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Novel hollow all-carbon structures†

Dage Sundholm,*a Lukas N. Wirzb and Peter Schwerdtfeger*c

A new family of cavernous all-carbon structures is proposed. These molecular cage structures are con-

structed by edge subdivisions and leapfrog transformations from cubic polyhedra or their duals. The

obtained structures were then optimized at the density functional level. These hollow carbon structures

represent a new class of carbon allotropes which could lead to many interesting applications.

1. Introduction

Graphene is a hexagonal two-dimensional (2D) lattice con-
nected by trivalent vertices representing sp2 carbon atoms.
This simple network can be modified by introducing different
atoms or more complex molecular units for the vertices, and/
or by edge extensions and modifications such as adding extra
atoms or replacing them by molecular units with incoming
and outgoing bonds lying on straight lines.1–4 Alternatively,
one could also work with its dual, i.e., a triangulated planar
surface of hexagonal symmetry containing vertices of degree
six, and modify its topology accordingly. There are many
different combinations and alterations possible to form such
2D molecular networks, which remain mostly unexplored
and could have many interesting electronic properties and
applications.2,3

Graphyne shown in Fig. 1 represents such a class of 2D all-
carbon allotropes,4–6 that is either built from a graphene tem-
plate or its dual, and some building blocks have already been
synthesized by organic chemists.7–13 Graphynes are one
carbon atom thick and consist of sp and sp2 hybridized
carbons in contrast to graphene whose 2D structure consists of
six-membered rings of sp2 hybridized carbons. The α-graphyne
structure is formally obtained by inserting –CuC– units into
every carbon–carbon bond of graphene leading to a 2D carbon
structure consisting of large hexagonal rings with frustrated
three-coordinated carbons in each corner of the 18-membered

hexagonal carbon rings. This bond assignment reflects well
the symmetry of the structure and approximate bond lengths;
however, configurations with only paired electrons are likely to
contribute significantly to the electronic structure. The β-gra-
phyne structure consists of similar hexagonal rings as in α-gra-
phyne. However, each of the hexagonal rings is surrounded by
six hexadehydro[12]annulene rings yielding an infinite 2D
structure with all carbons formally four-valent. The γ-graphyne
structure also shown in Fig. 1 consists of an infinite 2D struc-
ture with the six-membered hexagonal carbon (benzoic) rings

Fig. 1 The molecular structure of (a) α-graphyne, (b) β-graphyne,
(c) γ-graphyne and (d) γ-graphdiyne.
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surrounded by six hexadehydro[12]annulene rings having all
carbons four-valent as in β-graphyne. It can be easily seen that
this structure can be obtained by replacing certain edges in
graphene with acetylene units (in graph theoretical terms this
is called an edge subdivision), or alternatively by replacing all
vertices in the dual triangulated network with benzene units
and edges between them with –CuC– groups. Graphdiynes are
derived from the corresponding graphyne structures by repla-
cing the –CuC– groups with –CuC–CuC– units. Graphdiyne
films have been synthesized on copper surfaces.14 The gra-
phyne and graphdiyne structures are shown in Fig. 1. Of
course, there are many other graphyne structures possible, see
for example Peng et al. for a recent review.4

The graphene structure consisting of an infinite 2D layer of
six-membered rings can be wrapped onto a sphere to give
cavernous fullerene-like structures,15 but with the condition
that e.g., 12 six-membered rings are replaced by five-membered
ones such that Euler’s polyhedral formula is fulfilled.16

Carbon nanotubes are similarly obtained by rolling up gra-
phene sheets onto a cylinder.17 Fullerenes, carbon nanotubes,
and other carbon-based nanostructures such as graphyne,
graphdiyne, graphone, and graphane have been proposed as
basic building blocks for a variety of interesting nanotechnolo-
gical applications.4,18–30 As for graphene, hollow graphyne and
graphdiyne structures can be obtained by wrapping up gra-
phyne sheets, with modifications of course so that Euler’s
polyhedral formula is fulfilled. Analogously, graphyne-based
and graphdiyne-based carbon nanotubes can be obtained by
rolling up the corresponding planar sheets. Fullerene like
graphynes (fullerynes) were already introduced by Baughman
et al. in 1993,29 and more generally, vertex insertions into
cubic polyhedral graphs were already discussed by Fowler and
Rogers in 1998.30 Here we also note that the insertion of dicar-
bon units into all bonds of a chemical structure leads to the
concept of carbomers (see for example the study of Chauvin
and co-workers31–33).

One of the smallest members of this class of molecules is
the recently proposed gaudiene molecule, which is an all-
carbon molecule consisting of 72 carbon atoms forming a
hollow structure of Oh symmetry (Fig. 2). Gaudiene can be con-
structed from a truncated octahedron with two thirds of the

edges replaced by –CuC– units.34 Quantum chemical calcu-
lations showed that β-C72 is an aromatic molecule with a
rather large optical gap. Here, a novel class of hollow carbon
structures is proposed. We call this class of polyhedral mole-
cules gaudienes, because the initial polyhedron was inspired
by the work of the Spanish architect Antoni Gaudí.34 Gau-
dienes are more general than carbomers as the insertion of
dicarbon units may not take place in every chemical bond.

2. Graph theoretical considerations

Before we start with the discussion of the different gaudienes
we briefly analyze their topology and introduce a classification
scheme. For the moment we do not distinguish between
single, double or triple bonding in the polyhedral graph. For-
mally, gaudienes belong to the class of convex polyhedra
(although a quantum theoretical treatment might end up with
a locally non-convex structure).35 The classification of (non-
regular) polytopes is currently an open problem.36 For the
special class of fullerenes a face-spiral classification scheme
has been developed by Manolopoulos et al.,37,38 which can be
generalized for cubic polyhedra.35,39 Here, we use the fact that
simple insertions (deletions) of divalent vertices into edges
(edge subdivisions) of a graph G results in a graph G′ (which is
homeomorphic to G) with a larger vertex set. Note that even
though we have a homeomorphism between G and G′, G is not
a subgraph of G′ as the vertex set E is not a subset of E′.

A polyhedral graph G satisfies Euler’s polyhedral formula,
and by using the handshaking lemma we obtain

N � E þ F ¼
X
n¼2

1� n
2

� �
Nn þ

X
n¼3

Fn ¼ 2 ð1Þ

where N is the number of vertices in the graph G, E is the
number of edges, F is the number of faces, Nn is the number
of n-valent vertices, and Fn is the number of n-gons. We see
that for n = 2 the number of divalent vertices is exactly can-
celled by the number of extra edges introduced into the graph.
In all cases considered here the graph G is cubic, i.e., contains
only 3-valent vertices, and Euler’s polyhedral formula for the
face count becomes.35

3F3 þ 2F4 þ F5 þ
X
n�7

ð6� nÞFn ¼ 12 ð2Þ

Thus, we conclude that one cannot tile a sphere with hexa-
gons only, i.e., one has to introduce extra n-gons (for example
12 pentagons for fullerene graphs; this however does not guar-
antee that a certain polyhedron exists as for example the fuller-
ene C22 does not exist). Introducing extra n-gons can be done
in many different ways as we shall see when we discuss the
gaudienes in detail.

For the characterization of the various gaudienes we have to
describe the cubic graph G or, if G is obtained by some other
graph transformation T of the original graph G0, i.e., G =
T (G0). We list the vertices and faces according to Pedersen36

and describe the subsequent list of vertex insertions into the
Fig. 2 The molecular structure of β-C72 of Oh symmetry, the smallest
β-gaudiene investigated.
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edges of each n-gon separately. For G, or G0 with no divalent
vertices, we use the notation

PG½N3;N4;N5;N6;…; F3; F4; F5; F6;…� ð3Þ

where PG is the ideal point group of the polyhedron.35 For
example, the well known fullerene Ih-C60 is characterized by

Ih½60; 0; 0; 12; 20� ð4Þ

This scheme does not uniquely classify the graph, as there
are, for example, many non-isomorphic structures for a fuller-
ene with a certain vertex count and symmetry,35 but becomes
useful for the gaudienes introduced here as we shall see.

α-Graphyne based polyhedral structures (in their most
general form) can be derived from any polyhedral graph by
inserting linear –CuC– units into every bond (see Fig. 1). It is
thus identical to the carbomer concept. This insertion is per-
formed irrespective of the assignment of double bonds in the
original structure. For cubic graphs this scheme was already
introduced by Fowler and Rogers.30 We denote the trans-
formed version of a graph G0 according to this scheme as G =
α(G0). For example, if we chose as the graph G0 of an α-gau-
diene a fullerene with N0 vertices, denoted as PG[N0; 0, 0, 12,
(N0/2–10)] and we insert two divalent vertices into all 3N0/2
edges, we get a total vertex count of NG = 4N0, where NG is the
number of vertices in the α-gaudiene. Such an edge subdivi-
sion conserves the point group of G0.

It follows from Thurston’s proof, which considers the
number of non-isomorphic triangulations of a sphere with all
N vertices of valency six or smaller, that the number of non-
isomorphic cubic graphs with faces up to hexagons grow as
OðN9Þ.40 As every polyhedral graph can be transformed
into an α-gaudiene, we can estimate the number of derived
α-gaudienes.

β-Graphyne analogue carbon cages can be generated start-
ing with any polyhedral (i.e., three connected and planar)
graph G0. First we perform a leapfrog transformation (LF),
which is a (1,1) Goldberg–Coxeter transformation.35,41 The
Goldberg–Coxeter transformation of a polyhedral graph is a
polyhedral graph itself, implying that the initial graph can be
subjected to any number of consecutive leapfrog transform-
ations. In the obtained graph all faces with sizes ≠6 and a
subset of all hexagons are selected, such that each vertex is
adjacent to exactly one selected face. Such a selection is guar-
anteed to exist and to be unique for every polyhedral graph
that is obtained through a leapfrog transformation. The edges
of all selected faces (i.e., two thirds of all edges) are then
replaced by a linear segment with two vertices. The leapfrog
transformation triples the number N0 of vertices of a graph
and introduces N0 extra hexagons,38 while the described repla-
cement triples the number of vertices again. Therefore, β-gra-
phyne cages with NG = (3 × 3)N0 vertices are accessible from
polyhedra with N0 vertices. We denote this sequence of one
leapfrog transformation and the following edge subdivision of
G0 as β(LF(G0)). We denote k consecutive leapfrog transform-
ations of a graph G0 as LF

k(G0).

Equivalently, β-graphynes can be created from the same
original graph G0 by first taking its dual G*

0. Then, each
n-valent vertex in the triangulation is replaced by an n-gon in
which into each edge a –CuC– unit has been inserted. For
every pair of vertices connected by an edge in the original
graph, the resulting two expanded polygons are connected by
an edge.

In a similar fashion, γ-graphyne analogue carbon cages are
generated starting with any polyhedral graph G0. Transform-
ation and selection of faces are performed in the same fashion
as above. Then, all edges that are not adjacent to any selected
face (one third of the edge set), i.e., the complement of the pre-
viously picked edges, are replaced by two additional vertices.
This replacement scheme doubles the number of vertices,
transforming the polyhedral graphs with N0 vertices into NG =
(3 × 2)N0 vertex cages. Analogously to the previous transform-
ation this is denoted as γ(LF(G0)).

Alternatively, we can start with the dual graph G*
0, and

replace every n-valent vertex by an n-gon. These n-gons are
then connected – according to the connectivity of the vertices
they originated from – by bonds into which –CuC– units have
been inserted.

The α-, β-, and γ-graphdiyne like cages are generated in the
same way as the respective graphynes but by replacing the
edges with linear four-vertex segments instead of two-vertex
segments. N0 vertex polyhedral graphs are then transformed
into NG = 7N0, NG = (3 × 5)N0, and NG = (3 × 3)N0 vertex cages
respectively. Transformations of graph G0 to graphdiynes are
written with a prepended ‘C4’, e.g., C4-α(G0).

3. Computational methods

Computationally, all structures were generated with a modified
version of the program Fullerene.42 Selected small polyhedral
graphs were hard coded. These graphs were subjected to leap-
frog transformations as detailed in the previous section. The
generation of all the gaudienes considered here is summarized
in Table 1.

As the force field in program Fullerene can only operate on
cubic graphs and triangulations, polyhedra were generated at
this stage and optimized to bond lengths that correspond to
the polyhedron after replacing a subset of bonds with
elongated linear segments. After the optimization of the Carte-
sian coordinates, atoms were inserted and placed in 3D by
linear interpolation.

The molecular structures were then further optimized at
the density functional theory (DFT) level using the Becke–
Perdew generalized gradient approximation (GGA) functional
(BP86) in combination with the Karlsruhe split-valence polariz-
ation (SVP) basis sets.43–46 Since the calculations at the BP86
level slightly underestimate the gap between the highest occu-
pied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO), single-point calculations were per-
formed at the DFT level using Becke’s three-parameter func-
tional (B3LYP) together with a SVP basis set.46–48 The semi-
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empirical dispersion correction of Grimme has been employed in
the molecular structure optimization.49,50 The DFT calculations
were performed with Turbomole version 6.5.51–53 The Cartesian
coordinates of the atomic positions of all studied structures are
given in the ESI.† Improving the basis set to a triple-zeta split-
valence polarization set for β-C72 leads only to a small change
in geometry (change in bond distances |Δre| < 0.012 Å and
bond angles |Δαe| < 0.04 degrees). These errors are within the
accuracy of DFT and therefore do not warrant more extensive
computer calculations for the discussion of the structures
presented here.

4. Molecular structures
4.1 α-Gaudienes

The optimized structure of the smallest fullerene-like carbo-
mer based on α-graphyne, the gaudiene α-C80, is shown in
Fig. 3. The structure belongs to the icosahedral (Ih) point
group as does its origin, the dodecahedron represented by the
smallest fullerene Ih-C20. Hence, this gaudiene consists of 12
pentagonal 15-membered carbon rings forming a cage. The
atoms shared by the three rings are formally sp3 hybridized
carbons with only three neighbor carbons leading to a rela-
tively small HOMO–LUMO gap of 0.740 eV at the BP86 level,
which can be compared with the HOMO–LUMO gaps of 1.66

eV, 1.45 eV and 1.23 eV for the C60, C180 and C240 fullerenes
calculated at the GGA level.54 For comparison, DFT calcu-
lations using the BP86 functional yield HOMO–LUMO gaps of
1.24 eV and 0.21 eV for β-C72 and γ-C72, respectively. At the
B3LYP level the HOMO–LUMO gap for α-C80 is 1.22 eV. The
adjacency spectrum of fullerene-like carbomers and their
open/closed shell character have been analyzed in detail by
Fowler and Rogers.30

A very stable molecule with a HOMO–LUMO gap of 5.17 eV
is obtained by adding 20 hydrogens to the corners of the α-C80

icosahedron. Larger α-gaudienes can easily be constructed by
using fullerenes as templates and replacing each carbon–
carbon bond with a –CuC– moiety. All α-gaudienes have three-
coordinated carbons in the intersections between three carbon
rings. More stable molecules can be obtained by adding substi-
tuents to these three-coordinated carbons.

We should mention that eqn (2) also allows one to use
other cubic polyhedra. For example, if we chose the truncated
octahedron belonging to the Archimedean solids, Oh[24; 0, 8, 0, 6],
containing six squares according to eqn (2), we can expand
this graph for all edges in a similar way and we arrive at
Oh-C96, another type of α-gaudiene. Hence the playing field is
huge for the construction of new 3D polyhedral molecular
structures.

4.2 β-Gaudienes

The smallest member of the β-gaudiene class of molecules
with four- and six-membered rings involved is the previously
proposed β-C72 shown in Fig. 2.34 It belongs to the Oh point
group and can be generated from the simple cube G0 = Oh[8; 0, 6]
or its dual, the octahedron G*

0 = Oh[0, 6; 8]. When folding
β-graphyne to the hollow C72 structure, the edges of eight hexa-
dehydro[12]annulene rings of β-graphyne form six four-sided
rings having four carbons on each side with alternating triple
and single bonds. Even though hexadehydro[12]annulene is
formally antiaromatic,55–57 β-C72 is aromatic according to the
ring-current criterion sustaining a ring current strength of
44.3 nA T−1 around the molecule, which can be compared to

Table 1 Investigated gaudienes with N vertices resulting from a trans-
formation T of an original graph G0, i.e. T (G0). A description of the poly-
hedral graph G0 is provided as well. For one of the non-regular and less
common polyhedra used we give the face spiral (FS) indices n of the
n-gons for identification. For the fullerenes (Goldberg polyhedra) we
provide the canonical index derived from the list of ring-spiral pentagon
indices35,37,38

N T G0 Polyhedron (G0)

80 α Ih [20; 0, 0, 12] Dodecahedron
72 β (LF) Oh [8; 0, 6 ] Cube
216 β (LF2) Oh [8; 0, 6 ] Cube
648 β (LF3) Oh [8; 0, 6] Cube
120 C4-β (LF) Oh [8; 0, 6] Cube
360 C4-β (LF2) Oh [8; 0, 6] Cube
162 β (LF) C2v [18; 0, 2, 8, 1] FS (45556555545)
288 β (LF) C2 [32; 0, 0, 12, 6] Fullerene C32 (1)
288 β (LF) D2 [32; 0, 0, 12, 6] Fullerene C32 (2)
288 β (LF) D3d [32; 0, 0, 12, 6] Fullerene C32 (3)
288 β (LF) C2 [32; 0, 0, 12, 6] Fullerene C32 (4)
288 β (LF) D3h [32; 0, 0, 12, 6] Fullerene C32 (5)
288 β (LF) D3 [32; 0, 0, 12, 6] Fullerene C32 (6)
72 γ (LF) D6h [12; 0, 6, 0, 2] Hexagonal prism
648 γ (LF3) D6h [12; 0, 6, 0, 2] Hexagonal prism
108 C4-γ (LF) D6h [12; 0, 6, 0, 2] Hexagonal prism
432 γ (LF2) D6d [24; 0, 0, 12, 2] Fullerene C24 (1)
288 γ (LF) D2h [48; 0, 0, 12, 14] Fullerene C48 (15)
288 γ (LF) C2v [48; 0, 0, 12, 14] Fullerene C48 (17)
288 γ (LF) D2h [48; 0, 0, 12, 14] Fullerene C48 (41)
288 γ (LF) C2v [48; 0, 0, 12, 14] Fullerene C48 (56)
288 γ (LF) C2h [48; 0, 0, 12, 14] Fullerene C48 (80)
288 γ (LF) C2v [48; 0, 0, 12, 14] Fullerene C48 (138)
288 γ (LF) D6d [48; 0, 0, 12, 14] Fullerene C48 (186)
288 γ (LF) D6d [48; 0, 0, 12, 14] Fullerene C48 (189)

Fig. 3 The molecular structure of α-C80 of Ih symmetry, which is the
smallest α-gaudiene investigated.
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the ring-current strength of benzene of 11.8 nA T−1.34,58 Since
all carbons have formally four bonds, β-C72 is a stable mole-
cule with a HOMO–LUMO gap of 1.82 eV at the B3LYP/SVP
level.

A number of β-gaudiene structures were constructed using
small polyhedral graphs as starting points. The smallest one
constructed using that procedure was β-C162 (C2v), which was
obtained using an 18-vertex graph as the initial structure,
C2v[18; 0, 2, 8, 1], belonging to a non-regular polyhedron (see
Fig. 4). This polyhedron does not belong to the common
solids and we therefore give the face spiral indices in Table 1.
The optimized molecular structure of β-C162 (C2v) is shown in
Fig. 5a. It has a rather small HOMO–LUMO gap of 0.48 eV as
obtained at the B3LYP level.

Since the topological method ensures that the symmetry of
the seed structure is conserved, many different isomers can be
constructed when the corresponding fullerene structures are
available. The next larger β-gaudiene structures of Oh sym-
metry are β-C216 and β-C648, which have HOMO–LUMO gaps of
0.415 eV and 0.225 eV at the B3LYP level, respectively. These
are also shown in Fig. 5.

A large number of β-gaudienes consisting of 288 carbons
can be constructed by using different fullerene isomers such
as those of C32 as starting structures. The energetically lowest
β-C288 structure of all investigated isomers (see Table 1)
belongs to the D3d point group. The energetically lowest β-gau-
diene structures obtained in this work are shown in Fig. 5. The
rest of the studied β-C288 structures are shown in the ESI.† The
energetically lowest β-C288 isomers are 48.8 kJ mol−1 (D3),
51.9 kJ mol−1 (D2), 53.2 kJ mol−1 (C2), 65.6 kJ mol−1 (C2), and
146.6 kJ mol−1 (D3h) above the D3d structure. The β-C288 (Oh)
isomer consisting of a β-C72 molecule inside β-C216

(β-C72@β-C216) is 683 kJ mol−1 above the lowest β-C288 isomer
of D3d symmetry. The HOMO–LUMO gaps of the β-C288 struc-
tures are in the range of 0.27–0.42 eV, with the largest gap for
the most stable isomer. The two β-C288 structures of C2 sym-
metry have negative HOMO–LUMO gaps at the BP86 level.

The largest molecule considered in this study was an
onion-like β-C72@β-C216@β-C648 cluster of Oh symmetry. The
structure is shown in the ESI.†

4.3 γ-Gaudienes

The smallest γ-gaudiene (γ-C72) studied belongs to the D6h

point group and has a HOMO–LUMO gap of 0.519 eV. The
optimized molecular structure is shown in Fig. 6. The benzoic
six-membered carbon ring is surrounded by six hexadehydro-
[12]annulene rings that are fused at the molecular edge. The
correct topology of the closed surface is ensured by the six
four-membered carbon rings between the hexadehydro[12]-
annulenes at the edge of the molecule. The next larger γ-gau-
diene structure of Oh symmetry is γ-C432 (Oh) with a HOMO–
LUMO gap of 0.491 eV. The largest γ-gaudiene studied in this

Fig. 4 Graph of the non-regular C2v [18; 0, 2, 8, 1] polyhedron.

Fig. 5 The molecular structure of the energetically lowest isomers of
β-gaudienes: (a) β-C162 (C2v), (b) β-C216 (Oh), (c) β-C288 (D3d), and (d)
β-C648 (Oh).

Fig. 6 The molecular structure of γ-C72 of D6h symmetry, which is the
smallest γ-gaudiene investigated.
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work is γ-C648, which has D6h symmetry and a small HOMO–
LUMO gap of 0.253 eV at the B3LYP level.

A large number of γ-C288 structures were constructed with
different fullerene isomers of C48 as the origin graph.
The energetically lowest γ-C288 belongs to the C2v point group.
The structure of the energetically lowest γ-C288 (C2v) isomer is
shown in Fig. 7. The structures and atomic coordinates of the
remaining studied γ-C288 clusters are shown in the ESI.† The
energetically lowest γ-C288 isomers are 44.3 kJ mol−1 (D2h),
47.8 kJ mol−1 (C2h), 160.0 kJ mol−1 (D6d), 167.5 kJ mol−1 (C2v),
287.2 kJ mol−1 (C2v), 565.5 kJ mol−1 (D2h), and 873.1 kJ mol−1

(D6d) above the lowest C2v structure. The calculations show
that there are only three low-lying γ-C288 isomers among the
studied ones.

The HOMO–LUMO gap of the lowest γ-C288 structure is 0.36
eV at the B3LYP level, whereas the HOMO–LUMO gap of the
γ-C288 is in the range of 0.18–0.47 eV, with the largest gap for
γ-C288 (D2h). The energetically lower isomer of D6d symmetry
has a negative HOMO–LUMO gap at the BP86 level. The mole-
cular structure of the energetically lowest γ-gaudienes obtained
in this work is shown in Fig. 7.

4.4 Graphdiyne-based gaudienes

Graphdiyne-based gaudienes are obtained by replacing the
–CuC– units of gaudienes with the twice longer –CuC–CuC–
(C4) group.

Even though the obtained molecules have a larger number
of triple bonds, the HOMO–LUMO gap is wider than the

corresponding graphyne-based molecules. The HOMO–LUMO
gaps calculated at the B3LYP level are 0.877 eV, 1.356 eV, and
1.168 eV for C4-γ-C108, C4-β-C120, and C4-β-C360, respectively.
The larger stabilization of the graphdiyne-based gaudienes can
be traced back to the molecular properties of dodecadehydro-
[18]annulene, which is an aromatic molecule.56 The HOMO–
LUMO gap of C4-γ-C108 is smaller than the other two studied
C4-gaudienes due to the significantly larger bond strain of the
small four-membered carbon rings at the edge of the mole-
cule. For the C4-β-gaudienes, the correct topology is obtained
by the six 20-membered carbon rings. The molecular struc-
tures of the studied C4-gaudienes are shown in Fig. 8. The
Cartesian coordinates of the atomic positions are given in
the ESI.†

5. Discussion and conclusions

The γ-gaudienes are generally significantly lower in energy
than the β-gaudienes for the same number of carbon atoms.
The most important exception is β-C72, which is 128.9 kJ mol−1

below γ-C72 due to the ring strain of the four-membered
carbon rings of γ-C72 and maybe also due to the aromatic
stabilization of β-C72.

34 The HOMO–LUMO gap of β-C72 of 1.82
eV calculated at the B3LYP level is also much larger than the
HOMO–LUMO gap of 0.52 eV for γ-C72. For the small γ-C72

cage, the bond strain of the four-membered carbon rings is
not compensated by the energetically favorable structure of

Fig. 7 The molecular structure of the energetically lowest isomers of
(a) γ-C288 (C2v), (b) γ-C432 (Oh), and (c) γ-C648 (D6h) gaudienes.

Fig. 8 The molecular structure of the investigated graphdiyne-based
(C4) gaudienes: (a) C4-γ-C108 (D6h), (b) C4-β-C120 (Oh), and (c) C4-β-C360

(Oh).
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γ-graphyne. For larger gaudienes, the γ-graphyne structure has
significantly lower energies than the corresponding β-gaudiene
structures. The lowest isomer of γ-C288 is more than 5000 kJ
mol−1 (!) below the energy of the lowest β-C288 structure. For
larger gaudienes, the energy difference between the γ-gaudiene
and β-gaudiene is even bigger. For the largest studied gau-
dienes, γ-C648 is about 11 000 kJ mol−1 below β-C648.

The relative energy per carbon atom is given as a function
of 1/N in Fig. 9, where N is the number of carbon atoms. The
relative energy depends roughly linearly on 1/N leading to the
three straight lines in Fig. 9 showing that γ-gaudiene is the
most stable structure and that C4-gaudienes are the energeti-
cally highest ones. Extrapolation to 1/N → 0 yields the relative
energy of β-graphyne, γ-graphyne, and β-graphdiyne. The calcu-
lations show that β-graphyne is 17 kJ per mol per carbon
higher in energy than γ-graphyne and that β-graphdiyne is
only 7 kJ per mol per carbon above β-graphyne.

The HOMO–LUMO gaps calculated at the B3LYP level are
plotted as a function of 1/N in Fig. 10 yielding three straight
lines for three gaudiene classes. Extrapolation of the HOMO–
LUMO gap to the limit of 1/N → 0 yields the estimated
HOMO–LUMO gaps of the β-graphyne, γ-graphyne and
β-graphdiyne sheets. The three lines suggest that the HOMO–
LUMO gaps for the infinite planar structures are larger than
zero. The extrapolated HOMO–LUMO gap of β-graphyne is 0.17
eV. For γ-graphyne we obtained an extrapolated HOMO–LUMO
gap of 0.33 eV. The extrapolated HOMO–LUMO gap of 1.25 eV
for β-graphdiyne agrees well with the previously reported value
of 1.22 eV, which was calculated at the DFT level using a
hybrid functional59 and it is significantly larger than the
HOMO–LUMO gap of 0.46 eV calculated at the DFT level using
the generalized gradient approximation.60 Even though the
error bars of the present extrapolated values are large due to
the few number of points used in the fit, the present calcu-
lations suggest that the HOMO–LUMO gap of graphdiyne is
larger than 1 eV.

The hollow gaudiene structures might open the avenue to
novel materials with interesting properties. For example, triple
bonds provide possibilities for functionalizing the molecules
with different kinds of substituents that might even couple
several gaudiene molecules with polymers or solid-state
materials. The gaudiene structures can also be fully or partially
saturated with hydrogens without destroying their cage struc-
tures. Such molecules are ordinary saturated hydrocarbons
with extraordinary hollow structures. By attaching substituents
to the corners of α-gaudienes, molecules with a very large
HOMO–LUMO gap are obtained. The optical gap of the C4-gau-
dienes is significantly larger than the two other classes of
molecules. Extrapolation to infinitely large clusters suggests
that planar graphdiyne has indeed a HOMO–LUMO gap that is
significantly larger than zero, which might provide novel possi-
bilities for carbon-based mono-layered structures.4

Finally, we point out that there are also other graph theore-
tical procedures for obtaining cavernous all-carbon structures
that have not been discussed here.61,62 For example, one can
insert –CuC– units into the edges running parallel to the
main axis of a fullerene nanotube. One can also use other
building blocks besides carbon which fit the required topo-
logies, e.g., building units which are used in metal–organic
frameworks. This opens up a whole new area of interesting
cage structures and materials which could be useful in many
interesting applications.
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