;,N,05S (360.34): C, 50.00, H,
3.36; N, 15.55; S, 8.90. Found: C, 50.48; H, 3.84; N, 15.53; S,
9.03.

Enzyme inhibition assay

A stopped-flow instrument (SX.18MV-R Applied Photophysics
model) was used for assaying the CA-catalyzed CO, hydration
activity.>® Inhibitor and enzyme were preincubated for 15 min
for allowing the complete formation of the enzyme-inhibitor
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adduct. ICs5, values were obtained from dose response curves
working at seven different concentrations of the test com-
pound (from 0.1 nM to 50 uM), by fitting the curves using
PRISM  (http:/www.graphpad.com) and non-linear least
squares methods, the obtained values representing the mean
of at least three different determinations. The inhibition con-
stants (K;) were derived from the ICj, values by using the
Cheng-Prusoff equation, as follows: K; = ICs0/(1 + [S]/Kpm)
where [S] represents the CO, concentration at which the
measurement was carried out, and K,,, the concentration of the
substrate at which the enzyme activity is at half maximal. All
enzymes used were recombinant, produced in E. coli as
reported earlier.””*° The concentrations of enzymes used in
the assay were: hCA 1, 12.4 nM; hCA 11, 8.7 nM; hCA IX, 9.2 nM
and hCA XII, 10.8 nM.

Molecular modelling studies

Preparation of ligand structures. The isatin structures 3, 4
and 5 were prepared in 3D with the MOE software package
(v2013.08.02, Chemical Computing Group Inc., Montreal,
Canada) and the ligands were energy minimized using a stee-
pest-descent protocol (MMFF94x force field).

Preparation of hCA crystal structures for docking studies.
The structures of hCA I (PDB: 3LXE, 1.90 A), hCA II (PDB:
4E3D, 1.60 A), hCA IX (PDB: 3IAL 2.20 A) and hCA XII (PDB:
1JD0; 1.50 A) were obtained from the protein databank. The
protein atoms and the active site zinc ions were retained and
all other atoms were omitted. The remaining structure was pro-
tonated using the MOE software package and subsequently the
obtained structure was energy-minimized (AMBER99 force
field). Finally, the obtained protein models were superposed
on the hCA I structure using the backbone Ca-atoms and all
Zn*'-ions, zinc-binding histidines and the overall backbone
atoms superposed well (RMSD value: 1.281 A).

Docking of the compounds into the hCA structures. The
GOLD Suite software package (v5.2, CCDC, Cambridge, UK)
and the ChemScore scoring function were used to dock the
compounds into the hCA structures (50 dockings per ligand).
The binding pocket was defined as all residues within 13 A of
a centroid (x: —17.071, y: 35.081, 43.681; corresponding
approximately to the position of the thiadiazole ring of aceta-
zolamide in the 1JDO structure). Position restraints were
applied to the sulfur and nitrogen atoms of the acetazolamide
sulfonamide tail of hCA XII (default settings) and were also
applied to the other three hCA structures due to the low RMSD
value of the superpositions.

Conclusions

We report here a panel of 23 new sulfonamides incorporating
Schiff base moieties. They were obtained by reactions of var-
iously substituted isatins with 2-, 3- and 4-amino-benzenesul-
fonamides. These new derivatives were tested as inhibitors of
four physiologically relevant CA isoforms, involved in crucial
physiological and pathological processes: the house-keeping
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cytosolic hCA T and II, as well as the transmembrane, tumor-
associated hCA IX and XII, validated drug targets for theranos-
tics for the management of hypoxic tumors. The new sulfona-
mides were moderate-weak hCA I/II inhibitors and highly
potent, low nanomolar hCA IX/XII inhibitors. By using
docking studies we also explained the differential inhibition of
the four CA isoforms and the structural reasons connected
with the selective inhibition of the transmembrane over the
cytosolic isoforms. As a sulfonamide CA IX/XII inhibitor
recently entered Phase I clinical trials for the management of
metastatic solid tumors, compounds of the type reported here
may be useful for designing different derivatives with such
properties.
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