Issue 5, 2015

Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries

Abstract

An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge–charge voltage gap (e.g. 0.7 V, discharge–charge at 2 mA cm−2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.

Graphical abstract: Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2014
Accepted
26 Nov 2014
First published
01 Dec 2014

Nanoscale, 2015,7, 1830-1838

Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries

B. Li, X. Ge, F. W. T. Goh, T. S. A. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu and Y. Zong, Nanoscale, 2015, 7, 1830 DOI: 10.1039/C4NR05988C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements