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Tuning the dielectric properties of metallic-
nanoparticle/elastomer composites by strain

Patrick Gaiser, Jonas Binz, Bruno Gompf,* Audrey Berrier and Martin Dressel

Tunable metal/dielectric composites are promising candidates for a large number of potential applications
in electronics, sensor technologies and optical devices. Here we systematically investigate the dielectric

properties of Ag-nanoparticles embedded in the highly flexible elastomer poly-dimethylsiloxane (PDMS).

As tuning parameter we use uniaxial and biaxial strain applied to the composite. We demonstrate that

both static variations of the filling factor and applied strain lead to the same behavior, i.e., the filling factor

of the composite can be tuned by application of strain. In this way the effective static permittivity eq¢ Of

the composite can be varied over a very large range. Once the Poisson’s ratio of the composite is known,

the strain dependent dielectric constant can be accurately described by effective medium theory without

any additional free fit parameter up to metal filling factors close to the percolation threshold. It is demon-
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1 Introduction

Flexible metal-dielectric composites with a high dielectric con-
stant enable a large number of applications in charge-storage
capacitors, electrostriction artificial muscles or in general in
flexible organic electronics.' > Several studies have investigated
the mechanical tunability of the optical properties and plas-
monic behavior of thin metallic films® or nanoparticles either
in two-dimensional’® or three-dimensional'®"! metallo-
dielectric composites using elastomeric substrates.

The physics behind these applications is the well-known
dependence of the electric and dielectric properties of metal-
dielectric composites on the metal filling factor, as described
by percolation theory. The geometrical framework of this
theory and the associated concepts of critical phenomena,
scaling behavior and fractality are applicable on a wide variety
of systems. The results are especially independent on the
specific size or shape of the system under investigation. For
electrical or optical measurements this size-independence is
given as long as the long wavelength limit is fulfilled, which
for low-frequency investigations is clearly the case. In systems
consisting of randomly distributed metal nanoparticles in a
dielectric host, the dc-conductivity exhibits an abrupt change
when the metal concentration reaches a critical value f. - the
percolation threshold - and becomes metallic. This jump
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strated that, starting above the percolation threshold in the metallic phase, applying strain provides the
possibility to cross the percolation threshold into the insulating region. The change of regime from con-
ductive phase down to insulating follows the description given by percolation theory and can be actively

becomes manifest in a divergence of the real part of the static
dielectric constant at the insulator-to-metal transition. For a
finite conductivity of the host material, theory predicts that
this divergence is limited to a maximum.'® As shown in ref.
12, the divergence can be qualitatively interpreted by the
increased capacitive coupling between adjacent particles with
increasing filling factor. Each pair of nearest particles forms a
capacitor, which effective surface tends to infinity and its dis-
tance to zero at the percolation threshold. Therefore the
effective capacity of the system diverges.

Near f. the electrical and optical behavior is governed by
scaling laws."® At the percolation threshold values of the real
part of the permittivity of up to 10° have been reported in
ferroelectric/metal composites.'* At low frequencies and for a
vanishing conductivity of the insulating host, the divergence
of the real part of the permittivity of the composite material
€etr can be described by:

€h

cerlf) ~ 7 fp

for f < f. (1)

and

et (f) ~ ey em(f —fo) forf > fe

D
where p and t are scaling factors, and ¢, is the permittivity of
the host material and e,,that of the metallic inclusions. The
filling factor is given by f = Vietal/Viota. Experimentally f was
calculated from the weighted masses and known densities of

(2)
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the constituents. For a finite conductivity o}, of the host and a
conductivity o, of the metal the frequency independent
maximum of the real part of the permittivity of the composite
at the percolation threshold is given by:

Om

eett(fc) = en (g)lﬂ (3)

where y is a scaling factor.'

Following this route in recent years a number of papers
were published on the electrical and mechanical properties of
composites composed of an elastomer such as poly-dimethyl-
siloxane (PDMS) together with metallic nanoparticles (NP) or
carbon nanotubes.">®

It was shown that the unique elastic properties of PDMS are
indeed preserved even in the metallic state, ie., for metal
filling factors above the percolation threshold.'® This allows
for tuning the electrical resistance of the composites by
stretching the elastomer.>® Here we systematically show that
both below and even across the percolation threshold the
dielectric properties can be tuned by stretching the PDMS/
silver-nanoparticle composites over a wide range and that the
change of the strain dependent filling factor directly follows
from the elastic properties of the elastomer. Additionally it is
shown that, in the case of biaxial stretching, the larger volume
change leads to a stronger strain dependence of the dielectric
properties compared to the uniaxial case.

2 Experimental

Ag-nanoparticle powder was bought from Ionic Liquids. They
were fabricated by plasma vapor deposition and handled
under Ar atmosphere. The particles are not covered by any
ligand or stabilization layer. The size distribution was verified
by transmission electron microscopy and the average particle
size is about 35 nm with a broad distribution spanning up to
100 nm. The samples were prepared by mixing the Ag-nano-
particles with PDMS (Sylgard 184, Dow Corning) in the respect-
ive volume fractions. Even though the volume fractions can be
obtained from the weighted masses very accurately, the
effective filling factor depends sensitively on the homogeneity
of the sample. In the following the experimental filling factor
calculated from the weighted masses will be called nominal
filling factor. It can be determined with an accuracy of about
0.2%. Within the sample the local filling factor can exhibit
larger variations due to possible inhomogeneities. In order to
ensure homogeneity of all the samples, the Ag-nanoparticle
powder (Ag-NP) was thoroughly ground with a mortar and
mixed with pure PDMS which was prepared in a 10:1 ratio of
elastomer and hardener. Upon mixing, the composites with
filling factors near to the percolation threshold became a
viscous and homogeneous liquid, an important precondition
for reliable stretching experiments. Afterwards, the liquid was
stirred in an ultrasonic bath and then degassed in a desiccator,
for 15 min. To ensure the reproducible curing of the samples,
the liquid was cast into a petri dish with a thickness not exceed-
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ing 1 mm and degassed again for 10 min. Then, the liquid was
cured for 120 min at 120 °C and subsequently cut into smaller
pieces. Prior to the measurements the homogeneity of the
samples were checked by optical microscopy. Good samples
look uniformly grey and no homogeneities could be resolved. In
particular, even after stretching, no buckling was to be seen.

The stretching dependent dielectric constant was deter-
mined in specifically designed set-ups, for uniaxial and biaxial
stretching respectively, which allow accurate capacitance
measurements under defined stretching conditions by inde-
pendently determining the thickness of the sample (see
Fig. 4). The capacitance itself was measured by a capacitance
bridge (Andeen Hagerling, AH2550A) at 1 kHz. To account for
stray fields in the finite capacitor plates and for parasitic
capacitance coming from cables and the set-up all values were
corrected by comparison with samples having a well-known
dielectric constant (air or PDMS) by the means of an effective
capacitor plate area and an offset capacitance.

3 Elastic properties of Ag-NP/PDMS
composites

Before one can calculate the strain dependent filling factor of
Ag-NP in the composites, the volume change of the samples
under applied strain has to be known. The Poisson’s ratio v of
the samples was determined from the measured thickness and
length changes under uniaxial strain as measured from cali-
brated optical microscope pictures:

d—d,
do
=—c0 4
y =1 ()
where d, and d are the thickness of the sample before and

L— 1L

after stretching and s = is the applied strain. Here L,

0
and L are the length of the sample before and after stretching,

respectively. The Poisson’s ratio is a measure of the transverse
contraction of the material with respect to its longitudinal
elongation. A Poisson’s ratio of 0.5 would indicate that there is
no volume change of the sample under strain. The PDMS

o ] BT ———

. gk f

Fig. 1 Schematic illustration of the static dielectric constant eq¢ vs.
filling factor f. At point A the dependence can be described by eqn (2)
and at point C by eqn (1). The maximum is given by eqn (3). The arrows
indicate the decrease of the filling factor by stretching (based on ref. 12).
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Fig. 2 The Poisson'’s ratio of Ag-NP/PDMS composites is independent
of the applied strain and independent of the Ag-NP filling factor f in the
range 0-15%.

samples investigated in this work have all a Poisson’s ratio
smaller than 0.5, indicating an increase of volume upon stretch-
ing. As an example, Fig. 2 shows the dependence of the Pois-
son’s ratio v on applied uniaxial strain for a sample with an Ag-
NP filling factor of f = 9% measured in the range 0% to 30%
stretching. For all samples under investigation the Poisson’s
ratio v is basically constant, ie., independent of the applied
strain and filling factor in the strain range used in our study.
The fit yields v = 0.34, a value also found in our experiments for
pure PDMS and all other composites under investigation up to
filling factors of f ~ 15%. As a consistency check, using this
Poisson’s ratio, the capacitance measurements yield a strain
independent dielectric constant for pure PDMS of about ¢, = 2.7
at 1 kHz, in good agreement with literature values.*"

4 Dielectric properties of the
composite

First we investigate the dependence of the dielectric constant
¢ On the filling factor f of the Ag-NP. In Fig. 3 the dependence
of .4 is plotted for 19 different samples with nominal filling
factors varied between 0 (pure PDMS) and f = 14.2%, a filling
factor just before the samples become metallic. As expected
from percolation theory, the measured dielectric constant .
increases with increasing filling factor f and tends to diverge
near the critical filling factor reaching values above 160. Below
the percolation threshold, the experimental data can be fitted
by eqn (1) resulting in a critical filling factor of f, = 14.3% and
a critical exponent of p = 0.8, values in good agreement with
percolation theory.”® Due to the extremely sharp dependence
of eqn (1) on f. around the percolation threshold, f. can be
determined from the fit in Fig. 3 with an accuracy of +0.05%.
The behavior can also be described quite well by Bruggeman’s
effective medium approximation (BEMA)"”:

Em — Eeff )

€h — Ecff
_m el 5
Eeff + D(em — €cff) ®)

eeff + D(en — &efr)
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Fig. 3 Dielectric constant et as a function of the filling factor f for 19
different Ag-NP/PDMS samples. The data can be fitted by the BEMA
(eqn (5)) as well as by the scaling law given in egn (1). Error bars in the
nominal filling factor are smaller than the symbol size.

where &, is the dielectric constant of the metal inclusion (Ag-
NP), ¢;, that of the host (PDMS) and e the effective dielectric
constant of the composite. The depolarization factor D is a par-
ameter describing the shape of the particles. For spheres this
factor should be D = 1/3, for elongated ellipsoids it is expected
to be between 0 < D < 1/3, and for disc-like particles between
1/3 <D < 1. Here one has to stress the fact that strictly speaking
the BEMA is not valid anymore close to the percolation
threshold, where large field fluctuations, so called hot spots,
appear and therefore the assumption of a homogenous back-
ground field fails.”> Whereas in percolation theory the critical
filling factor depends neither on the size nor the shape of the
particles, in the BEMA theory f. is equal to the depolarization
factor D and therefore strongly connected to the particle
shape.?® As a consequence for spherical particles BEMA pre-
dicts a critical filling of f. = D = 1/3, which is in contradiction
to percolation theory where one expect that f. equals the
Scher-Zallen critical density of 15% for spherical particles.**
In our experiments we have found critical densities close to
15%, in agreement with percolation theory. In BEMA the
depolarization factor D describes the influence of the particle
shape on the homogeneous background field, but close to the
percolation threshold this field is governed by large field fluc-
tuations due to increasing clustering of the particles as men-
tioned earlier. Therefore the shape of the individual particle
becomes less and less important with increasing filling factor.
D loses its original physical meaning as depolarization factor
but it is still describing the critical filling factor. Interpreting D
as critical filling factor and using the known dielectric con-
stants of Ag and PDMS, eqn (5) can be used to calculate the
effective e. of the composite. Fitting eqn (5) to the experi-
mental data yields a critical filling factor of f. = 14.4%, which
indicates the same value for f. as that found earlier from eqn
(1). Again, this value is very close to the Scher-Zallen critical
density. As mentioned above, the filling factors for all 19
samples shown in Fig. 3 were determined from the weighted
masses and the bulk densities of the individual constituents.
The relative small discrepancy between the calculated and
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measured e. in Fig. 3 gives an estimate for the good reprodu-
cibility of our results. From eqn (3) it can be seen that our
samples with the highest filling factor are very close to the per-
colation threshold. Assuming reasonable values for the con-
ductivity of PDMS of about 6, ~ 107® Q em™" and the Ag-NP
conductivity of about 6, ~ 10° Q ecm™, one obtains an esti-
mate for the maximum dielectric constant of about 630, which
is of the same order of magnitude as the measured value of 160
for the sample with nominal f = 14.2% below the percolation
threshold. For this estimation we use a critical exponent u = 0.8,
the value predicted by percolation theory and also found in
recent measurements in carbon nanotube composites.>’

5 Uniaxial and biaxial strain

The effect of uniaxial strain s on a PDMS sample leads, on the
one hand, to an elongation of the sample in the direction of
the applied force (AL) and on the other hand to sample shrink-
age in the other two directions (see Fig. 4). Under the assump-
tion of an isotropic stretching behavior and neglecting higher
order terms this leads to a volume change which can be
described by

AV
- = s(1 — 2v) uniaxial. (6)
In the case of biaxial stretching the sample is isotropically
stretched in the film plane while only the thickness shrinks.
This leads to twice the volume change as in the uniaxial case

A
7‘/ — 25(1 — 20) biaxial. 7)

Assuming that only the volume of the elastomer is
increased upon stretching by V, = V + AV and the volume of
the embedded Ag-NP stays constant the strain dependent
filling factors are given by

_ V(AgNP) fo
o) = Ve  142s(1-20)

uniaxial (8)

PDMS capacitor plate PD‘MS capagitor plates
| Ad
Ah
uniaxial biaxial

Fig. 4 Scheme of both stretching set-ups. (a) Uniaxial strain AL leads to
a shrinking of the sample in the two other directions; (b) biaxial case:
the strain applied by Ah stretches the sample isotropically; only the
thickness shrinks. The thereby induced changes in the dielectric con-
stant are measured by small capacitor plates as illustrated.
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and

_ V(Ag NP) _ fo biaxial (9)
Vg 1+ 2s(1—2v)

f(s)

where f; is the filling factor for the unstretched sample. From
these formulas one directly sees that if the volume stays con-
stant (v = 0.5) upon stretching, the filling factor is also con-
stant and there would be no change of the dielectric constant
by applying strain as it is the case for PDMS.

Fig. 4 displays a schematic drawing of both set-ups used in
this work. The change in the dielectric constant induced by
the applied strain is measured by small capacitor plates placed
below and above the samples, in the middle of the stretched
region. The two plates are pressed against the sample by small
springs to compensate for the strain induced shrinking of the
sample height. All strain dependent measurements were per-
formed with unstretched freshly prepared samples. All the
results presented in this manuscript have been successfully
reproduced by independently produced samples. All the
samples gave rise to identical behavior when stretched the first
time. Some of the samples have been stretched up to 60%,
which is over the threshold to the plastic regime of the sample,
they have shown an hysteresis of about 20% upon release of the
strain. However after the complete stretch/release cycle was com-
pleted the capacitance value ended up at the same point, within
the error bars. For samples stretched within the elastic regime,
even smaller deviations are to be expected. However, since in
loading-unloading cycles the samples exhibit a slight hysteresis,
we present only first time stretched data here.

Fig. 5 shows the strain dependent dielectric constant &g for
an Ag-NP/PDMS composite with a nominal starting filling
factor of f, = 10.6% up to a strain of 54% in the case of uniaxial
stretching. The strain induced reduction of the filling factor f
leads to a continuous decrease of the effective dielectric con-
stant of the composite. At the highest applied strain the filling
factor is reduced to f= 9.2%, i.e., roughly by 10%.

Over the same range the effective dielectric constant is
reduced from 11.8 to 8.3 corresponding to a reduction of
roughly 30%. By inserting eqn (8) into eqn (5) the expected

m exp. data ]
—— Bruggeman

12} £=10.6%

8eff

8r f

$=54%

=9.2% |

0 10 20 30 40 50 60
Strain s (%)

Fig. 5 Uniaxial-strain dependent dielectric constant of an Ag-NP/PDMS
composite with a nominal starting filling factor of fo = 10.6%. The line
curve is calculated by inserting egn (8) into eqn (5) without using any
free fit parameters.
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Fig. 6 Dielectric constant vs. uniaxial strain of an Ag-NP/PDMS compo-
site with a nominal starting filling factor of fo = 14.2% close to the perco-
lation threshold. The inset helps converting the strain dependent filling
factor based on eqgn (8). The line curve is calculated by inserting eqn (8)
into eqgn (5).

change of the effective dielectric constant can be calculated
without using any free fit parameters. The agreement between
the experimental data and the calculated values is extremely
good. This has two main implications: the BEMA nicely
describes the effective dielectric constant of the composite if
D = f. is interpreted as the critical filling factor and the strain
dependent change of the filling factor can be simply described
by the Poisson’s ratio v of the composite.

In Fig. 6, the result for an Ag-NP/PDMS composite with a
nominal starting filling factor of f, = 14.2% is shown. At this
high starting filling factor close to the critical value f;, an
applied uniaxial strain of 36% reduces the dielectric constant
by nearly a factor of 5, whereas the filling factor is only
reduced from 14.2% to about 12.6%. The inset shows the
strain dependent filling factor calculated from eqn (8). The
line curve in the main panel gives the calculated effective
dielectric constant obtained by inserting eqn (8) into eqn (5).
For filling factors close to the percolation threshold the strain

= fg=5%

° f0=8%

4 fo=11%

— Bruggeman

eeff

1 1
1 10

Filling factor (%)

Fig. 7 Dielectric constant vs. filling factor f under biaxial stain for three
different starting filling factors fo. The respective filling factor changes
were calculated by eqn (9) and the ranges correspond to maximum
applied strains of about 40%. The continuous line is calculated from eqn
(5) without using any free fit parameters.
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dependent capacitance measurements exhibit much larger
fluctuations, leading to larger discrepancies between measure-
ment and calculation. The main reason for the fluctuations is
the presence of losses in the sample due to a non-vanishing
conductivity, i.e., € cannot be treated as purely real anymore.

These fluctuations become even larger for filling factors
above the percolation threshold. In fact for uniaxial stretching
it was not possible to cross the percolation threshold by start-
ing with a metallic sample due to the required too high strain.
From eqn (9) one expects a larger change of the filling factor
for the same strain in the case of biaxial stretching. Therefore
we perform additional measurements under biaxial strain for
different nominal starting filling factors f, ranging from 5% to
11%. In Fig. 7 the results are shown for three different f,. In
the figure the changes of ¢.¢ due to the applied biaxial strain s
are directly plotted as a function of the filling factor f(s) as cal-
culated by eqn (9). For all three samples the strain was varied
from 0 to about 40%. The additionally continuous line is cal-
culated from the BEMA (eqn (5)) without any free fit para-
meter. The very good agreement between calculation and
measurement shows that the filling factor can also be nicely
tuned by applying biaxial strain.

In contrast to the case of uniaxial stretching, it is possible
now to cross the percolation threshold under biaxial stretch-
ing. In Fig. 8 the change of the dielectric constant under
biaxial strain is shown for an Ag-NP/PDMS composite with a
starting filling factor slightly above the percolation threshold
(fe ~ 15%). For clarity on the x-axis f — f; is plotted to demon-
strate that the huge changes due to the divergence at f,
happens within +1% left and right of the percolation
threshold. It is to be noted that first order phase transitions
are governed by large fluctuations at the critical point. For
metal-to-insulator transitions this is manifested in huge con-
ductivity fluctuations around the percolation threshold which
in principle leads to fluctuating values. Every individual
measured sample will therefore follow only qualitatively the
predicted overall behaviour at the critical density. Above the

400 T T T T T T T T T T T T T T
m exp. data A
—eq. (1)
A eq. (3) n
200+ —eq 2) - .
n
%
w
0 _
-200 e

-4 -I3 -I2 1 0 1 2 3 4
f-fe (%)

Fig. 8 Dielectric constant vs. biaxial strain for an Ag-NP/PDMS compo-
site with a starting filling factor above the percolation threshold. The
lines and the triangle are calculated from eqn (1)—(3), respectively.
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percolation threshold, e is not purely real anymore and the
fluctuations are large due to the fragile conducting networks
in this region. Nevertheless biaxial stretching leads in this case
first to an increase of &g, reaching values of about 250 and
then under further stretching to a steep decrease, following
the sketched behavior of Fig. 1, going from point A to C. The
lines and the triangle are calculated from the eqn (1)-(3),
respectively, according to the scheme in Fig. 1. Although the
agreement with theory above the percolation threshold is not
as perfect as below the percolation threshold, the overall be-
havior is quantitatively well reproduced. For instance the zero-
crossing of e. occurs slightly above f.. Between f. and the
zero-crossing of ., the composite has a positive &g although
some narrow conducting paths exist (point B in Fig. 1), a be-
havior already shown for thin percolating metal films.>®

6 Conclusions

In this investigation we have shown that it is possible to tune
the dielectric constant of Ag-NP/elastomer composites by
applying uniaxial and biaxial strain over a wide range. The
strain dependent dielectric function follows thereby the strain
dependent filling factor. The strain dependent filling factor is
given by the expected volume change upon strain and depends
only on the Poisson’s ratio of the composite. Owing to the
larger volume change in the case of biaxial strain, the tuning
capability is larger compared to the uniaxial case. Below the
percolation threshold the dielectric behavior can be nicely
described by percolation theory as well as by the BEMA. Perco-
lation theory is even able to correctly describe the divergence
of e.¢r across the percolation. Here huge values of the dielectric
constant of over 250 can be observed. This tunability opens up
many novel applications in sensing or plastic electronics,
where a controlled tuning of the dielectric/conductive pro-
perties of the composite materials is required.
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