## NJC



**View Article Online** 

## PAPER



Cite this: New J. Chem., 2015, 39, 8720

Received (in Victoria, Australia) 28th June 2015, Accepted 17th August 2015

DOI: 10.1039/c5nj01670c

www.rsc.org/njc

## Introduction

# Experimental and computational insights into the nature of weak intermolecular interactions in trifluoromethyl-substituted isomeric crystalline *N*-methyl-*N*-phenylbenzamides<sup>†</sup>

Piyush Panini and Deepak Chopra\*

The knowledge about the prevalence of weak interactions in terms of the nature and energetics associated with their formation is of significance in organic solids. In the present study, we have systematically explored the existence of different types of intermolecular interactions in ten out of the fifteen newly synthesized trifluoromethyl derivatives of isomeric N-methyl-N-phenylbenzamides. Detailed analyses of all the crystalline solids were performed with quantitative inputs from interaction energy calculations using the PIXEL method. These studies revealed that in the absence of a strong hydrogen bond, the crystal packing is mainly stabilized by a cooperative interplay of weak  $C-H\cdots O=C$ ,  $C-H\cdots\pi$ , and  $C(sp^2)/(sp^3)-H\cdots F-C(sp^3)$  hydrogen bonds along with other related interactions, namely,  $\pi \cdots \pi$  and  $C(sp^3) - F \cdots F - C(sp^3)$ . It is of interest to observe the presence of short and directional weak C-H···O=C hydrogen bonds in the packing, having a substantial electrostatic (coulombic + polarization) contribution towards the total stabilization energy. The  $C(sp^3)$ -F group was recognized in the formation of different molecular motifs in the crystal packing as utilizing different intermolecular interactions. The contribution from electrostatics among the different weak hydrogen bonds was observed in the decreasing order:  $C-H\cdots O = C > C-H\cdots F-C(sp^3) > C-H\cdots \pi$ . Furthermore, there was an increase in the electrostatic component with a concomitant decrease in the dispersion component for the shorter and directional hydrogen bonds.

The study of intermolecular interactions, which link the molecules in the solid state, has been crucial and of prime focus in crystal engineering.<sup>1-6</sup> In this regard, strong hydrogen bonds (*e.g.* N/O–  $H \cdots N/O$ ) along with weak hydrogen bonds (like C– $H \cdots O/N/C$ ) are now well understood and recognized in chemistry and biology.<sup>7-11</sup> Recent emphasis in crystal engineering is focused on gaining a greater understanding of weak intermolecular interactions, particularly those involving organic fluorine.<sup>12,13</sup> The replacement of hydrogen with a fluorine atom is recognized to affect the physicochemical properties of a compound but without much change in the molecular size.<sup>14,15</sup> It also shows a greater increase in stability, which results in the increased resistance of a compound towards metabolic degradation.<sup>16,17</sup> 20% of pharmaceuticals and 30% of agrochemicals are reported to possess organic fluorine, and this number is still increasing.<sup>18</sup> The participation of organic fluorine in different intermolecular interactions was initially questioned by researchers.<sup>19</sup> In the last decade, many studies on the participation of organic fluorine in different intermolecular interactions have been studied and their role in the formation of different supramolecular arrangements has been recognized.<sup>20-25</sup> The significance of these interactions has been very well summarized in a recent review,<sup>26</sup> in a perspective<sup>27</sup> and in a highlight.<sup>28</sup> The significance of such weak intermolecular interactions involving organic fluorine was studied both in the presence and absence of strong hydrogen bonds.<sup>29-35</sup> However, the systematic study of these interactions in terms of the electronic nature of the participating fluorine atoms, *i.e.* fluorine atom connected to the C-atom of a different state of hybridization, was not reported. Most of the past investigations involved the presence of a fluorine atom present on the phenyl ring (C-atom in  $sp^2$  hybridized state). We recently investigated the capability of a fluorine atom connected to an sp<sup>3</sup> hybridized C-atom in the trifluoromethyl group (-CF<sub>3</sub> group) in the formation of different structural motifs and their influence on the crystal packing in a series of isomeric trifluoromethyl-substituted benzanilides.<sup>21</sup> The presence of a -CF3

Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, 462066 India. E-mail: dchopra@iiserb.ac.in; Fax: +91-0755-6692392

<sup>†</sup> Electronic supplementary information (ESI) available. CCDC 1025677-1025685 and 1027431. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5nj01670c

#### Paper

group on the molecule increases the acidity of the neighbouring H atoms and thus increases the possibility of its participation in the formation of a hydrogen bond. Furthermore, it was recently experimentally established from charge density analysis performed using high resolution X-ray data that there is an intrinsic polarization of the electron density on the fluorine atoms of the trifluoromethyl group.<sup>36</sup> This further increases the possibility of its participation in different intermolecular interactions, such as C–H···F, C–F···F–C, and C–F··· $\pi$ , in the solid state. The role of the presence of a  $-CF_3$  group in different fields of chemistry and biology is very well recognized.<sup>37-40</sup> The influence of the presence of a -CF3 group has also been observed in phase transitions<sup>41</sup> and in crystal engineering.<sup>42</sup> It is thus of interest to analyze the role and influence of the CF<sub>3</sub> group  $[F-C(sp^3)]$  in the participation of different intermolecular interactions in the absence of any strong hydrogen bonds. In the crystal structure analysis of -CF<sub>3</sub>-substituted benzanilides, these interactions were structurally analyzed in the presence of a N-H···O=C hydrogen bond. The focus is now on the removal of the H-atom connected to the N-atom, which eliminates the presence of any strong donor in the molecule, and hence eliminates the possibility of the formation of the N-H···O=C H-bond.

In this regard, a library of trifluoromethyl-substituted N-methyl-N-phenylbenzamides were synthesized (Scheme 1) by replacing the H-atom connected to a N-atom with a methyl group, and then their crystal structures were analyzed to investigate the nature and role of the weak interactions (of the type C-H···F-C<sub>sp<sup>3</sup></sub>, C<sub>sp<sup>3</sup></sub>-F···F-C<sub>sp<sup>3</sup></sub>) in the crystal packing. Thus, these compounds now eliminate the possibility of formation of any strong H-bond. The substitution of the hydrogen atom with the methyl group completely alters the molecular conformation from a *trans* to *cis* geometry relative to that in benzanilides.<sup>43-45</sup> The change in the fluorescence and luminescence behavior with the change in its molecular conformation has been very well studied by different research groups.46-48 To obtain a better understanding of the nature of the different intermolecular interactions, the evaluation of the stabilization energy of these interactions is of prime focus in the present study. The contribution of the possible different interactions towards the crystal packing was quantified by PIXEL.<sup>49</sup> The PIXEL method provides important insights towards understanding the crystal packing by partitioning the interaction energy or cohesive energy into their coulombic, polarization, dispersion and repulsion contributions.

To gain a better insight into the different weak intermolecular interactions present in the crystal packing, selected molecular pairs (extracted from the crystal packing connected with different intermolecular interactions) were analyzed. This is in contrast to the routine practice of providing details on the crystal packing related to the arrangement of molecules<sup>50,51</sup> on the basis of pure geometry with no inputs from energetics. On the contrary, in reality, it is the latter that contributes immensely towards crystal formation.

#### Experimental section

The starting materials, trifluoromethyl (–CF<sub>3</sub>)-substituted anilines and benzoyl chloride, were obtained from Sigma Aldrich and were used directly as received. All the solvents and other reagents, namely, dimethylaminopyridine (DMAP), methyl iodide (CH<sub>3</sub>I) and sodium hydride [(NaH) 60% solution in oil], were of analytical grade. The solvents, dichloromethane (DCM) and tetrahydrofuran (THF), were dried before use for the chemical reactions. The intermediate compounds, namely, all the substituted *N*-phenylbenzamides, were synthesized in accordance with the procedure already reported in our earlier work.<sup>21</sup>

#### Synthesis of substituted N-methyl-N-phenylbenzamides

In a two-neck round bottom flask containing 1.2 equivalents of NaH, 4 ml of dry THF was added with constant stirring using a magnetic stirrer. Then, 1 equiv. of the substituted N-phenyl benzamides was added slowly to the reaction mixture with constant stirring. Furthermore, 3-4 ml of dry THF was added and the entire reaction mixture was refluxed for 2 h. The reaction mixture was then allowed to cool to room temperature. Afterwards, cold methyl iodide, (excess amount, 0.6 ml added in all reactions) was added slowly to the reaction mixture with the whole flask kept over an ice bath with constant stirring. After the addition, the reaction mixture was continuously stirred at room temperature for 1-2 h. The progress of the reaction was monitored with thin layer chromatography (TLC). After the completion of the reaction, it was guenched with 20 ml of 5% HCl and extracted with ethyl acetate and then washed with brine solution three times. The organic extract was further washed with saturated solution of sodium sulphite to remove excess iodine. The organic extract was again washed with brine solution and then dried with anhydrous sodium sulphate. The



Scheme 1 Synthetic route for all the compounds. 'A' and 'B' denote the two phenyl rings from the starting material, aniline and corresponding benzoyl chloride. Compound code is denoted as 'NMAB' in this study. 'NM' refers to *N*-methyl substitution on *N*-phenylbenzamide, A or B = 0 [no substitution on that ring] and A or B = 1, 2, 3 [o, m, p substitution of the  $-CF_3$  group on that ring, respectively].

crude product thus obtained was finally purified by column chromatography with ethyl acetate and hexane as the eluant. The polarity of the eluant was increased slowly from 0% to 10% while performing the column. The yield was recorded after evaporation of the solvent on completion of the column. Initially, after the column, all the compounds were obtained as a thick oil (Scheme 1). Compounds **NM02**, **NM03**, **NM10**, **NM11**, **NM12**, **NM22**, **NM23**, **NM31** and **NM33** became solid after one day when placed in the deep freeze section of the refrigerator or after recrystallization from hexane on scratching the walls of the container. Compound **NM30** was observed as a low melting solid (melting point = 39 °C). The remaining five synthesized compounds (**NM01**, **NM20**, **NM13**, **NM21**, and **NM32**) remained as a thick oil even at -20 °C.

All the synthesized compounds were characterized by FTIR [Fig. S1(a)–(o), ESI†], <sup>1</sup>H NMR [Fig. S2(a)–(o), ESI†] spectroscopy. The melting points were recorded using DSC for all the solid compounds, and these are given in the ESI,† [Fig. S3(a)–(j)]. Powder X-ray diffraction (PXRD) data were recorded for all the solid compounds and then compared with the simulated PXRD patterns [Fig. S4(a)–(j), ESI†]. Details about the product yields, melting points and spectroscopy data of all the synthesized compounds are listed in Section S1 in the ESI,†

Details on all the crystallization experiments of all the solid compounds from the different solvents and solvent mixtures are presented in the ESI,† (Table S1). Single crystals of all the solids except **NM30** were obtained from a slow evaporation method. Compound **NM30** was observed to appear as a single crystal in the sample vial at a temperature below 25  $^{\circ}$ C.

#### Data collection, structure solution and refinement

Single crystal X-ray diffraction data were collected on a CrysAlis CCD Xcalibur, Eos (Nova), Oxford Diffraction using Mo K $\alpha$  radiation ( $\lambda$  = 0.71073 Å) for all the compounds except **NM03**, **NM30**, **NM22** and **NM31**. The single crystal X-ray diffraction data of **NM03**, **NM22** and **NM31** were collected on a Bruker D8 Venture diffractometer with a CMOS detector using graphite monochromated Mo K $\alpha$  ( $\lambda$  = 0.7107 Å) radiation, whereas data for **NM30** were collected on a Bruker APEX II three circle diffractometer with a CCD detector. All the data except for **NM12** were collected at 120(2) K.

All the crystal structures were solved by direct methods using SIR92.<sup>52</sup> The non-hydrogen atoms were refined anisotropically and the hydrogen atoms bonded to C atoms were positioned geometrically and refined using a riding model with  $U_{iso}(H) = 1.2U_{eq} [C(sp^2)]$  and  $U_{iso}(H) = 1.5U_{eq} [C(sp^3)]$ . Compound **NM30** was observed to be twinned in two orientations with the ratio for the BASF values being 0.59:0.41. The twin law and the corresponding HKLF5 file were generated using the 'TwinRotMat' tool in WinGx<sup>53</sup> and the refinement was performed with the HKLF5 file using SHELXL2013.

The disorder associated with the  $CF_3$  group was modelled with the PART command in two independent orientations (the major component was labeled 'A') in SHELXL 2013.<sup>54</sup> Molecular and packing diagrams were generated using Mercury 3.3.<sup>55</sup> Geometrical calculations were carried out using PARST<sup>56</sup> and PLATON.<sup>57</sup> Table 1 lists all the crystallographic and refinement data. Lists of selected dihedral angles are presented in Tables 2 and 3.

#### Theoretical calculations

The molecular geometry of each compound was optimized by DFT/B3LYP calculation with 6-31G\*\* basis set using TURBO-MOLE.<sup>58</sup> The experimentally obtained geometries were considered as the starting coordinates for the calculation. The molecular geometry thus obtained for the isolated molecule was compared with the experimentally observed solid state geometry (Table 2).

The lattice energies (Table 4) of all the compounds were calculated by the PIXELC module in the CLP computer program package (version 10.2.2012), the total energy being partitioned into their coulombic ( $E_{coub}$ ), polarization ( $E_{pol}$ ), dispersion ( $E_{disp}$ ) and repulsion  $(E_{rep})$  contributions. For the calculations, accurate electron densities of the molecules were obtained at MP2/6-31G\*\* with GAUSSIAN0959 with H atoms at their neutron value. In the case of disordered molecules, the molecular conformation with the maximum population was considered for the calculation. The interaction energy of the selected molecular pairs, extracted from the crystal packing and related by the corresponding symmetry element, was also calculated by the PIXEL method (from the mlc file after the calculation). The total interaction energy was partitioned into their coulombic  $(E_{\text{coub}})$ , polarization  $(E_{pol})$ , dispersion  $(E_{disp})$  and repulsion  $(E_{rep})$  contributions. These are listed in Table 5 along with the selected intermolecular interactions connecting the two molecules in the molecular pair. The % dispersion energy contribution (%  $E_{disp}$ ) towards the total stabilization energy was calculated as follows:

$$\%E_{\rm disp} = \left[E_{\rm disp} / (E_{\rm coub} + E_{\rm pol} + E_{\rm disp})\right] \times 100;$$

Hence, % electrostatic contribution (coulombic + polarization), % $E_{elec} = 100 - \% E_{disp}$ 

These values are reported in Table 5.

The PIXEL interaction energy was further compared with the interaction energies obtained from the theoretical calculations at the DFT + Disp/B97D<sup>60-62</sup> level at a higher aug-cc-pVTZ basis set using TURBOMOLE.<sup>63</sup> The hydrogen atoms were moved to neutron values (1.083 Å for C–H) before the calculations. The basis set superposition error (BSSE) for the interaction energies was corrected using the counterpoise method.<sup>64</sup> The final interaction energies are listed along with the PIXEL interaction energies in Table 5.

#### Results and discussion

ORTEP of **NM10** and **NM11** are presented in Fig. 1(a) and (b) with the atom numbering scheme. The ORTEPs for the remaining compounds are deposited in the ESI,† [Fig. S5(a)–(j)]. The Cambridge Structural Database search (CSD version 5.35 updates Nov 2013) was performed for related structures to compare the molecular conformation and crystal packing of related molecules with the present series of compounds. The result gave only 8 hits [Fig. 1(d)]. The crystal structure of *N*-methyl-*N*-phenylbenzamide (labeled as '**NM00**') is reported

NJC

| DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NM02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NM03                                                                                                                                                                                                                                                                                                             | NM10                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NM30                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NM11                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_{15}H_{12}NOF_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathrm{C_{15}H_{12}NOF_{3}}$                                                                                                                                                                                                                                                                                   | C <sub>15</sub> H <sub>12</sub> NOI                                                                                                                                                                                                                                                                                  | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{15}H_{12}$                                                                                                                                                                 | NOF <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\rm C_{16}H_{11}NOF_6$                                     |
| Formula weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 279.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 279.26                                                                                                                                                                                                                                                                                                           | 279.26                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 279.26                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 347.26                                                      |
| CCDC No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1025677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1025678                                                                                                                                                                                                                                                                                                          | 1025679                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102743                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1025680                                                     |
| Crystal system; space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monoclinic; C2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c Monoclinic; F                                                                                                                                                                                                                                                                                                  | $P2_1/c$ Orthorhom                                                                                                                                                                                                                                                                                                   | nbic; <i>Pbca</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monoc                                                                                                                                                                          | linic; $P2_1/c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monoclinic; $P2_1/c$                                        |
| a (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.8393(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.1633(5)                                                                                                                                                                                                                                                                                                       | 9.6555(7)                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.731                                                                                                                                                                         | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.9803(4)                                                   |
| $b\left(\mathbf{A}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.6270(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.9603(3)                                                                                                                                                                                                                                                                                                        | 13.7420(11                                                                                                                                                                                                                                                                                                           | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.3394                                                                                                                                                                         | (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.8526(4)                                                  |
| c (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.1660(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.7768(6)                                                                                                                                                                                                                                                                                                       | 19.3339(15                                                                                                                                                                                                                                                                                                           | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.706                                                                                                                                                                         | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.8181(5)                                                  |
| $\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90/114.399(5)/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) 90/97.269(2)/9                                                                                                                                                                                                                                                                                                 | 0 90/90/90                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90/106                                                                                                                                                                         | .707(12)/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90/92.763(3)/90                                             |
| Volume (A <sup>3</sup> )/density (g cm <sup>-3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5260.3(4)/1.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2663.27(15)/1.                                                                                                                                                                                                                                                                                                   | .393 2565.3(3)/1                                                                                                                                                                                                                                                                                                     | .446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2597.9                                                                                                                                                                         | (8)/1.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1442.49(10)/1.599                                           |
| Z/Z'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/2                                                                                                                                                                                                                                                                                                              | 8/1                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8/2                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4/1                                                         |
| $F(000)/\mu \ (mm^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2304/0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1152/0.116                                                                                                                                                                                                                                                                                                       | 1152/0.121                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1152/0                                                                                                                                                                         | .119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 704/0.153                                                   |
| $\theta$ (min, max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.34, 25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.35, 27.58                                                                                                                                                                                                                                                                                                      | 2.79, 25.00                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.90, 2                                                                                                                                                                        | 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.75, 25.00                                                 |
| $h_{\min,\max}, k_{\min,\max}, l_{\min,\max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -42, 42; -12, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2; -18, 19; -12,                                                                                                                                                                                                                                                                                                 | 11; -11, 11; -                                                                                                                                                                                                                                                                                                       | 16, 16;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -28, 2                                                                                                                                                                         | 8; -9, 9;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -10, 10; -12, 12;                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -18, 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -23, 18                                                                                                                                                                                                                                                                                                          | -22, 22                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -16, 1                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1/, 1/                                                     |
| No. of total ref./unique ref./obs. ref.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2515//4632/34/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 22406/611//4                                                                                                                                                                                                                                                                                                   | 629 12 605/226                                                                                                                                                                                                                                                                                                       | 2/1/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4556/4                                                                                                                                                                         | 556/3/59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13 68//2534/2204                                            |
| No. of parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 395                                                                                                                                                                                                                                                                                                              | 211                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 364                                                                                                                                                                            | 0.0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 236                                                         |
| R_all, R_ods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0635, 0.0417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0659, 0.0490                                                                                                                                                                                                                                                                                                   | 0.0580, 0.0                                                                                                                                                                                                                                                                                                          | 0.0580, 0.0398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                | , 0.0403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0434, 0.0368                                              |
| $WR_2$ all, $WR_2$ ODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1008, 0.0888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1356, 0.1259                                                                                                                                                                                                                                                                                                   | 9 0.1028, 0.0                                                                                                                                                                                                                                                                                                        | 0.1028, 0.0901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                | , 0.0854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0982, 0.0933                                              |
| $\Delta \rho_{\min,\max}(e A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.244, 0.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.357, 0.381                                                                                                                                                                                                                                                                                                    | -0.221, 0.2                                                                                                                                                                                                                                                                                                          | -0.221, 0.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                | 2, 0.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.237, 0.308                                               |
| G. 8. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.061                                                                                                                                                                                                                                                                                                            | 1.055                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.063                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.043                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |
| DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NM12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NM22                                                                                                                                                                                                                                                                                                             | NM23                                                                                                                                                                                                                                                                                                                 | NM31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | NM33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |
| DATA<br>Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>NM12</b><br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>NM22</b><br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub>                                                                                                                                                                                                                                                  | <b>NM23</b><br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub>                                                                                                                                                                                                                                                      | <b>NM31</b><br>C <sub>16</sub> H <sub>11</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F <sub>6</sub>                                                                                                                                                                 | <b>NM33</b><br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |
| DATA<br>Formula<br>Formula weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NM12<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NM22<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26                                                                                                                                                                                                                                               | NM23<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26                                                                                                                                                                                                                                                   | <b>NM31</b><br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F <sub>6</sub>                                                                                                                                                                 | NM33<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| DATA<br>Formula<br>Formula weight<br>CCDC No.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NM12<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NM22<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025682                                                                                                                                                                                                                                    | NM23<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025683                                                                                                                                                                                                                                        | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F <sub>6</sub>                                                                                                                                                                 | NM33<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group                                                                                                                                                                                                                                                                                                                                                                                                                      | NM12<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025681<br>Monoclinic; P2 <sub>1</sub> /c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NM22<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025682<br>Monoclinic; P2 <sub>1</sub> /c                                                                                                                                                                                                  | NM23<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025683<br>Monoclinic; <i>P</i> 2 <sub>1</sub> / <i>d</i>                                                                                                                                                                                      | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>c Monoclini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $F_6$ ic; $P2_1/c$                                                                                                                                                             | NM33<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025685<br>Triclinic <i>P</i> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>$a\left(\overset{a}{\lambda}\right)$                                                                                                                                                                                                                                                                                                                                                                              | NM12<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025681<br>Monoclinic; P2 <sub>1</sub> /c<br>9.0978(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NM22<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025682<br>Monoclinic; <i>P</i> 2 <sub>1</sub> / <i>c</i><br>8.3764(5)                                                                                                                                                                     | NM23<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025683<br>Monoclinic; P2 <sub>1</sub> /a<br>11.2958(5)                                                                                                                                                                                        | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclini<br>12.3185(10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $F_6$<br>ic; $P2_1/c$                                                                                                                                                          | NM33<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025685<br>Triclinic <i>P</i> 1<br>8.9977(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>$a (\mathring{A})$<br>$b (\mathring{a})$                                                                                                                                                                                                                                                                                                                                                                          | NM12<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025681<br>Monoclinic; <i>P</i> 2 <sub>1</sub> / <i>c</i><br>9.0978(7)<br>22.1735(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NM22<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025682<br>Monoclinic; <i>P</i> 2 <sub>1</sub> / <i>c</i><br>8.3764(5)<br>23.2362(17)                                                                                                                                                      | NM23<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025683<br>Monoclinic; <i>P</i> 2 <sub>1</sub> / <i>a</i><br>11.2958(5)<br>14.0246(4)                                                                                                                                                          | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclini<br>12.3185(10<br>7.9401(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $F_6$<br>ic; $P2_1/c$                                                                                                                                                          | NM33<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025685<br>Triclinic <i>P</i> 1<br>8.9977(4)<br>10.8088(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)                                                                                                                                                                                                                                                                                                                                                                                           | NM12<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025681<br>Monoclinic; P2 <sub>1</sub> /c<br>9.0978(7)<br>22.1735(15)<br>7.9449(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NM22<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025682<br>Monoclinic; <i>P</i> 2 <sub>1</sub> / <i>c</i><br>8.3764(5)<br>23.2362(17)<br>7.9755(6)                                                                                                                                         | NM23<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025683<br>Monoclinic; <i>P</i> 2 <sub>1</sub> /0<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)                                                                                                                                                    | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclini<br>12.3185(14<br>7.9401(5)<br>15.4912(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $F_6$<br>(c; $P2_1/c$<br>(c)                                                                                                                                                   | $\begin{array}{c} \textbf{NM33} \\ \hline C_{16}H_{11}\text{NOF}_6 \\ 347.26 \\ 1025685 \\ Triclinic P\bar{1} \\ 8.9977(4) \\ 10.8088(5) \\ 16.6720(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)<br>$\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)                                                                                                                                                                                                                                                                                                     | NM12<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025681<br>Monoclinic; P2 <sub>1</sub> /c<br>9.0978(7)<br>22.1735(15)<br>7.9449(5)<br>90/101.946(4)/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NM22<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025682<br>Monoclinic; <i>P</i> 2 <sub>1</sub> / <i>c</i><br>8.3764(5)<br>23.2362(17)<br>7.9755(6)<br>90/103.567(2)/90                                                                                                                     | NM23<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025683<br>Monoclinic; <i>P</i> 2 <sub>1</sub> /0<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90                                                                                                                                | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>C Monoclini<br>12.3185(11<br>7.9401(5)<br>15.4912(11<br>90/90.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $F_6$<br>(c; $P2_1/c$<br>(c)<br>(2)<br>(4)/90                                                                                                                                  | NM33<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025685<br>Triclinic <i>P</i> Ī<br>8.9977(4)<br>10.8088(5)<br>16.6720(9)<br>105.291(2)/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.901(2)/102.688(2)                                         |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)<br>Volume (Å <sup>3</sup> )/density (g cm <sup>-3</sup> )                                                                                                                                                                                                                                                                                      | NM12<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025681<br>Monoclinic; P2 <sub>1</sub> /c<br>9.0978(7)<br>22.1735(15)<br>7.9449(5)<br>90/101.946(4)/90<br>1568.02(19)/1.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NM22<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025682<br>Monoclinic; <i>P</i> 2 <sub>1</sub> / <i>c</i><br>8.3764(5)<br>23.2362(17)<br>7.9755(6)<br>90/103.567(2)/90<br>1509.00(18)/1.529                                                                                                | NM23<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025683<br>Monoclinic; <i>P</i> 2 <sub>1</sub> /d<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90<br>1502.48(9)/1.535                                                                                                            | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclini<br>12.3185(1<br>7.9401(5)<br>15.4912(1<br>90/90.168<br>1515.19(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $F_{6}$ (c; $P2_{1}/c$ (d) (4)/90 (4)/90 (f)/(1.522)                                                                                                                           | $\begin{array}{c} \textbf{NM33} \\ \hline \\ C_{16}H_{11}\text{NOF}_{6} \\ 347.26 \\ 1025685 \\ Triclinic P\overline{1} \\ 8.9977(4) \\ 10.8088(5) \\ 16.6720(9) \\ 105.291(2)/9 \\ 1486.36(12)/ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.901(2)/102.688(2)<br>1.552                                |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)<br>Volume (Å3)/density (g cm <sup>-3</sup> )<br>Z/Z'                                                                                                                                                                                                                                                                                           | NM12<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025681<br>Monoclinic; P2 <sub>1</sub> /c<br>9.0978(7)<br>22.1735(15)<br>7.9449(5)<br>90/101.946(4)/90<br>1568.02(19)/1.471<br>4/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NM22<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025682<br>Monoclinic; <i>P</i> 2 <sub>1</sub> / <i>c</i><br>8.3764(5)<br>23.2362(17)<br>7.9755(6)<br>90/103.567(2)/90<br>1509.00(18)/1.529<br>4/1                                                                                         | NM23<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025683<br>Monoclinic; <i>P</i> 2 <sub>1</sub> /a<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90<br>1502.48(9)/1.535<br>4/1                                                                                                     | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclini<br>12.3185(11<br>7.9401(5)<br>15.4912(12<br>90/90.168)<br>1515.19(19<br>4/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F <sub>6</sub><br>(c; $P2_1/c$<br>(d)<br>(4)/90<br>(4)/90<br>(9)/1.522                                                                                                         | NM33<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025685<br>Triclinic <i>P</i> 1<br>8.9977(4)<br>10.8088(5)<br>16.6720(9)<br>105.291(2)/9<br>1486.36(12)/<br>4/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.901(2)/102.688(2)<br>1.552                                |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$a$ ( $^{\circ}/\beta$ ( $^{\circ})/\gamma$ ( $^{\circ}$ )<br>Volume (Å <sup>3</sup> )/density (g cm <sup>-3</sup> )<br>Z/Z'<br>$F(000)/\mu$ (mm <sup>-1</sup> )                                                                                                                                                                                                                       | NM12<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025681<br>Monoclinic; P2 <sub>1</sub> /c<br>9.0978(7)<br>22.1735(15)<br>7.9449(5)<br>90/101.946(4)/90<br>1568.02(19)/1.471<br>4/1<br>704/0.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NM22<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025682<br>Monoclinic; <i>P</i> 2 <sub>1</sub> / <i>c</i><br>8.3764(5)<br>23.2362(17)<br>7.9755(6)<br>90/103.567(2)/90<br>1509.00(18)/1.529<br>4/1<br>704/0.146                                                                            | NM23<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025683<br>Monoclinic; <i>P</i> 2 <sub>1</sub> /a<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90<br>1502.48(9)/1.535<br>4/1<br>704/0.147                                                                                        | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclini<br>12.3185(1<br>7.9401(5)<br>15.4912(1<br>90/90.168<br>1515.19(1<br>4/1<br>704/0.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $F_{6}$ (c; $P2_{1}/c$ (d) (2) (4)/90 (3)/1.522                                                                                                                                | NM33<br>C <sub>16</sub> H <sub>11</sub> NOF <sub>6</sub><br>347.26<br>1025685<br>Triclinic <i>P</i> Ī<br>8.9977(4)<br>10.8088(5)<br>16.6720(9)<br>105.291(2)/9<br>1486.36(12)/<br>4/2<br>704/0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.901(2)/102.688(2)<br>1.552                                |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)<br>Volume (Å <sup>3</sup> )/density (g cm <sup>-3</sup> )<br>Z/Z'<br>$F(000)/\mu$ (mm <sup>-1</sup> )<br>$\theta$ (min, max)                                                                                                                                                                                                                   | $\begin{array}{c} \textbf{NM12} \\ \hline \\ C_{16}H_{11}\text{NOF}_{6} \\ 347.26 \\ 1025681 \\ \hline \\ \text{Monoclinic; } P_{21}/c \\ 9.0978(7) \\ 22.1735(15) \\ 7.9449(5) \\ 90/101.946(4)/90 \\ 1568.02(19)/1.471 \\ 4/1 \\ 704/0.141 \\ 1.84, 25.00 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \textbf{NM22} \\ \hline \\ C_{16}H_{11}\textbf{NOF}_{6} \\ 347.26 \\ 1025682 \\ \hline \\ \textbf{Monoclinic;} P2_{1}/c \\ 8.3764(5) \\ 23.2362(17) \\ 7.9755(6) \\ 90/103.567(2)/90 \\ 1509.00(18)/1.529 \\ 4/1 \\ 704/0.146 \\ 2.65/25.00 \\ \hline \end{array}$                             | $\begin{array}{c} \textbf{NM23} \\ \hline \\ C_{16}H_{11}\text{NOF}_6 \\ 347.26 \\ 1025683 \\ \text{Monoclinic; } P_{21/0} \\ 11.2958(5) \\ 14.0246(4) \\ 10.4868(3) \\ 90/115.258(4)/90 \\ 1502.48(9)/1.535 \\ 4/1 \\ 704/0.147 \\ 2.47/25.00 \\ \end{array}$                                                       | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclini<br>12.3185(11<br>7.9401(5)<br>15.4912(1:<br>90/90.168<br>1515.19(1:<br>4/1<br>704/0.146<br>2.63/25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F <sub>6</sub><br>(c; <i>P</i> 2 <sub>1</sub> / <i>c</i><br>(2)<br>(4)/90<br>(4)/1.522                                                                                         | $\begin{array}{c} \textbf{NM33} \\ \hline \\ \textbf{C}_{16}\textbf{H}_{11}\textbf{NOF}_{6} \\ 347.26 \\ 1025685 \\ \textbf{Triclinic} P\overline{1} \\ 8.9977(4) \\ 10.8088(5) \\ 16.6720(9) \\ 105.291(2)/9 \\ 1486.36(12)/ \\ 4/2 \\ 704/0.149 \\ 1.30/30.67 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.901(2)/102.688(2)<br>1.552                                |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)<br>Volume (Å <sup>3</sup> )/density (g cm <sup>-3</sup> )<br>Z/Z'<br>$F(000)/\mu$ (mm <sup>-1</sup> )<br>$\theta$ (min, max)<br>$h_{min,max}$ , $k_{min,max}$ , $l_{min,max}$                                                                                                                                                                  | $\begin{array}{c} \textbf{NM12} \\ \hline \\ C_{16}H_{11}\text{NOF}_{6} \\ 347.26 \\ 1025681 \\ \hline \\ \text{Monoclinic; } P_{21}/c \\ 9.0978(7) \\ 22.1735(15) \\ 7.9449(5) \\ 90/101.946(4)/90 \\ 1568.02(19)/1.471 \\ 4/1 \\ 704/0.141 \\ 1.84, 25.00 \\ -10, 9; -22, 26; \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textbf{NM22} \\ \hline \\ C_{16}H_{11}\text{NOF}_{6} \\ 347.26 \\ 1025682 \\ \hline \\ \textbf{Monoclinic;} P2_{1}/c \\ 8.3764(5) \\ 23.2362(17) \\ 7.9755(6) \\ 90/103.567(2)/90 \\ 1509.00(18)/1.529 \\ 4/1 \\ 704/0.146 \\ 2.65/25.00 \\ -9, 8; -27, 27; \\ \end{array}$                   | NM23<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025683<br>Monoclinic; $P_{21/d}$<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90<br>1502.48(9)/1.535<br>4/1<br>704/0.147<br>2.47/25.00<br>-13, 13; -16, 16                                                                                                 | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclini<br>12.3185(11<br>7.9401(5)<br>15.4912(1:<br>90/90.168)<br>1515.19(1:<br>4/1<br>704/0.146<br>2.63/25.00<br>; -14, 13; -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $F_6$<br>(c; $P2_1/c$<br>(2)<br>(4)/90<br>(4)/90<br>(-9, 9;                                                                                                                    | $\begin{array}{c} \textbf{NM33} \\ \hline \\ C_{16}H_{11}\text{NOF}_6 \\ 347.26 \\ 1025685 \\ Triclinic PI \\ 8.9977(4) \\ 10.8088(5) \\ 16.6720(9) \\ 105.291(2)/9 \\ 1486.36(12)/ \\ 4/2 \\ 704/0.149 \\ 1.30/30.67 \\ -11, 12; -1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.901(2)/102.688(2)<br>1.552<br>5, 15;                      |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)<br>Volume (Å <sup>3</sup> )/density (g cm <sup>-3</sup> )<br>Z/Z'<br>$F(000)/\mu$ (mm <sup>-1</sup> )<br>$\theta$ (min, max)<br>$h_{min,max}$ , $k_{min,max}$ , $l_{min,max}$                                                                                                                                                                  | NM12<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025681<br>Monoclinic; $P2_{1}/c$<br>9.0978(7)<br>22.1735(15)<br>7.9449(5)<br>90/101.946(4)/90<br>1568.02(19)/1.471<br>4/1<br>704/0.141<br>1.84, 25.00<br>-10, 9; -22, 26;<br>-9, 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NM22<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025682<br>Monoclinic; P2 <sub>1</sub> /c<br>8.3764(5)<br>23.2362(17)<br>7.9755(6)<br>90/103.567(2)/90<br>1509.00(18)/1.529<br>4/1<br>704/0.146<br>2.65/25.00<br>-9, 8; -27, 27;<br>-9, 9                                                                             | NM23<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025683<br>Monoclinic; $P_{21/d}$<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90<br>1502.48(9)/1.535<br>4/1<br>704/0.147<br>2.47/25.00<br>-13, 13; -16, 166<br>-12, 12                                                                                     | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclini<br>12.3185(14<br>7.9401(5)<br>15.4912(1:<br>90/90.168 <br>1515.19(19)<br>4/1<br>704/0.146<br>2.63/25.00<br>; -14, 13; -<br>-18, 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $F_6$<br>(c; $P2_1/c$<br>(d)<br>(2)<br>(4)/90<br>(4)/90<br>(-9, 9;<br>(-9, 9;                                                                                                  | $\begin{array}{c} \textbf{NM33} \\ \hline \\ C_{16}H_{11}\text{NOF}_6 \\ 347.26 \\ 1025685 \\ Triclinic PI \\ 8.9977(4) \\ 10.8088(5) \\ 16.6720(9) \\ 105.291(2)/9 \\ 105.291(2)/9 \\ 1486.36(12)/ \\ 4/2 \\ 704/0.149 \\ 1.30/30.67 \\ -11, 12; -1 \\ -23, 14 \\ 200000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.901(2)/102.688(2)<br>1.552<br>5, 15;                      |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)<br>Volume (Å3)/density (g cm <sup>-3</sup> )<br>Z/Z'<br>$F(000)/\mu$ (mm <sup>-1</sup> )<br>$\theta$ (min, max)<br>$h_{min,max}$ , $k_{min,max}$ , $l_{min,max}$<br>No. of total ref./unique ref./obs. ref.                                                                                                                                    | $\begin{array}{c} \textbf{NM12} \\ \hline C_{16}H_{11}\text{NOF}_{6} \\ 347.26 \\ 1025681 \\ \hline \text{Monoclinic; } P_{21}/c \\ 9.0978(7) \\ 22.1735(15) \\ 7.9449(5) \\ 90/101.946(4)/90 \\ 1568.02(19)/1.471 \\ 4/1 \\ 704/0.141 \\ 1.84, 25.00 \\ -10, 9; -22, 26; \\ -9, 9 \\ 13654/2767/2117 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ 247 \\ $ | NM22<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025682<br>Monoclinic; $P2_{1}/c$<br>8.3764(5)<br>23.2362(17)<br>7.9755(6)<br>90/103.567(2)/90<br>1509.00(18)/1.529<br>4/1<br>704/0.146<br>2.65/25.00<br>-9, 8; -27, 27;<br>-9, 9<br>21.987/2652/2199                                                                 | NM23<br>$C_{16}H_{11}NOF_6$<br>347.26<br>1025683<br>Monoclinic; $P_{21/d}$<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90<br>1502.48(9)/1.535<br>4/1<br>704/0.147<br>2.47/25.00<br>-13, 13; -16, 169<br>-12, 12<br>14.260/2649/2238                                                                   | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclimi<br>12.3185(14<br>7.9401(5)<br>15.4912(1:<br>90/90.168]<br>1515.19(19)<br>4/1<br>704/0.146<br>2.63/25.00<br>; -14, 13; -<br>-18, 18<br>11173/268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $F_6$<br>(c; $P2_1/c$<br>(d)<br>(4)/90<br>(4)/90<br>(-9, 9;<br>(-9, 9;<br>(-9, 9;<br>(-9, 9;                                                                                   | $\begin{array}{c} \textbf{NM33} \\ \hline C_{16}H_{11}\text{NOF}_6 \\ 347.26 \\ 1025685 \\ Triclinic P\overline{1} \\ 8.9977(4) \\ 10.8088(5) \\ 16.6720(9) \\ 105.291(2)/9 \\ 105.291(2)/9 \\ 1486.36(12)/4/2 \\ 704/0.149 \\ 1.30/30.67 \\ -11, 12; -1 \\ -23, 14 \\ 30 219/9103/401 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.901(2)/102.688(2)<br>1.552<br>5, 15;<br>/7006             |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)<br>Volume (Å <sup>3</sup> )/density (g cm <sup>-3</sup> )<br>Z/Z'<br>$F(000)/\mu$ (mm <sup>-1</sup> )<br>$\theta$ (min, max)<br>$h_{min,max}$ , $k_{min,max}$ , $l_{min,max}$<br>No. of total ref./unique ref./obs. ref.<br>No. of parameters<br>D cfl $n$ che                                                                                 | NM12<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025681<br>Monoclinic; $P2_{1}/c$<br>9.0978(7)<br>22.1735(15)<br>7.9449(5)<br>90/101.946(4)/90<br>1568.02(19)/1.471<br>4/1<br>704/0.141<br>1.84, 25.00<br>-10, 9; -22, 26;<br>-9, 9<br>13654/2767/2117<br>247<br>20.0252, 0.0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NM22<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025682<br>Monoclinic; $P2_{1}/c$<br>8.3764(5)<br>23.2362(17)<br>7.9755(6)<br>90/103.567(2)/90<br>1509.00(18)/1.529<br>4/1<br>704/0.146<br>2.65/25.00<br>-9, 8; -27, 27;<br>-9, 9<br>21987/2652/2199<br>246<br>0.0524, 0.0412                                         | NM23<br>$C_{16}H_{11}NOF_6$<br>347.26<br>1025683<br>Monoclinic; $P2_1/d$<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90<br>1502.48(9)/1.535<br>4/1<br>704/0.147<br>2.47/25.00<br>-13, 13; -16, 16<br>-12, 12<br>14.260/2649/2238<br>250<br>20.0400, 0.0411                                            | NM31<br>C <sub>16</sub> H <sub>11</sub> NO<br>347.26<br>1025684<br>Monoclimi<br>12.3185(11<br>7.9401(5)<br>15.4912(1:<br>90/90.168 <br>1515.19(1:<br>4/1<br>704/0.146<br>2.63/25.00<br>; -14, 13; -<br>-18, 18<br>11173/268<br>246<br>2.0500.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $F_6$<br>(c; $P2_1/c$<br>(d)<br>(4)/90<br>(4)/90<br>(-9, 9;<br>(3)/2044                                                                                                        | $\begin{array}{c} \textbf{NM33} \\ \hline C_{16}H_{11}\text{NOF}_6 \\ 347.26 \\ 1025685 \\ Triclinic P\overline{1} \\ 8.9977(4) \\ 10.8088(5) \\ 16.6720(9) \\ 105.291(2)/9 \\ 105.291(2)/9 \\ 1486.36(12)/4/2 \\ 704/0.149 \\ 1.30/30.67 \\ -11, 12; -1 \\ -23, 14 \\ 30 219/9103/491 \\ 9.9629/9.242 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.901(2)/102.688(2)<br>1.552<br>5, 15;<br>/7006             |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>$a (\mathring{A})$<br>$b (\mathring{A})$<br>$c (\mathring{A})$<br>$\alpha (^{\circ})/\beta (^{\circ})/\gamma (^{\circ})$<br>Volume ( $\mathring{A}^{3}$ )/density (g cm <sup>-3</sup> )<br>Z/Z'<br>$F(000)/\mu$ (mm <sup>-1</sup> )<br>$\theta$ (min, max)<br>$h_{min,max}, k_{min,max}, l_{min,max}$<br>No. of total ref./unique ref./obs. ref.<br>No. of parameters<br>$R_{-}$ all, $R_{-}$ obs<br>$wR_{-}$ obs | NM12<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025681<br>Monoclinic; $P2_{1}/c$<br>9.0978(7)<br>22.1735(15)<br>7.9449(5)<br>90/101.946(4)/90<br>1568.02(19)/1.471<br>4/1<br>704/0.141<br>1.84, 25.00<br>-10, 9; -22, 26;<br>-9, 9<br>13654/2767/2117<br>247<br>0.0637, 0.0482<br>0.1295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NM22<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025682<br>Monoclinic; $P2_{1/c}$<br>8.3764(5)<br>23.2362(17)<br>7.9755(6)<br>90/103.567(2)/90<br>1509.00(18)/1.529<br>4/1<br>704/0.146<br>2.65/25.00<br>-9, 8; -27, 27;<br>-9, 9<br>21987/2652/2199<br>246<br>0.0534, 0.0410<br>0.1053, 0.0400                       | NM23<br>$C_{16}H_{11}NOF_6$<br>347.26<br>1025683<br>Monoclinic; $P2_1/a$<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90<br>1502.48(9)/1.535<br>4/1<br>704/0.147<br>2.47/25.00<br>-13, 13; -16, 16;<br>-12, 12<br>14260/2649/2238<br>250<br>0.0499, 0.0411<br>0.1065, 0.0022                           | $\begin{array}{c} \textbf{NM31} \\ \hline \\ C_{16}H_{11}NO\\ 347.26\\ 1025684\\ \hline \\ \textbf{Monoclim}\\ 12.3185(14\\ 7.9401(5)\\ 15.4912(12\\ 90/90.168\\ 1515.19(12\\ 4/1\\ 704/0.146\\ 2.63/25.00\\ \hline \\ -18, 18\\ 11173/268\\ 246\\ 0.0590, 0.0\\ 0.0290, 0.0\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $F_6$<br>(c; $P2_1/c$<br>(d)<br>(2)<br>(4)/90<br>(b)/1.522<br>(c)<br>(-9, 9;<br>(33/2044)<br>(c)<br>(384)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c | $\begin{array}{c} \textbf{NM33} \\ \hline \\ C_{16}H_{11}\text{NOF}_6 \\ 347.26 \\ 1025685 \\ Triclinic P\overline{1} \\ 8.9977(4) \\ 10.8088(5) \\ 16.6720(9) \\ 105.291(2)/9 \\ 1486.36(12)/4/2 \\ 704/0.149 \\ 1.30/30.67 \\ -11, 12; -1 \\ -23, 14 \\ 30219/9103/491 \\ 0.0602/0.043 \\ 491 \\ 0.0602/0.043 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/0.149 \\ 0.1142/$                                                                                                      | 8.901(2)/102.688(2)<br>1.552<br>5, 15;<br>/7006             |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$\alpha$ (°)/ $\beta$ (°)/ $\gamma$ (°)<br>Volume (Å3)/density (g cm <sup>-3</sup> )<br>Z/Z'<br>$F(000)/\mu$ (mm <sup>-1</sup> )<br>$\theta$ (min, max)<br>$h_{min,max}$ , $k_{min,max}$ , $l_{min,max}$<br>No. of total ref./unique ref./obs. ref.<br>No. of parameters<br>$R_all$ , $R_aobs$<br>$wR_{2-}all$ , $wR_{2-}obs$<br>$A = a^{-3}$                                          | NM12<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025681<br>Monoclinic; $P2_{1}/c$<br>9.0978(7)<br>22.1735(15)<br>7.9449(5)<br>90/101.946(4)/90<br>1568.02(19)/1.471<br>4/1<br>704/0.141<br>1.84, 25.00<br>-10, 9; -22, 26;<br>-9, 9<br>13654/2767/2117<br>247<br>0.0637, 0.0482<br>0.1388, 0.1285<br>2020, 2020, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NM22<br>$C_{16}H_{11}NOF_{6}$<br>347.26<br>1025682<br>Monoclinic; $P2_{1/c}$<br>8.3764(5)<br>23.2362(17)<br>7.9755(6)<br>90/103.567(2)/90<br>1509.00(18)/1.529<br>4/1<br>704/0.146<br>2.65/25.00<br>-9, 8; -27, 27;<br>-9, 9<br>21987/2652/2199<br>246<br>0.0534, 0.0410<br>0.1059, 0.0993<br>2.0457             | NM23<br>$C_{16}H_{11}NOF_6$<br>347.26<br>1025683<br>Monoclinic; $P2_1/a$<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90<br>1502.48(9)/1.535<br>4/1<br>704/0.147<br>2.47/25.00<br>-13, 13; -16, 16;<br>-12, 12<br>14260/2649/2238<br>250<br>0.0499, 0.0411<br>0.1065, 0.0993<br>2.202, 0.202           | $\begin{array}{c} \textbf{NM31} \\ \hline \\ C_{16}H_{11}NO\\ 347.26\\ 1025684\\ \hline \\ \textbf{Monoclim}\\ 12.3185(11\\ 7.9401(5)\\ 15.4912(12\\ 90/90.168\\ 1515.19(12\\ 4/1\\ 704/0.146\\ 2.63/25.00\\ -14, 13; -18, 18\\ 11173/268\\ 246\\ 0.0590, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0.0\\ 0.0930, 0$    | $F_6$<br>(c; $P2_1/c$<br>(d)<br>(e)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f                                                                       | $\begin{array}{c} \textbf{NM33} \\ \hline $C_{16}H_{11}\text{NOF}_6$ \\ 347.26 \\ 1025685 \\ Triclinic $P\overline{1}$ \\ 8.9977(4) \\ 10.8088(5) \\ 16.6720(9) \\ 105.291(2)/9 \\ 1486.36(12)/4/2 \\ 704/0.149 \\ 1.30/30.67 \\ -11, 12; -1 \\ -23, 14 \\ 30219/9103/491 \\ 0.0602/0.043 \\ 0.1143/0.104 \\ 2020 & 5.25 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525 \\ 0.525$ | 8.901(2)/102.688(2)<br>1.552<br>5, 15;<br>/7006             |
| DATA<br>Formula<br>Formula weight<br>CCDC No.<br>Crystal system; space group<br>a (Å)<br>b (Å)<br>c (Å)<br>$a$ (°)/ $\beta$ (°)/ $\gamma$ (°)<br>Volume (Å3)/density (g cm <sup>-3</sup> )<br>Z/Z'<br>$F(000)/\mu$ (mm <sup>-1</sup> )<br>$\theta$ (min, max)<br>$h_{min,max}$ , $k_{min,max}$ , $l_{min,max}$<br>No. of total ref./unique ref./obs. ref.<br>No. of parameters<br>$R_all$ , $R_obs$<br>$wR_2_all$ , $wR_2_obs$<br>$\Delta\rho_{min,max}$ (Å <sup>-3</sup> )<br>$C \rightarrow E$  | $\begin{array}{r} \textbf{NM12} \\ \hline C_{16}H_{11}\text{NOF}_{6} \\ 347.26 \\ 1025681 \\ \hline \text{Monoclinic; } P_{21}/c \\ 9.0978(7) \\ 22.1735(15) \\ 7.9449(5) \\ 90/101.946(4)/90 \\ 1568.02(19)/1.471 \\ 4/1 \\ 704/0.141 \\ 1.84, 25.00 \\ -10, 9; -22, 26; \\ -9, 9 \\ 13654/2767/2117 \\ 247 \\ 0.0637, 0.0482 \\ 0.1388, 0.1285 \\ -0.222, 0.363 \\ 1.066 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NM22<br>$C_{16}H_{11}NOF_6$<br>347.26<br>1025682<br>Monoclinic; $P2_1/c$<br>8.3764(5)<br>23.2362(17)<br>7.9755(6)<br>90/103.567(2)/90<br>1509.00(18)/1.529<br>4/1<br>704/0.146<br>2.65/25.00<br>-9, 8; -27, 27;<br>-9, 9<br>21987/2652/2199<br>246<br>0.0534, 0.0410<br>0.1059, 0.0993<br>-0.343, 0.497<br>1.022 | NM23<br>$C_{16}H_{11}NOF_6$<br>347.26<br>1025683<br>Monoclinic; $P2_1/d$<br>11.2958(5)<br>14.0246(4)<br>10.4868(3)<br>90/115.258(4)/90<br>1502.48(9)/1.535<br>4/1<br>704/0.147<br>2.47/25.00<br>-13, 13; -16, 16;<br>-12, 12<br>14260/2649/2238<br>250<br>0.0499, 0.0411<br>0.1065, 0.0993<br>-0.339, 0.398<br>1.056 | $\begin{array}{c} \textbf{NM31} \\ \hline \\ C_{16}H_{11}\text{NO} \\ 347.26 \\ 1025684 \\ \hline \\ \textbf{Monoclim} \\ 12.3185(11 \\ 7.9401(5) \\ 15.4912(12 \\ 90/90.168 \\ 1515.19(12 \\ 4/1 \\ 704/0.146 \\ 2.63/25.00 \\ -14, 13; -18, 18 \\ 11173/268 \\ 246 \\ 0.0590, 0.1 \\ 0.0930, 0.0 \\ -0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0.239, 0.1 \\ 0$ | $F_6$<br>(c; $P2_1/c$<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)                                                                                    | $\begin{array}{c} \textbf{NM33} \\ \hline \\ C_{16}H_{11}\text{NOF}_6\\ 347.26\\ 1025685\\ Triclinic P\overline{1}\\ 8.9977(4)\\ 10.8088(5)\\ 16.6720(9)\\ 105.291(2)/9\\ 1486.36(12)/\\ 4/2\\ 704/0.149\\ 1.30/30.67\\ -11, 12; -1\\ -23, 14\\ 30219/9103/\\ 491\\ 0.0602/0.043\\ 0.1143/0.104\\ -0.380, 0.44\\ 1020\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.901(2)/102.688(2)<br>1.552<br>5, 15;<br>/7006<br>80<br>40 |

(ref. code: JAZJOJ10) in the CSD. The compounds in this series exist preferably in the *cis*-conformation [Fig. 1(c)]. Due to the presence or substitution of H by a functional group ortho to both the phenyl rings, the conformation may change to trans orientation on account of the role of sterics, as is observed in the case of NM11, YEGJEY, DIBGIF and DIBGAX. It is of interest to note that the methyl substitution ortho to both of the phenyl rings (YEGLAX) exhibits a cis-conformation, whereas substitution by a trifluoromethyl  $(-CF_3)$  group at the same position in NM11 leads to a *trans* geometry [Fig. 1(b) and (d)]. The reason for this observation may be the possibility of the formation of two intramolecular weak  $C(sp^3)$ -H···O=C hydrogen bonds in the case of YEGLAX, which stabilizes the molecular conformation in the cis-geometry. The dihedral angles between the planes formed by the two phenyl rings and the central part (O=C-N-CH<sub>3</sub>) of the molecules for all the structures are compared in Tables 2 and 3. The angle between the two phenyl rings for the molecule with the cis-geometry display similar values (angle 1, value more than  $60^\circ$ , Tables 2 and 3). The deviation of the phenyl ring (plane 2) on the nitrogen side (angle 3, the value being more than 56°) from O=C-N-CH<sub>3</sub> plane (plane 3) was observed to be more than for angle 2 (the value being less than 60° in most cases), which is the dihedral angle between plane 1 (phenyl ring on carbonyl side) and plane 3. No significant changes were observed between the solid state geometry and gaseous state geometry. The molecular conformation was observed to be stabilized by the presence of an intramolecular weak  $C(sp^3)$ -H···O=C hydrogen bond in both the solid state and the gas phase. In the case of the molecules with the *trans* conformation, both the phenyl rings were nearly orthogonal to the central plane 3 (O=C-N-CH<sub>3</sub> plane) in both the solid state and gas phase geometry to minimize the sterics in the molecule.

From the lattice energy calculations, using the PIXEL method for all the molecules (Table 4), it was observed that the values lie between  $102 \text{ kJ mol}^{-1}$  and  $115 \text{ kJ mol}^{-1}$ , with the dispersion energy being the major component. The lattice energy of the four related molecules in CSD was also calculated using the PIXEL method (Table 4). The result demonstrated

| Table 2  | List of selected dihedral angles (°) and geometries of the intramolecular weak C(sp | $^{3}$ )–H $\cdots$ O=C hydrogen bond and their comparison with the |
|----------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| values o | btained from the DFT/B3LYP calculations (in italic)                                 |                                                                     |

|      | Angle 1 (°) plane1/2 | Angle 2 (°) plane1/3 | Angle 3 (°) plane2/3 | Geometry of $C(sp^3)$ –H···O (Å, °) |
|------|----------------------|----------------------|----------------------|-------------------------------------|
| NM00 | 67.4(1)              | 47.1(1)              | 62.5(1)              | 2.47, 93                            |
|      | 67.3                 | 32.9                 | 60.1                 | 2.42, 90                            |
| NM02 | 66.9(1)/64.9(1)'     | 46.0(1)/53.5(1)'     | 65.4(1)/62.6(1)'     | 2.32, 102/2.39, 97'                 |
|      | 70.3/69.9'           | 34.3/36.6'           | 70.9/62.1'           | 2.50, 87/2.42, 91'                  |
| NM03 | 58.6(1)/71.9(1)'     | 44.0(1)/43.5(1)'     | 59.8(1)/70.2(1)'     | 2.31, 100/2.27, 104'                |
|      | 65.5/67.0            | 39.2/38.8            | 57.1/61.0            | 2.23, 106/2.51, 86'                 |
| NM10 | 69.8(1)              | 39.2(1)              | 67.9(1)              | 2.28, 102                           |
|      | 76.3                 | 38.9                 | 77.1                 | 2.33, 97                            |
| NM30 | 57.4(1)/55.5(1)'     | 43.7(1)/43.4(1)'     | 48.8(1)/53.6(1)'     | 2.37, 94/2.65, 80'                  |
|      | 68.0/65.5            | 36.4/32.7            | 58.4/54.8            | 2.37, 96/2.46, 87                   |
| NM11 | 1.7(1)               | 84.9(1)              | 85.6(1)              | _                                   |
|      | 4.6                  | 84.4                 | 85.5                 |                                     |
| NM12 | 73.7(1)              | 58.9(1)              | 84.4(1)              | 2.56, 87                            |
|      | 76.1                 | 39.4                 | 77.5                 | 2.32, 98                            |
| NM22 | 62.3(1)              | 65.4(1)              | 64.8(1)              | 2.41, 97                            |
|      | 67.7                 | 33.9                 | 59.1                 | 2.42, 91                            |
| NM23 | 69.1(1)              | 50.5(1)              | 66.3(1)              | 2.34, 102                           |
|      | 66.3                 | 34.6                 | 58.5                 | 2.43, 90                            |
| NM31 | 61.4(1)              | 61.2(1)              | 61.5(1)              | 2.43, 92                            |
|      | 67.9                 | 59.8                 | 57.8                 | 2.24, 106                           |
| NM33 | 69.5(1)/72.9(1)'     | 34.1(1)/62.4(1)'     | 56.7(1)/65.5(1)'     | 2.38, 94/2.40, 98'                  |
|      | 65.9/68.6            | 38.3/46.5            | 57.6/62.3            | 2.37, 97/2.42, 98'                  |

Table 3 List of related structures, reported in CSD along with their space group, cell parameters and dihedral angles (as reported in Table 2)

| Ref. code                              | Space group, Z    | Cell parameters, <i>a</i> , <i>b</i> , <i>c</i> (Å)/ $\alpha$ , $\beta$ , $\gamma$ (°) | Angle 1 (°) | Angle 2 (°) | Angle 3 (°) |
|----------------------------------------|-------------------|----------------------------------------------------------------------------------------|-------------|-------------|-------------|
| JAZJOJ10 <sup>43</sup> ( <b>NM00</b> ) | Pbca, $Z = 8$     | 12.5881, 12.3092, 14.6542/90, 90, 90                                                   | _           | _           |             |
| YEGKIE <sup>43</sup>                   | $P2_1nb, Z = 4$   | 11.308(1), 15.878(2), 6.876(5)/90, 90, 90                                              | 70.8        | 36.7        | 65.0        |
| YEGLAX <sup>43</sup>                   | $P\bar{1}, Z=2$   | 11.602, 12.766(4), 7.372(1)/92.19(3), 104.93(2), 137.31(1)                             | 72.6        | 62.1        | 83.3        |
| YEGKEA <sup>43</sup>                   | $P2_1/a, Z = 4$   | 13.257(7), 13.234(11), 8.005(1)/90, 98.01(1), 90                                       | 65.9        | 76.6        | 62.8        |
| YEGKOK <sup>43</sup>                   | $P2_1/n, Z = 4$   | 14.909(1), 6.795(2), 13.358(1)/90, 98.46(1), 90                                        | 67.5        | 43.7        | 75.2        |
| YEGJEY <sup>43</sup>                   | Cc, Z = 4         | 15.250(3), 7.502(1), 13.733(3)/90, 106.77(2), 90                                       | 1.06        | 85.5        | 85.1        |
| DIBGIF <sup>65</sup>                   | $P2_1/n, Z = 4$   | 7.123(3), 16.792(8), 13.785(7)/90, 102.881, 90                                         | 16.5        | 85.3        | 84.3        |
| DIBGAX <sup>65</sup>                   | Pc, Z = 8, Z' = 4 | 11.1542(10), 8.4970(7), 31.528(3)/90, 95.122(2), 90                                    | 11.0        | 87.7        | 76.9        |

<sup>43</sup>Azumaya et al., 1994; <sup>65</sup>Cockroft et al., 2007.

 $\label{eq:table 4} \begin{array}{ll} \mbox{Lattice energy (kJ mol^{-1}) partitioned into coulombic, polarization, dispersion and repulsion contributions by the PIXEL method \end{array}$ 

|                     | $E_{\rm Coul}$ | $E_{\rm Pol}$ | $E_{\rm Disp}$ | $E_{\rm Rep}$ | $E_{\rm Tot}$ |
|---------------------|----------------|---------------|----------------|---------------|---------------|
| NM00                | -30.3          | -15.5         | -123.0         | 65.5          | -103.3        |
| NM02                | -38.0          | -14.8         | -120.7         | 66.3          | -107.2        |
| NM03                | -42.3          | -16.0         | -119.6         | 75.1          | -102.8        |
| NM10                | -45.5          | -16.4         | -122.4         | 69.4          | -114.9        |
| NM30                | -35.5          | -13.4         | -122.9         | 66.4          | -105.5        |
| NM11 <sup>a</sup>   | -34.6          | -13.9         | -122.9         | 64.3          | -107.1        |
| NM12                | -36.4          | -13.5         | -97.9          | 46.0          | -101.9        |
| NM22                | -46.7          | -19.7         | -119.6         | 77.2          | -108.7        |
| NM23                | -40.8          | -15.9         | -122.7         | 70.9          | -108.5        |
| NM31                | -38.6          | -12.8         | -111.2         | 57.2          | -105.4        |
| NM33                | -45.7          | -16.8         | -125.7         | 78.8          | -109.3        |
| YEGLAX              | -35.2          | -13.5         | -129.2         | 67.0          | -117.8        |
| YEGKEA              | -30.3          | -15.6         | -116.4         | 61.8          | -100.4        |
| YEGKOK              | -35.9          | -14.8         | -127.4         | 71.9          | -106.2        |
| YEGJEY <sup>a</sup> | -32.8          | -13.6         | -142.6         | 78.5          | -110.5        |

<sup>a</sup> Molecules exist in *trans* conformation.

that the substitution of the methyl group on *N*-methyl-*N*-phenyl benzamide did not exhibit significant changes in the lattice energy.

#### Molecular pairs and crystal packing analysis

It was of interest in this study to analyze the crystal packing of N-methyl-N-phenyl benzamides (NM00) and to compare it with that of its trifluoromethyl-substituted analogues (Table 1). The molecular pairs extracted from the crystal packing of NM00 are shown in Fig. 2(a), along with the associated interaction energies. The analysis of the molecular pairs revealed that the crystal packing in NM00 is mainly stabilized by the presence of weak C-H···O=C and C-H··· $\pi$  hydrogen bonds [Fig. 2(a) and Table 5]. The most stabilized motif I (I.E =  $-24.5 \text{ kJ mol}^{-1}$ ) consists of a short C-H···O=C and a C-H··· $\pi$  hydrogen bond, resulting in the formation of a molecular chain with the utilization of the *b*-glide plane perpendicular to the crystallographic a-axis [Fig. 2(b)]. Such chains are interconnected with the second most stabilized molecular motif II (I.E = -19.6 kJ mol<sup>-1</sup>), which consists of a pair of a C-H··· $\pi$  hydrogen bond and a short H···H contact. The important fact observed here is that the motif I, which consists of a short C-H···O hydrogen bond  $(d_{H \cdots O} =$ 2.41 Å), has a 34% electrostatic (coulombic + polarization) and 66% dispersion contribution out of the total stabilization, while the values corresponding to motif II are 22% and 78%,

Table 5 List of interaction energies (kJ mol<sup>-1</sup>) of molecular pairs related by symmetry operation along with possible involved intermolecular interactions

| Pair/                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Centroid-<br>centroid |                   |               | h                      |                                 | DFT-D2/<br>B97-D<br>(BSSE | Possible involved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Geometry $(\text{\AA}^{\circ})$<br>$D(\text{D} \cdot \cdot \cdot \text{A}),$<br>$d(\text{H} \cdot \cdot \cdot \text{A}),$ |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|---------------|------------------------|---------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| motif"                           | Symmetry code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | distance (A)          | $E_{\text{Coul}}$ | $E_{\rm Pol}$ | $E_{\rm Disp}^{\ \nu}$ | $E_{\text{Rep}} E_{\text{Tot}}$ | corrected)                | interactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ∠ D–H···A                                                                                                                 |
| <b>NM00</b> ( <i>P</i>           | Pbca, Z' = 1; ref. code: JAZJO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J10)                  |                   |               | , .                    |                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |
| I                                | -x + 3/2, y + 1/2, z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.320                 | -9.1              | -7.7          | -33.1 (66              | ) 25.4 - 24.5                   | -28.4                     | C6-H6···O1<br>C14-H14C···C5 $(\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.271(1)/2.41/136<br>3.757(1)/2.08/120                                                                                    |
| II                               | -x + 1/2, -y + 1/2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.877                 | -5.3              | -2.1          | -25.7 (78              | ) 13.6 -19.6                    | -24.3                     | C14-III4C···C3 $(\pi)$<br>C3-H3···C9 $(\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.911(1)/2.96/147                                                                                                         |
|                                  | -z + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                   |               | ( ,                    | ,<br>,                          |                           | C2-H2···C11 $(\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.664(1)/2.99/121                                                                                                         |
|                                  | $x = \frac{1}{2} x = \frac{1}{2} \frac{1}{2} x = \frac{1}{2} $ | 7.005                 | <b>F</b> 0        | 0.5           | 10 C (70               | 0 0 17 0                        | 107                       | H14A···H9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.38                                                                                                                      |
| 111                              | x = 1/2, y, -2 + 3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.005                 | -5.0              | -2.5          | -19.0 (72              | 9.8 -17.2                       | 19.7                      | $C12-H12\cdots C4(\pi)$<br>C14-H14A···C3( $\pi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.787(1)/2.97/133                                                                                                         |
| IV                               | x, -y + 1/2, z - 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.397                 | -4.5              | -2.5          | -11.5 (62              | ) 4.7 -13.9                     | ) -15.8                   | С9–Н9· · · С2 (π)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.082(1)/3.14/147                                                                                                         |
| V                                | -r + 2 + 1/2 - 7 + 3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 167                 | _3 7              | _1 8          | -88 (62                | ) 42 - 10 1                     | _11 3                     | $C9-H9\cdots O1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.361(1)/2.89/106<br>3.907(1)/2.86/163                                                                                    |
| VI                               | -x + 2, y + 1/2, z + 3/2<br>-x + 2, -y + 1, -z + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.527                 | 0.6               | -1.1          | -15.4(97)              | 5.8 - 10.1                      | -11.2                     | C10-H10···C4 $(\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.936(1)/3.18/128                                                                                                         |
| VII                              | -x + 3/2, -y + 1, z - 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.065                 | -1.8              | -0.6          | -7.9 (77               | ) 2.9 -7.3                      | -8.4                      | С10-Н10· · ·С6 (π)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.037(1)/3.11/144                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |               |                        |                                 |                           | C10–H10···C5 ( $\pi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.836(1)/3.18/120                                                                                                         |
| NM02 (C                          | C2/c, Z' = 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                   |               |                        |                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |
| I 1···1 `                        | -x + 1/2, -y + 1/2, -z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.800                 | -17.8             | -5.4          | -30.5 (57              | ) 18.6 -35.1                    | -43.2                     | $C12-H12\cdots O1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.790(3)/2.77/158                                                                                                         |
| II 22                            | -r + 1 $y - 7 + 1/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 505                 | _88               | -16           | -44.2 (77              | ) 26 1 - 31 5                   | _31.0                     | C14-H14B···O1<br>C4'···C4' $(\pi \cdot \cdot \pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.610(3)/2.83/129<br>3.431(2)                                                                                             |
| 11 22                            | -x + 1, y, -z + 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.505                 | -0.0              | -4.0          | -44.2 (77              | 20.1 -51.5                      | -51.0                     | $C5' \cdots C5' (\pi \cdots \pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.393(2)                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |               |                        |                                 |                           | $C5'-H5'\cdots C11'(\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.772(2)/2.78/153                                                                                                         |
| III $1 \cdots 2$                 | x, -y, z + 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.175                 | -14.5             | -6.0          | -30.1 (59              | ) 19.5 -31.1                    | -35.4                     | $C8-H8\cdots O1'$<br>$C6'-H6'\cdots F1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.393(2)/2.46/144                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |               |                        |                                 |                           | C8'-H8'···F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.400(3)/2.65/126                                                                                                         |
| $IV \ 1{\cdots}1$                | -x + 1/2, y + 1/2, -z + 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.260                 | -11.4             | -4.6          | -36.2 (69              | ) 22.2 -30.0                    | ) -35.3                   | C10-H10···O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.429(3)/2.67/127                                                                                                         |
| V 12                             | x 11 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 450                 | 6.2               | 1 0           | 227 (69                | ) 12 / 22 /                     | 27.0                      | C5-H5···Cg2 ( $\pi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.670(2)/2.65/157                                                                                                         |
| v 12                             | <i>x</i> , <i>y</i> , <i>z</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.450                 | -0.3              | -4.0          | -23.7 (08              | ) 12.4 -22.4                    | -27.9                     | $C_2 = F_1 + F_1 $ | 2.823(2)/98(1)/158(1)                                                                                                     |
| VI $1 \cdots 2$                  | -x + 1/2, -y + 1/2, -z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.499                 | -8.3              | -4.0          | -14.9 (55              | 9.5 -17.6                       | 6 -18.2                   | $C11-H11\cdots O1'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.312(3)/2.58/125                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |               |                        |                                 |                           | C12-H12···O1'<br>C14 H14P $E1A'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.428(2)/2.84/115                                                                                                         |
| VII 1···2                        | x, y-1, z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.941                 | -4.6              | -1.1          | -14.4 (72              | ) 5.4 -14.7                     | / -18.4                   | $C9'-H9'\cdots F2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.300(3)/2.71/114                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |               |                        |                                 |                           | $C4 \cdots C9' (\pi \cdots \pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.802(2)                                                                                                                  |
| VIII 2····                       | 2 x, $-y$ , $z + 1/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.593                 | -5.6              | -2.2          | -17.7 (69              | ) 11.0 - 14.5                   | 5 -18.5                   | C10'-H10'···C4' ( $\pi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.609(2)/2.78/133                                                                                                         |
| IX $2 \cdot \cdot \cdot 2$       | x, y = 1, z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.627                | -5.4              | -1.7          | -10.2 (59              | ) 7.3 -10.1                     | -10.7                     | $C11$ -H111 ····C1 ( $\pi$ )<br>C14'-H14E····F1A'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.541(8)/2.51/160                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |               | ( ,                    | ,<br>,                          |                           | $C8'-H8'\cdots F2A'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.253(11)/2.58/120                                                                                                        |
| V 1 0                            | $x \pm 1$ $y = x \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 441                | <b>1</b> 2        | 0.6           | 60 (60                 | ) 20 71                         | 0.2                       | $C8'-H8'\cdots F3A'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.797(9)/2.74/166                                                                                                         |
| A 12                             | -x + 1, -y, -z + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,441                | -2.3              | -0.0          | -0.2 (08               | ) 2.0 -7.1                      | -0.5                      | $C10'-H10'\cdots F2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.800(2)/2.89/142                                                                                                         |
| XI $1 \cdots 2$                  | -x + 1, y, -z + 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.365                 | -2.6              | -1.0          | -7.6 (68               | ) 4.3 -7.0                      | ) -8.1                    | $C4'-H4'\cdots F2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.619(3)/2.66/147                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |               |                        |                                 |                           | $C4'-H4'\cdots F3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.306(3)/2.68/117                                                                                                         |
| <b>NM03</b> ( <i>F</i>           | $22_1/c, Z' = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                   |               |                        |                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |
| I 1···2 `                        | x, y, z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.173                 | -23.0             | -8.0          | -41.3 (57              | ) 33.0 -39.3                    | -52.0                     | $C12-H12\cdots O1'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.297(2)/2.26/161                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |               |                        |                                 |                           | C14-H14B···O1'<br>C6···C5' $(\pi \cdot \cdot \pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.448(2)/2.66/129                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |               |                        |                                 |                           | $C6\cdots C6' (\pi\cdots\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.481(1)                                                                                                                  |
| II $2 \cdots 2$                  | -x, y-1/2, -z+1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.506                 | -17.2             | -7.3          | -46.7 (65              | ) 36.1 -35.1                    | -42.1                     | C10'-H10'···O1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.340(2)/2.45/139                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |               |                        |                                 |                           | C5'-H5'···Cg2' ( $\pi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.523(2)/2.49/159<br>3.799(2)/2.90/154                                                                                    |
| III 1···1                        | -x + 1, -y, -z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.565                 | -9.7              | -4.4          | -41.5 (75              | ) 27.9 -27.6                    | 5 -33.4                   | $C10-H10\cdots Cg1(\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.834(1)/2.89/146                                                                                                         |
| -                                | , <u>,</u> , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                     |                   |               |                        | ,                               |                           | C9···C9 $(\pi \cdot \cdot \cdot \pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.245(1)                                                                                                                  |
| W 1 0                            | $x = y \pm 1/0 = x \pm 1/0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 750                 | 0.2               |               | 20 C (70)              | 170 000                         | 20C                       | $C9 \cdots C10 (\pi \cdots \pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.430(1)                                                                                                                  |
| $V 1 \cdots 2$<br>V $1 \cdots 2$ | x, -y + 1/2, z + 1/2<br>-x, -y, -z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.970                 | -8.3<br>-9.9      | -3.7<br>-4.7  | -20.0 (70 $-20.4$ (58  | 11.0 - 23.6<br>14.7 - 20.3      | -20.0<br>-21.8            | $C_{12'-H_{12'}-H_{12'}-H_{12'}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.404(2)/2.33/173                                                                                                         |
| VI $1 \cdots 2$                  | -x, y + 1/2, -z + 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.380                 | -7.8              | -2.9          | -16.1 (60              | ) 10.9 -15.9                    | 0 -18.6                   | C9′−H9′···O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.614(2)/2.69/143                                                                                                         |
| VII 1 0                          | r v_1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 775                 | . 0.0             |               | _00(10                 | ) 16 14 -                       | _16 7                     | C10'-H10'···C3( $\pi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.605(1)/2.71/139<br>3.303(2)/2.57/122                                                                                    |
| VII 1···2                        | <i>λ</i> , <i>y</i> -1, <i>λ</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.//3                 | -8.0              | -2.3          | -0.8 (46               | 14.0 -14.5                      | -10./                     | $C2'-H2'\cdots F2A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.721(3)/2.69/160                                                                                                         |
| VIII 1····                       | 2 x, $-y-1/2$ , $z-1/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.192                 | -4.5              | -1.4          | -9.3 (61               | ) 6.0 -9.2                      | 2 -10.7                   | C2−H2···F1A′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.111(3)/2.54/112                                                                                                         |
| IV 1 1                           | $x \pm 1$ $x \pm 1/0$ $- \pm 1/0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 504                 |                   | 0.0           | 00(70)                 |                                 | 107                       | C3-H3···F1A'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.241(2)/2.81/104                                                                                                         |
| X 1···1                          | -x + 1, y + 1/2, -z + 1/2<br>-x, -y, -z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.394<br>10.564       | -2.2<br>-2.6      | -0.9<br>-1.6  | -8.2(73)<br>-4.1(49)   | 3.7 - 7.6<br>1.0 - 7.3          | -10.7                     | сэ−пэ·…гэа<br>С14-Н14С·…О1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.987(2)/2.96/159                                                                                                         |
| XI 1···1                         | x, -y-1/2, z-1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.340                 | -2.8              | -0.7          | -5.7 (62               | 3.2 -6.0                        | ) -7.2                    | C9−H9···F2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.259(3)/2.60/118                                                                                                         |
|                                  | $x \pm 1$ $y \pm 1/0$ $\sim \pm 1/0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.042                |                   | 0.4           | 20(=4                  |                                 | <u>د م</u>                | $C8-H8\cdots F2A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.386(3)/2.89/109                                                                                                         |
| $XII 1 \cdots 2$                 | x - x + 1, y + 1/2, -z + 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.943                | -2.8              | -0.4          | -3.8 (54               | 1.4 -5.6                        | о — 6.8                   | 011-H11···F2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.355(3)/2.64/142                                                                                                         |

Open Access Article. Published on 20 August 2015. Downloaded on 8/30/2025 3:03:57 AM.

| Pair/<br>motif <sup>a</sup> | Symmetry code                                  | Centroid-<br>centroid<br>distance (Å) | Ecoul            | Epol             | $E_{\text{Disp}}^{b}$  | Eper             | $E_{\rm Tot}$    | DFT-D2/<br>B97-D<br>(BSSE<br>corrected) | Possible involved interactions <sup>c</sup>                                         | Geometry $(\text{\AA}^{\circ})$<br>$D(\text{D}\cdots\text{A}),$<br>$d(\text{H}\cdots\text{A}),$<br>$\angle$ D-H $\cdots$ A |
|-----------------------------|------------------------------------------------|---------------------------------------|------------------|------------------|------------------------|------------------|------------------|-----------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <b>NM10</b> (P              | Phca, Z' = 1                                   |                                       | cour             | 101              | Disp                   | nep              | 100              | ,                                       |                                                                                     |                                                                                                                            |
| I<br>II                     | -x + 1, -y, -z + 1  x - 1/2, y, -z + 3/2       | 5.968<br>7.490                        | $-16.2 \\ -11.3$ | $^{-6.2}_{-5.8}$ | -34.2(60)<br>-31.4(65) | ) 20.2<br>) 20.5 | $-36.2 \\ -28.1$ | $-41.3 \\ -33.4$                        | C11-H11···C5 ( $\pi$ )<br>C14-H14B···O1                                             | 3.775(1)/2.74/161<br>3.382(2)/2.59/130                                                                                     |
| III                         | -x + 1/2, y-1/2, z                             | 7.881                                 | -9.1             | -2.6             | -18.7 (62              | ) 9.9            | -20.6            | -22.9                                   | C8–H8···C6 (π)<br>C9–H9···F3A<br>C10–H10···F3A                                      | 3.951(1)/2.90/164<br>3.378(15)/2.69/121<br>3.409(15)/2.76/119                                                              |
| IV                          | x-1/2, -y+1/2, -z+1                            | 6.713                                 | -4.8             | -1.5             | -16.5 (72              | ) 5.4            | -17.4            | 23.0                                    | C14-H14C···C10 ( $\pi$ )<br>C14-H14C···F2A<br>C2-H2···F1A<br>C3-H3···F1A            | 3.974(2)/3.05/144<br>3.670(10)/2.72/146<br>3.335(11)/2.79/111<br>3.338(12)/2.79/112                                        |
| V                           | -x + 1, y - 1/2, -z + 3/2                      | 8.997                                 | -7.2             | -3.7             | -10.8(50)              | ) 10.1           | -11.7            | -11.4                                   | C5-H5···O1                                                                          | 3.310(2)/2.42/139                                                                                                          |
| VI                          | -x + 3/2, y - 1/2, z                           | 8.989                                 | -4.4             | -2.1             | -8.0 (55               | ) 4.9            | -9.6             | -11.2                                   | $C4-H4\cdots O1$                                                                    | 3.567(2)/2.50/169                                                                                                          |
| VII                         | x + 1, y, z                                    | 9.655                                 | -0.5             | -1./             | -11.8 (84              | ) 7.1            | -6.9             | -10.8                                   | $C3-H3\cdots C8(\pi)$                                                               | 3.839(2)/2.83/155                                                                                                          |
| <b>NM30</b> ( <i>P</i>      | $22_1/c, Z' = 2$                               |                                       |                  |                  |                        |                  |                  |                                         |                                                                                     |                                                                                                                            |
| I 1···2                     | <i>x</i> , <i>y</i> , <i>z</i>                 | 7.321                                 | -11.4            | -5.4             | -31.2 (65              | ) 22.4           | -25.6            | -32.3                                   | $C3'-H3'\cdots O1$ $C2'-H2'\cdots C1$ $C13\cdots C3 (\pi\cdots \pi)$                | 3.403(4)/2.65/127<br>3.727(3)/2.97/127<br>3.575(3)                                                                         |
| II $2 \cdot \cdot \cdot 2$  | x, -y + 1/2, z + 1/2                           | 8.623                                 | -8.0             | -4.1             | -17.7 (59              | ) 11.0           | -18.8            | -19.6                                   | C8'-H8'···O1'                                                                       | 3.359(3)/2.53/133                                                                                                          |
| III $1 \cdots 1$            | x, -y + 3/2, z + 1/2                           | 8.686                                 | -8.4             | -3.9             | -17.0 (58              | ) 11.0           | -18.3            | -19.6                                   | C12-H12···O1                                                                        | 3.352(4)/2.49/136                                                                                                          |
| IV 2···2                    | x, -y + 3/2, z - 1/2                           | 7.524                                 | -5.2             | -2.0             | -23.9 (77              | ) 12.8           | -18.3            | -21.8                                   | $C12'-H12'\cdots F1'$ $C4'\cdots C9' (\pi\cdots\pi)$ $C5'\cdots C9' (\pi\cdots\pi)$ | 3.385(3)/2.63/126<br>3.547(3)<br>3.408(3)                                                                                  |
| V $1 \cdots 1$              | x, -y + 1/2, z - 1/2                           | 7.482                                 | -5.8             | -2.3             | -25.0 (76              | ) 14.9           | -18.2            | -17.2                                   | $C8-H8\cdots F2$ $C3\cdots C11 (\pi\cdots\pi)$ $C4 \qquad C11 (\pi - \pi)$          | 3.379(4)/2.62/127<br>3.346(3)<br>2.528(2)                                                                                  |
| VI 12                       | x, -y + 3/2, z + 1/2                           | 8.400                                 | -4.6             | -3.4             | -22.2 (74              | ) 13.2           | -17.0            | -21.1                                   | $C4' - H4' - C6(\pi)$<br>$C4' - H4' - C6(\pi)$<br>C4' - C13                         | 3.758(3)/2.83/144<br>3.685(3)                                                                                              |
| VII $2 \cdot \cdot \cdot 2$ | -x, -y + 1, -z + 1                             | 7.998                                 | -6.1             | -1.6             | -18.3 (70              | ) 8.9            | -17.0            | -22.1                                   | $C15'-F2'\cdots C9'(\pi)$                                                           | 3.713(3)/3.155(2)/104(1)                                                                                                   |
| VIII 1····                  | 1 -x + 1, -y + 1, -z + 2<br>-x -y + 1/2 -z + 1 | 8.078<br>6.529                        | -5.9             | -1.4             | -18.2(71)<br>-190(78)  | ) 9.2<br>) 8.4   | -16.4            | -21.3<br>-19.8                          | C15-F3···C11 ( $\pi$ )<br>C12'-H12'···F2'                                           | 3.693(3)/3.161(2)/102                                                                                                      |
| 112 2                       | x, y + 1/2, z + 2                              | 0.525                                 | 5.0              | 1.0              | 13.0 (70               | , 0.4            | 10.0             | 19.0                                    | C12' - F2' - C13' = O1'                                                             | 4.517(3)/3.203(2)/166(1)                                                                                                   |
| $X \ 1{\cdots}{\cdot}1$     | -x + 1, -y + 1/2,                              | 6.520                                 | -3.4             | -1.8             | -18.1(78)              | ) 7.8            | -15.5            | -19.3                                   | C8-H8···F3                                                                          | 3.330(3)/2.54/129                                                                                                          |
| XI 1···1                    | $\frac{-2+3/2}{x, y+1, z}$                     | 8.339                                 | -6.0             | -2.1             | -11.7 (59              | ) 4.9            | -14.9            | -17.3                                   | $C15-F3\cdots C13=O1$ $C4-H4\cdots O1$ $C14-H14B\cdots F1$                          | 4.473(3)/3.154(2)/166(1)<br>3.547(4)/2.73/132<br>3.637(3)/2.68/147                                                         |
| XII $2 \cdot \cdot \cdot 2$ | x, y-1, z                                      | 8.339                                 | -6.2             | -2.5             | -12.3 (59              | ) 6.4            | -14.6            | -17.2                                   | $C4'-H4'\cdots O1'$                                                                 | 3.515(4)/2.66/135                                                                                                          |
| XIII 1····                  | 2 x, $-y + 1/2$ , $z + 1/2$                    | 8.349                                 | -4.4             | -3.1             | -13.0 (63              | ) 7.9            | -12.6            | -13.8                                   | C14 -H14E F3<br>C5-H5C6' $(\pi)$<br>C5'-H5'O1'                                      | 3.722(3)/2.73/152<br>3.499(5)/2.91/114                                                                                     |
| XIV 22                      | 2 $-x, -y + 2, -z + 1$                         | 10.740                                | 1.6              | -0.3             | -5.2 (95               | ) 2.1            | -1.8             | -2.5                                    | $C15'-F2'\cdots F3'-C15'$<br>$C15'-F3'\cdots F3'-C15'$                              | 3.104(2)/90(1)/128(1)<br>3.002(2)/94(1)/94(1)                                                                              |
| XV 1···1                    | -x + 1, -y, -z + 2                             | 10.759                                | 1.6              | -0.3             | -5.1 (94               | ) 1.9            | -1.8             | -2.6                                    | C15-F1···F1-C15                                                                     | 2.966(2)/94(1)/94(1)                                                                                                       |
| <b>NM11</b> ( <i>P</i><br>I | $22_1/c, Z' = 1)$<br>-x + 1, -y, -z + 2        | 7.697                                 | -27.0            | -7.9             | -29.4 (46              | ) 23.4           | -40.8            | -43.4                                   | C9–H9···O1                                                                          | 3.498(2)/2.46/160                                                                                                          |
| II                          | <i>x</i> -1, <i>y</i> , <i>z</i>               | 8.980                                 | -7.7             | -2.6             | -29.4 (74              | ) 17.6           | -22.0            | -31.3                                   | C10-H10···F6<br>C10···C3 $(\pi \cdot \cdot \cdot \pi)$                              | 3.296(2)/2.49/144<br>3.560(2)                                                                                              |
| III                         | -x + 2, -y + 1, -z + 2                         | 8.424                                 | 0.1              | -1.6             | -24.9 (94              | ) 8.6            | -17.8            | -23.3                                   | C11···C4 $(\pi \cdot \cdot \cdot \pi)$<br>C2···C3 $(\pi \cdot \cdot \cdot \pi)$     | 3.579(2)<br>3.960(2)<br>3.955(2)                                                                                           |
| IV                          | x, -y + 1/2, z - 1/2                           | 7.409                                 | -4.6             | -1.5             | -17.4 (74              | ) 6.7            | -16.7            | -21.0                                   | $C5-H5\cdots F6$                                                                    | 3.543(2)/2.79/127                                                                                                          |
| V                           | -x + 2, y + 1/2, -z + 3/2                      | 8.484                                 | -11.8            | -3.9             | -10.7 (41              | ) 9.9            | -16.6            | -18.2                                   | C6–H6····F4<br>C5–H5····O1                                                          | 3.7/3(2)/2.82/148<br>3.287(2)/2.35/144                                                                                     |
| VI                          | -x + 1, y + 1/2, -z + 3/2                      | 7.347                                 | 0.6              | -2.5             | -23.7 (93              | ) 9.8            | -15.8            | -21.0                                   | C4–H4···F3<br>C14–H14A···F1<br>C14–H14A···F3                                        | 3.645(2)/2.65/154<br>3.305(2)/2.84/106<br>3.731(2)/2.87/137                                                                |
| VII                         | x-1, -y + 1/2, z-1/2                           | 11.364                                | -2.3             | -0.5             | -6.3 (69               | ) 3.8            | -5.3             | -7.5                                    | C10-H10···C5 ( $\pi$ )<br>C11-H11···F5<br>C3-H3···F1                                | 3.871(2)/3.11/128<br>3.600(2)/2.58/156<br>3.727(2)/2.78/147                                                                |
| <b>NM12</b> (P<br>I         | $22_1/c, Z' = 1)$<br>-x + 2, -y + 2, -z        | 5.674                                 | -6.7             | -3.9             | -41.4 (80              | ) 15.7           | -36.2            | -45.0                                   | C10-H10···C3 ( $\pi$ )<br>C9-H9···C5 ( $\pi$ )                                      | 3.821(2)/3.02/131<br>4.077(1)/3.04/160                                                                                     |
|                             |                                                |                                       |                  |                  |                        |                  |                  |                                         | C9···C9 $(\pi \cdot \cdot \pi)$<br>C15-F1···F4A-C16                                 | 3.624(2)<br>3.074(3)/140(1)/112(1)                                                                                         |

| Pair/<br>motif <sup>a</sup>        | Symmetry code                               | Centroid-<br>centroid<br>distance (Å) | <i>E</i> <sub>C</sub> 1 | Encl           | Epice <sup>b</sup>     | i        | Ер           | Erret          | DFT-D2/<br>B97-D<br>(BSSE<br>corrected) | Possible involved                                                                                 | Geometry (Å/°)<br>$D(D \cdots A),$<br>$d(H \cdots A),$<br>$(D - H \cdots A)$ |
|------------------------------------|---------------------------------------------|---------------------------------------|-------------------------|----------------|------------------------|----------|--------------|----------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| II                                 | $x_{1} - y + 3/2, z - 1/2$                  | 7.061                                 | -12.9                   | -7.1           | -21.8 (5               | 52) :    | 16.2         | -25.6          | -31.2                                   | C12-H12···O1                                                                                      | 3.356(3)/2.32/160                                                            |
| III                                | r u g 1                                     | 7.045                                 | 0                       | 2.5            | 16.5 (5                | 50)      | 5 7          | 22.2           | 25.0                                    | C6-H6···O1                                                                                        | 3.562(3)/2.57/153                                                            |
| 111                                | <i>x</i> , <i>y</i> , <i>z</i> -1           | 7.943                                 | -0.9                    | -2.5           | -10.5 (.               |          | 5.7          | -22.3          | -23.9                                   | C10-H10···F2                                                                                      | 3.446(3)/2.69/127                                                            |
| IV                                 | <i>x</i> -1, <i>y</i> , <i>z</i>            | 9.098                                 | -4.0                    | -1.6           | -17.5 (7               | 76)      | 7.3          | -15.8          | -20.7                                   | C14–H14B···C3 ( $\pi$ )<br>C3–H3···F1                                                             | 4.000(2)/2.96/162<br>3.751(3)/2.78/149                                       |
| V<br>VI                            | -x + 2, -y + 2, -z + 1                      | 7.883                                 | -3.1                    | -0.9           | -12.1(7)               | 75)      | 4.1          | -12.1          | -16.0                                   | $C2-H2\cdots F1$                                                                                  | 3.427(3)/2.63/130                                                            |
| VI                                 | <i>x</i> -1, <i>y</i> , <i>z</i> -1         | 10.708                                | 0.2                     | -0.4           | -4.9 (5                | <i>,</i> | 1.5          | -3.8           | -0.1                                    | C15-F3···F4A-C16                                                                                  | 3.061(8)/166(2)/156(2)                                                       |
| <b>NM22</b> ( <i>F</i>             | $P2_1/c, Z' = 1)$                           |                                       |                         |                |                        |          |              |                |                                         |                                                                                                   |                                                                              |
| I                                  | x, -y + 1/2, z + 1/2                        | 7.291                                 | -24.7                   | -10.9          | -32.9 (4               | 48) 3    | 31.5         | -37.0          | -40.5                                   | $C2-H2\cdots O1$                                                                                  | 3.500(2)/2.43/173<br>3.118(2)/2.21/140                                       |
|                                    |                                             |                                       |                         |                |                        |          |              |                |                                         | C6-H6···O1                                                                                        | 3.679(3)/2.69/152                                                            |
| II                                 | -x + 1, -y + 1, -z                          | 5.937                                 | -2.9                    | -4.7           | -42.8 (8               | 35) 2    | 24.3         | -26.0          | -33.4                                   | C10-H10···C5 ( $\pi$ )<br>C10···C10 ( $\pi$ ··· $\pi$ )                                           | 3.837(2)/2.79/163<br>3.500(1)                                                |
| III                                | <i>x</i> -1, <i>y</i> , <i>z</i>            | 8.376                                 | -10.2                   | -4.6           | -30.0 (6               | 57) 2    | 20.6         | -24.2          | -30.3                                   | C4-H4···Cg2 $(\pi)$                                                                               | 3.475(1)/2.51/148                                                            |
| IV                                 | x, y, z + 1                                 | 7.976                                 | -6.2                    | -2.6           | -17.9 (6               | 57) 1    | 11.2         | -15.6          | -18.1                                   | $C12-H12\cdots F1A$                                                                               | 3.145(15)/2.25/139                                                           |
| v                                  | -x + 1, -y + 1, -z + 1                      | 8.023                                 | -3.1                    | -0.8           | -7.7 (6                | 56)      | 1.4          | -10.2          | -14.6                                   | C6–H6···F6<br>C11–H11···F5                                                                        | 3.352(2)/2.58/128<br>3.815(2)/2.91/142                                       |
|                                    |                                             |                                       |                         |                |                        | )        |              |                |                                         | C11-H11F6                                                                                         | 3.882(2)/2.99/140                                                            |
| <b>NM23</b> ( <i>F</i>             | $P2_1/c, Z' = 1$ )                          |                                       |                         |                |                        |          |              |                |                                         |                                                                                                   |                                                                              |
| I                                  | -x + 1, -y + 1, -z                          | 5.065                                 | -15.0                   | -9.3           | -58.3 (7               | 71) 4    | 43.4         | -39.1          | -50.8                                   | C10-H10···Cg1 ( $\pi$ )<br>C10···C11 ( $\pi$ ··· $\pi$ )                                          | 3.652(2)/2.61/161<br>3.331(2)                                                |
| II                                 | -x + 1, -y + 1, -z + 1                      | 7.982                                 | -18.4                   | -8.1           | -37.1 (5               | 58) 2    | 25.0         | -38.7          | -42.4                                   | $C12-H12\cdots O1$                                                                                | 3.652(2)/2.58/172                                                            |
| III                                | x, -y + 1/2, z - 1/2                        | 6.205                                 | -14.6                   | -5.6           | -27.6 (5               | 58) :    | 16.3         | -31.4          | -38.7                                   | $C2-H2\cdots O1$<br>$C5-H5\cdots O1$                                                              | 3.314(2)/2.62/121                                                            |
| IV                                 | -x + 1, $y + 1/2$ , $-z + 1/2$              | 7.260                                 | -4.6                    | -2.3           | -18.6 (7               | 73) -    | 11.3         | -14.2          | -19.0                                   | C2-H6···O1<br>C14-C14C···F5A                                                                      | 3.302(2)/2.60/122<br>3.636(2)/2.62/157                                       |
|                                    |                                             | 10 740                                | 2.0                     |                |                        |          |              |                | 10.0                                    | $C5 \cdots C12 (\pi \cdots \pi)$                                                                  | 3.457(2)                                                                     |
| v                                  | x-1, -y + 1/2, z-1/2                        | 10.749                                | -2.0                    | -0.7           | -8.4 (/                | (6)      | 3.1          | -8.0           | -10.6                                   | $C8-C8\cdots F4A$<br>$C15-F3A\cdots F6A-C16$                                                      | 3.700(3)/2.64/166<br>2.948(2)/148(1)/96(1)                                   |
| VI                                 | x + 1, y, z + 1                             | 11.682                                | -2.1                    | -0.6           | -6.7 (7                | 71)      | 3.9          | -5.5           | -6.6                                    | C3-H3···F1A<br>C15-F3A···F4A-C16                                                                  | 3.550(2)/2.48/173<br>3.004(2)/96(1)/145(1)                                   |
| ND 604 (1                          |                                             |                                       |                         |                |                        |          |              |                |                                         |                                                                                                   | 0.001(2),00(1),110(1)                                                        |
| <b>NM31</b> (F<br>I                | -x + 1, y - 1/2, -z + 1/2                   | 7.187                                 | -11.9                   | -4.9           | -32.8 (6               | 56) 1    | 19.5         | -30.1          | -36.8                                   | C4−H4···O1                                                                                        | 3.410(2)/2.42/151                                                            |
|                                    |                                             |                                       |                         |                |                        |          |              |                |                                         | $\begin{array}{c} C4 \cdots C1 \ (\pi \cdots \pi) \\ C3 \cdots C6 \ (\pi \cdots \pi) \end{array}$ | 3.665(2)<br>3.656(2)                                                         |
| II                                 | <i>x</i> , <i>y</i> -1, <i>z</i>            | 7.940                                 | -12.5                   | -3.6           | -17.2 (5               | 52) 1    | 11.3         | -22.1          | -26.0                                   | C9-H9···O1                                                                                        | 3.508(2)/2.54/149                                                            |
|                                    |                                             |                                       |                         |                |                        |          |              |                |                                         | C6–H6····F3A<br>C12–H12···F1A                                                                     | 3.229(7)/2.38/135<br>3.699(6)/2.72/150                                       |
| Ш                                  | -r - v - z + 1                              | 9.001                                 | -55                     | -15            | -187(7                 | 73)      | 62           | -196           | -24 9                                   | C14-H14A···F1A<br>C11···C11 $(\pi \cdot \cdot \cdot \pi)$                                         | 3.656(7)/2.74/143<br>3.595(2)                                                |
|                                    | <i>x</i> , <i>y</i> , <i>z</i> , <u>r</u>   | 5.001                                 |                         | 1.0            | 10.7 (7                | >        |              | 19.0           | 21.9                                    | $C14-H14B\cdots F2A$                                                                              | 3.600(6)/2.90/123                                                            |
| IV                                 | x, -y + 1/2, z + -1/2                       | 8.143                                 | -5.5                    | -3.3           | -20.1 (7               | 70) 1    | 10.8         | -18.2          | -19.5                                   | C11–H11···O1<br>C5–H5···F6                                                                        | 3.692(2)/2.76/145<br>3.244(2)/2.52/123                                       |
| V                                  | -r v + 1/2 - r + 1/2                        | 7 937                                 | -6.5                    | _2 1           | _15.2 (6               | 54)      | 96           | _14.2          | _10 /                                   | C6-H6···F6<br>C14-H14C···Co2 $(\pi)$                                                              | 3.280(2)/2.61/120<br>3.939(2)/3.05/139                                       |
| VI                                 | -x, y + 1/2, -z + 1/2<br>-x + 1, -y, -z + 1 | 8.313                                 | -0.7                    | -0.8           | -9.6 (8                | 36)      | 1.9          | -9.2           | -13.4<br>-13.8                          | $C4-H4\cdots F2A$                                                                                 | 3.614(5)/2.80/133                                                            |
| VII                                | x, -y-1/2, z- + 1/2                         | 9.458                                 | -0.0                    | -0.3           | -6.3 (9                | Ə5)      | 1.7          | -4.9           | -7.6                                    | C15–F3A···F6–C16                                                                                  | 2.918(2)/134(1)/111(1)                                                       |
| NM33 (F                            | $P\bar{1}, Z' = 2)$                         | 7.250                                 | 17.0                    | 0.1            | 20.0 (/                | co) (    | 06.4         | 27.0           | 40.0                                    | C0 110 O1                                                                                         | 2 5(2(1))2 40/172                                                            |
| II $1 \cdots 1$<br>II $1 \cdots 2$ | -x + 1, -y + 1, -z<br>-x + 1, -y + 1, -z    | 4.361                                 | -17.3<br>-10.6          | $-8.1 \\ -8.0$ | -38.8 (6)<br>-57.2 (7) | 75) 4    | 20.4<br>40.6 | -37.8<br>-35.3 | -40.8<br>-49.8                          | $C3'-H3'\cdots Cg1(\pi)$                                                                          | 3.664(2)/2.63/159                                                            |
|                                    |                                             |                                       |                         |                |                        |          |              |                |                                         | C9–H9···C8' $(\pi)$<br>C8···C3' $(\pi \cdot \cdot \cdot \pi)$                                     | 3.648(1)/2.95/122<br>3.486(2)                                                |
|                                    |                                             | c                                     |                         | -              | cc = ′                 |          | 46 -         | 25             | a= 4                                    | $C9 \cdots C3' (\pi \cdots \pi)$                                                                  | 3.311(2)                                                                     |
| $111 \ 2 \cdots 2$                 | -x + 1, -y + 1, -z + 1                      | 6.426                                 | -12.7                   | -3.8           | -32.5 (6               | 56) 1    | 16.0         | -33.0          | -37.1                                   | $C6'-H6'\cdots F2A'$<br>$C6'-H6'\cdots F1A'$                                                      | 3.772(10)/2.72/166<br>3.475(7)/2.72/127                                      |
|                                    |                                             |                                       |                         |                |                        |          |              |                |                                         | $C5'-H5'\cdots F1A'$<br>$C11'\cdots C11'(\pi\cdots\pi)$                                           | 3.544(8)/2.88/120<br>3.547(2)                                                |
| IV $1 \cdots 2$                    | <i>x</i> , <i>y</i> , <i>z</i>              | 8.192                                 | -21.1                   | -6.9           | -19.4 (4               | 41) 1    | 19.2         | -28.2          | -29.3                                   | C8'-H8'···O1                                                                                      | 3.370(2)/2.30/169                                                            |
|                                    |                                             |                                       |                         |                |                        |          |              |                |                                         | $C2'-H2' \cdot \cdot \cdot O1$                                                                    | 3.285(2)/2.42/136                                                            |

NJC

| Pair/<br>motif <sup>a</sup>  | Symmetry code                     | Centroid-<br>centroid<br>distance (Å) | $E_{ m Coul}$ | $E_{ m Pol}$ | $E_{\mathrm{Disp}}^{\ \ b}$ | E <sub>Rep</sub> E <sub>To</sub> | DFT-D2/<br>B97-D<br>(BSSE<br>t corrected) | Possible involved interactions <sup>c</sup>                   | Geometry $(\text{\AA}^{\circ})$<br>$D(\text{D}\cdots\text{A}),$<br>$d(\text{H}\cdots\text{A}),$<br>$\angle$ D-H $\cdots$ A |
|------------------------------|-----------------------------------|---------------------------------------|---------------|--------------|-----------------------------|----------------------------------|-------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| V 1···2                      | -x, -y + 1, -z                    | 8.726                                 | -8.3          | -4.7         | -26.4 (67)                  | 17.6 - 2                         | 1.9 - 28.2                                | C14-H14C···O1′                                                | 3.636(2)/2.80/134                                                                                                          |
|                              |                                   |                                       |               |              |                             |                                  |                                           | C14-H14B···C2'( $\pi$ )                                       | 3.502(2)/2.63/138                                                                                                          |
| VI 1···1                     | -x + 1, -v, -z                    | 7.963                                 | -5.6          | -2.4         | -28.8(78)                   | 17.4 -1                          | 9.4 - 29.7                                | $C11\cdots C5 (\pi\cdots\pi)$<br>$C4\cdots C5 (\pi\cdots\pi)$ | 3.541(1)                                                                                                                   |
|                              |                                   |                                       |               |              |                             |                                  |                                           | C16···C6 $(\pi \cdot \cdot \cdot \pi)$                        | 3.615(1)                                                                                                                   |
| VII $1 \cdot \cdot \cdot 2$  | x + 1, y, z                       | 10.529                                | -14.9         | -5.0         | -10.5(35)                   | 15.5 - 1                         | 5.0 - 14.6                                | C3-H3···O1′                                                   | 3.167(1)/2.20/148                                                                                                          |
|                              |                                   |                                       |               |              |                             |                                  |                                           | $C14'-H14F\cdots F5$                                          | 3.542(2)/2.81/125                                                                                                          |
| VIII $2 \cdot \cdot \cdot 2$ | 2 x - 1, y, z                     | 8.998                                 | -6.3          | -1.1         | -10.3(58)                   | 3.8 - 1                          | 4.0 - 17.7                                | $C14'-H14D\cdots F3A'$                                        | 3.275(11)/2.75/110                                                                                                         |
|                              |                                   |                                       |               |              |                             |                                  |                                           | C15'-F3A'···C13'=O1'                                          | 3.179(10)/177                                                                                                              |
| IX $1 \cdots 1$              | x - 1, y, z                       | 8.998                                 | -3.1          | -1.5         | -11.6(72)                   | 6.1 - 1                          | 0.0 - 13.1                                | $C12-H12\cdots F6$                                            | 3.397(2)/2.43/148                                                                                                          |
|                              |                                   |                                       |               |              |                             |                                  |                                           | C14−H14B···F6                                                 | 3.311(2)/2.77/111                                                                                                          |
| $X \ 1{\cdots}{\cdot}1$      | -x, -y, -z-1                      | 11.332                                | -4.0          | -0.7         | -8.4(64)                    | 3.2 - 1                          | 0.0 - 11.5                                | C11-H11···F6                                                  | 3.762(1)/2.78/151                                                                                                          |
|                              |                                   |                                       |               |              |                             |                                  |                                           | $C15-F2 \cdot \cdot \cdot F3-C15$                             | 3.009(1)/130(1)/99(1)                                                                                                      |
| XI $1 \cdot \cdot \cdot 2$   | -x + 1, -y, -z                    | 8.377                                 | -4.4          | -1.5         | -11.9(67)                   | 7.9 -1                           | 0.0 - 13.8                                | $C14'-H14F\cdots F6$                                          | 3.509(2)/2.48/160                                                                                                          |
|                              |                                   |                                       |               |              |                             |                                  |                                           | $C14'-H14F\cdots F4$                                          | 3.654(2)/2.76/140                                                                                                          |
| XII $1 \cdots 2$             | <i>x</i> , <i>y</i> , <i>z</i> -1 | 10.301                                | -3.8          | -1.1         | -7.9(62)                    | 4.9 –                            | 8.0 - 9.5                                 | $C11'-H11' \cdots F1$                                         | 3.210(2)/2.54/119                                                                                                          |
|                              |                                   |                                       |               |              |                             |                                  |                                           | $C12'-H12'\cdots F1$                                          | 3.262(2)/2.66/115                                                                                                          |
|                              |                                   |                                       |               |              |                             |                                  |                                           | $C12'-H12'\cdots F2$                                          | 3.899(1)/2.90/153                                                                                                          |
| XIII $2 \cdot \cdot \cdot 2$ | 2 -x + 1, -y + 2, -z + 1          | 9.320                                 | -2.9          | -0.4         | -5.6(63)                    | 1.8 -                            | 7.2 -10.7                                 | $C5'-H5'\cdots F5A'$                                          | 3.682(7)/2.78/141                                                                                                          |
| XIV $1 \cdots 1$             | -x+2, -y, -z                      | 13.180                                | 1.1           | -0.2         | -4.7(96)                    | 2.7 -                            | 1.2 - 1.5                                 | C16-F5···F6-C16                                               | 3.012(1)/139(1)/95(1)                                                                                                      |
|                              |                                   |                                       |               |              |                             |                                  |                                           | C16-F5···F5-C16                                               | 2.889(1)/101(1)/101(1)                                                                                                     |

<sup>*a*</sup> Arranged in descending order of energy. <sup>*b*</sup> Values in parenthesis represent % dispersion energy contribution (% $E_{disp}$ ) towards the total stabilization, % electrostatic contribution (% $E_{elec}$ ) = 100 – % $E_{disp}$ . <sup>*c*</sup> Cg1 and Cg2 refer to the centre of gravity for the phenyl rings C1–C6 and C7–C12, respectively.



Fig. 1 (a) and (b) ORTEP of **NM10** and **NM11** drawn with 50% ellipsoidal probability with an atom numbering scheme displaying two possible conformations in this class of compounds. A similar numbering scheme was followed in all the structures. Only the major component of the disordered part of the molecule is shown for clarity. The dotted lines indicates the presence of an intramolecular  $C(sp^3)$ -H···O=C hydrogen bond. ORTEPs of the other molecules are shown in Fig. S5 in the ESI.† (c) Overlay of all the structures in *cis*-geometry, drawn with Mercury 3.0. (d) Molecular diagram of related molecules reported in CSD with their reference code. Dotted lines indicate the presence of an intramolecular C-H···O=C hydrogen bond.

respectively, which primarily involves  $C-H \cdots \pi$  hydrogen bonds. Similar trends were observed in the other motifs as well. Motifs involving  $C-H \cdots \pi$  hydrogen bonds (**III**, **VI**, **VII**) display a dispersion contribution greater than 72%, the highest being in the case of motif **VI** (97%), wherein no interactions less than the sum of the van der Waals radii<sup>66</sup> were observed. Furthermore, in the case of motifs **IV** and **V**, wherein weak C–H···O hydrogen bonds are present, the dispersion contribution decreases to 62%. Motif **IV** was observed to be utilized in the formation of a molecular chain along the *c*-axis (using the *c*-glide plane perpendicular to



**Fig. 2** (a) Selected molecular pairs along with their PIXEL interaction energy in **NM00**. Roman numbers in red indicate the molecular pairs (in Table 5). (b) Packing of molecules *via* the utilization of weak C-H···O=C and C-H··· $\pi$  hydrogen bonds in **NM00**. The molecular pairs in Table 5 are indicated with Roman numbers in red in all the figures in this study. (c) Weak C-H···O=C and C-H··· $\pi$  hydrogen bonds in the packing of molecules in **NM00** along the crystallographic *c*-axis.

the *a*-axis) and such chains are interconnected with motifs V and VI [Fig. 2(c)].

#### N-Methyl-N-phenyl-3-(trifluoromethyl)benzamide (NM02)

Compound **NM02** crystallizes in the monoclinic centrosymmetric *C2/c* space group with two molecules in the asymmetric unit. The asymmetric unit (motif **V**, I.E = -22.4 kJ mol<sup>-1</sup>, Table 5) is held *via* a short C(sp<sup>2</sup>)–H···O=C (2.45 Å/141°; involving acidic hydrogen, H2') and a short type II C(sp<sup>3</sup>)–F···F–C(sp<sup>3</sup>) contact [2.823(2) Å, 98(1)°, 158(1)°]. The presence of a  $\sigma$ -hole on the fluorine atoms in the CF<sub>3</sub> group has recently been revealed and is responsible for the formation of such interactions in the crystal packing.<sup>36</sup> It was also well established that type II halogen– halogen contacts may be considered as a halogen bond.<sup>67,68</sup> It can be noted here that the electrostatic contribution (coulombic + polarization) towards the total stabilization energy is 32% between the two interacting molecules in the asymmetric unit.

Furthermore, the analysis of the molecular pairs extracted [Fig. 3(a)] from the crystal packing of **NM02** revealed that

among the top six most stabilized motifs, five consists (motifs **I**, **III–VI**) of the presence of weak C–H···O=C hydrogen bonds with stabilization energies ranging from 17.6 kJ mol<sup>-1</sup> to 35.1 kJ mol<sup>-1</sup> with substantial electrostatic contributions (in the range of 31 to 45%, Table 5). The highest stabilized (with a 43% electrostatic contribution) molecular motif was **I**, which included the presence of dimeric bifurcated weak C–H···O=C hydrogen bonds with donor atoms from two different C–H bonds [C(sp<sup>2</sup>)–H and C(sp<sup>3</sup>)–H] in different electronic environments. Motifs **II**, **III** and **IV** were observed to provide similar stabilization (I.E: -31.5, -31.1 and -30.0 kJ mol<sup>-1</sup>, respectively) but differed in the nature of the participating interact *via* the



**Fig. 3** (a) Selected molecular pairs, along with their PIXEL interaction energy in **NM02**. C atoms are in purple and represent the second molecule in the asymmetric unit. (b) Packing of molecules in **NM02** with the presence of weak C-H···O=C, C-H···F and C-H···π hydrogen bonds. (c) Part of the crystal packing down the *ab* plane in **NM02**, displaying the presence of weak C-H···O=C and C-H···F-C(sp<sup>3</sup>) hydrogen bonds along with C(sp<sup>3</sup>)-F···F-C(sp<sup>3</sup>) interactions.

existence of C-H··· $\pi$  hydrogen bonds and  $\pi$ ··· $\pi$  interactions, with the % contribution from the dispersion being the highest (77%) among all the motifs. Motif III involved one short  $C(sp^2)-H\cdots O = C$  (2.46 Å/144°) and two  $C(sp^2)-H\cdots F-C(sp^3)$ hydrogen bonds (2.43 Å/138°; 2.65 Å/126°); the former being significantly short. The dispersion contribution was 59% with this being a significant contribution and comparable to related weak H-bonds. Furthermore, motif IV, which involved one  $C(sp^2)$ -H···O=C and a short C-H··· $\pi$  hydrogen bond (2.65 Å/ 157°, Table 5), showed a dispersion contribution (69%) in between that of motifs II and III. Two bifurcated  $C(sp^2)-H\cdots O=C$  along with  $C(sp^3)$ -H···F-C(sp<sup>3</sup>) were observed to hold the molecules in motif VI (I.E = -18.2 kJ mol<sup>-1</sup>) with the highest (45%) electrostatic contribution among all the motifs. Furthermore, in the case of motif **VII** (I.E = -14.7 kJ mol<sup>-1</sup>) and **VIII** (I.E = -14.5 kJ mol<sup>-1</sup>), wherein C-H··· $\pi$  hydrogen bonds and  $\pi$ ··· $\pi$  interactions are present, the total stabilization was dominated from the contribution due to the dispersion interactions (72 and 69%, respectively). It is to be noted that the crystal packing in NM02 was also stabilized, albeit less, by the presence of weak  $C(sp^2/sp^3)-H\cdots F-C(sp^3)$  hydrogen bonds (motifs IX-XI). Motif IX (I.E = -10.1 kJ mol<sup>-1</sup>) showed the presence of one bifurcated  $C(sp^2)-H\cdots F-C(sp^3)$  and a short and directional C(sp<sup>3</sup>)-H···F-C(sp<sup>3</sup>) (2.51 Å/160°) hydrogen bond with the electrostatic contribution being 41% of the total stabilization. Motifs **X** and **XI** [involving bifurcated  $C(sp^2)$ -H···F- $C(sp^3)$  hydrogen bonds], which were observed to contribute similar stabilization  $(-7.1 \text{ and } -7.0 \text{ kJ mol}^{-1})$  towards the crystal packing, contain a 32% contribution from electrostatics. The stabilization energy for a C-H···F hydrogen bond was reported to be -0.40 kcal mol<sup>-1</sup>  $(-1.6 \text{ kJ mol}^{-1})$  by an *ab initio* theoretical calculation in the molecular crystal.<sup>69</sup> It was observed in the same study that the stabilization energy for a C-H···F hydrogen bond was mainly dominated by electrostatic and dispersion components with the latter being more prominent. Fig. 3(b) and (c) display the packing of molecules in NM02 with the utilization of such weak interactions.

#### N-Methyl-N-phenyl-4-(trifluoromethyl)benzamide (NM03)

Compound NM03 crystallizes in the monoclinic centrosymmetric  $P2_1/c$  space group with Z' = 2. A bifurcated weak  $C(sp^3)/(sp^2)-H\cdots O = C$  hydrogen bond [this includes a short and highly directional  $C(sp^2)$ -H···O=C; 2.26 Å, 161°, Table 5] along with  $\pi \cdots \pi$  interactions were observed to link the molecules in the asymmetric unit. This molecular motif has the highest stability [motif I, I.E = -39.3 kJ mol<sup>-1</sup>, Fig. 4(a)] in the crystal packing of NM03 [Fig. 4(b) and (c)] with the electrostatic contribution being 43%. Although motif I primarily consists of  $\pi \cdots \pi$  interactions, a relatively high electrostatic contribution towards the total stabilization (in comparison to related molecular motifs, wherein C–H··· $\pi$  or  $\pi$ ··· $\pi$  are present, the electrostatic contribution was observed to be less than 30%) is due to the presence of short  $C(sp^3)/(sp^2)-H\cdots O = C$  hydrogen bonds. Similarly, in the case of the second most stabilized molecular pair (motif II, I.E =  $-35.1 \text{ kJ mol}^{-1}$ ), wherein the molecules are linked with a short  $C(sp^2)$ -H···O=C (2.45 Å, 139°) and two (including one at a short distance) directional  $C(sp^2)-H\cdots\pi$ 



Fig. 4 (a) Selected molecular pairs, along with their PIXEL interaction energy in **NM03**. C atoms are in purple and represent the second molecule in the asymmetric unit. (b) Packing of molecules down the (101) plane in **NM03**, displaying the presence of weak C-H···O=C, C-H··· $\pi$  and C-H···F-C(sp<sup>3</sup>) hydrogen bonds. (c) Part of the crystal packing displaying motifs I and III (Table 5) connected *via* weak C(sp<sup>2</sup>)-H···F-C(sp<sup>3</sup>) hydrogen bonds down the (110) plane in **NM03**.

(2.49 Å, 159°; 2.80 Å, 154°) hydrogen bonds, the electrostatic contribution is 35% [Table 5]. It can be noted here that motif I [consisting of highly short and directional  $C(sp^2)-H\cdots O$ ] has approximately 6 kJ mol<sup>-1</sup> more coulombic contribution than that in motif II, whereas the opposite situation was observed in the case of the dispersion contribution with a similar magnitude of approximately 6 kJ mol<sup>-1</sup>. Motif III (I.E = -27.6 kJ mol<sup>-1</sup>) and **IV** (I.E = -23.6 kJ mol<sup>-1</sup>) are characterized by the presence of weak  $C(sp^2)$ -H··· $\pi$  and  $\pi$ ··· $\pi$  interactions, and the dispersion energy contribution in them exceeds 75% and 70% respectively. Furthermore, a short and highly directional C(sp<sup>2</sup>)–H···O hydrogen bond (2.33 Å, 173°, motif V) was observed to provide 20.3 kJ mol<sup>-1</sup> stabilization towards the crystal packing in NM03 with the contribution from electrostatics being 42%. Similar trends were observed in the case of motifs VI and VII [Fig. 4(a)], wherein the molecules are held *via* the presence of  $C(sp^2)$ -H···O hydrogen bonds, along with the other interactions (Table 5). Moreover, the packing of molecules in NM03 were also observed

to be stabilized by the presence of weak  $C(sp^2)-H\cdots F-C(sp^3)$  hydrogen bonds (motifs **VIII–XII**, except **X**), which consists of long  $C(sp^2)-H\cdots O(2.96 \text{ Å}/159^\circ)$  with stabilization energies ranging from 9.2 kJ mol<sup>-1</sup> to 5.6 kJ mol<sup>-1</sup> with  $\% E_{elec}$  in the range from 27% to 46% (Table 5). Fig. 4(c) shows that the highly stabilized motif **I** and **III** are interlinked *via* the presence of weak  $C(sp^2)-H\cdots F-C(sp^3)$  hydrogen bonds down the (110) plane in the molecular packing of **NM03**.

#### N-Methyl-N-(2-(trifluoromethyl)phenyl)benzamide (NM10)

Compound NM10 crystallizes in the orthorhombic centrosymmetric *Pbca* space group with Z = 8. Molecular pairs extracted from the crystal packing in NM10 have been highlighted [Fig. 5(a)] along with their interaction energies. The highest stabilized molecular motif I (I.E = -36.2 kJ mol<sup>-1</sup>) is similar to motif II in NM02 and motif III in NM03 [Fig. 5(a)]. As in the previous case, the molecules are linked *via* the presence of a short C–H··· $\pi$  with % $E_{disp}$  = 60, which is 15–17% less than in the previous case (Table 5). This may be due to the absence of  $C \cdots C$  ( $\pi \cdots \pi$ ) interactions, in the present case, at a distance less than 4 Å. It can be observed, on viewing down the crystallographic *bc* plane [Fig. 5(b)], that the molecular chains formed with the utilization of motif III (I.E =  $-20.6 \text{ kJ mol}^{-1}$ ) and motif VI (I.E = -9.6 kJ mol<sup>-1</sup>) along the *b*-axis are interconnected with motifs II (I.E =  $-28.1 \text{ kJ mol}^{-1}$ ) and V (I.E =  $-11.7 \text{ kJ mol}^{-1}$ ). Motif II, consists of a short  $C(sp^3)$ -H···O=C (2.59 Å, 130°) and  $C(sp^2)$ -H··· $\pi$  at longer distances [% $E_{disp}$  being 65%]. Furthermore, motifs III and IV, which involve weak  $C-H \cdots F-C(sp^3)$ hydrogen bonds at a distance greater than the sum of the van der Waals radii of H and F (2.67 Å), were observed to provide more stabilization in comparison to motifs V and VI, which consist of a short  $C(sp^2)$ -H···O=C hydrogen bond (Table 5). Differences among them appear in the nature of the individual



**Fig. 5** (a) Molecular pairs, along with their interaction energies. extracted from the crystal packing in **NM10**. (b) Packing of molecules down the *bc* plane *via* weak C-H···O=C, C-H··· $\pi$  and C-H···F-C(sp<sup>3</sup>) hydrogen bonds in **NM10**.

components of the total stabilization energy. In the case of **III** and **IV**, this is of a dispersive origin (more than 62%), while motif **V** (% $E_{elec} = 50$ ) and motif **VI** (% $E_{elec} = 45$ ) show a very significant contribution from electrostatics. In the crystal packing of **NM10**, a less stabilized molecular motif (motif **VII**, -6.9 kJ mol<sup>-1</sup>), involving weak C(sp<sup>2</sup>)-H··· $\pi$  hydrogen bond, was also observed, with % $E_{disp} = 84$ .

#### N-Methyl-N-(4-(trifluoromethyl)phenyl)benzamide (NM30)

Compound NM30 crystallizes in the centrosymmetric monoclinic space group  $P2_1/c$  with two molecules in the asymmetric unit. The asymmetric unit was observed to be a highly stabilized molecular pair (I.E =  $-25.6 \text{ kJ mol}^{-1}$  with  $\% E_{\text{disp}} = 65$ ) in the crystal packing involving weak C(sp<sup>2</sup>)-H···O=C and  $C(sp^2)$ -H··· $\pi$  hydrogen bonds, along with the presence of a  $\pi \cdots \pi$  interaction. The molecular motifs **II** to **V** were observed to provide similar stabilization (Table 5, I.E of approximately 18.2 to 18.8 kJ mol<sup>-1</sup>) towards the crystal packing. Among these, motifs II and III were found to be involved in the formation of a short  $C(sp^2)$ – $H \cdots O = C$  hydrogen bond (2.53 Å, 133°; 2.49 Å, 136°) with an electrostatic contribution of 41% and 42%, respectively. Motifs IV and V were involved in the formation of a weak  $C(sp^2)$ -H···F bond along with the  $\pi \cdot \cdot \pi$  interaction, and hence show a high dispersion contribution (77 and 76%, respectively). The weak  $C(sp^2)$ -H $\cdots \pi$  hydrogen bond, along with the  $\pi \cdots \pi$  interactions, were observed to connect to two symmetry independent molecules in the crystal packing in motif **VI** (I.E = -17.0 kJ mol<sup>-1</sup> with % $E_{disp}$  of 74). Moreover, the dimeric C(sp<sup>3</sup>)-F··· $\pi$  interaction was found to link two molecules in the crystal packing with motifs **VII** (I.E = -17.0 kJ mol<sup>-1</sup>) and VIII of similar stabilization (Table 5), together with a substantial dispersion contribution (more than 70%). The interaction energy of the  $C(sp^3)$ -F··· $\pi$  interaction (for one interaction, the approximate value will be -8.5 kJ mol<sup>-1</sup>; herein, a phenyl group, which is involved in the interaction, is attached with an electron withdrawing –CF<sub>3</sub> group) is similar to the value for the C–F··· $\pi_{\rm F}$ interaction  $(-2.43 \text{ kcal mol}^{-1} \text{ for the interaction of fluoro-}$ methane with hexafluorobenzene) by MP2/aug-cc-pVDZ calculation.<sup>70</sup> In motifs IX and X (I.E being -16.0 and 15.5 kJ mol<sup>-1</sup>, respectively), a weak  $C(sp^2)$ -H···F hydrogen bond along with a  $C(sp^3)$ -F···C=O interaction were observed to connect the molecules. Furthermore, weak C(sp<sup>2</sup>)-H···O=C and C(sp<sup>3</sup>)-H···F-C(sp<sup>3</sup>) hydrogen bonds were observed to be involved in two similarly stabilized molecular pairs (motifs XI and XII) in the crystal packing. A short and directional  $C(sp^2)$ -H··· $\pi$  (2.73 Å, 152°) along with weak  $C(sp^2)$ -H···O=C hydrogen bonds were recognized to be involved in connecting the two symmetry independent molecules in the crystal packing in motif XIII (I.E =  $-12.6 \text{ kJ mol}^{-1}$ , with %*E*<sub>disp</sub> = 63%). Moreover, type I C(sp<sup>3</sup>)- $F \cdots F - C(sp^3)$  interactions were observed to connect the molecules in the weakly stabilized molecular motifs XIV and XV with a positive coulombic contribution. The stabilization in these motifs is mainly of a dispersion origin (more than 94%, Table 5) with the overall stabilization energy being  $1.8 \text{ kJ mol}^{-1}$ . This stabilization energy is comparable with the value reported in a recent analysis (by an ab initio method and by symmetry-adapted



Fig. 6 (a) Selected molecular pairs in **NM30** along with their interaction energies. (b) Packing of molecules down the *ac* plane *via* weak  $C(sp^2)$ – $H\cdots O$ —C,  $C(sp^2)$ – $H\cdots F$ – $C(sp^3)$ ,  $C(sp^2)$ – $H\cdots \pi$  hydrogen bonds and  $\pi \cdots \pi$  interactions in **NM30**.

perturbation theory (SAPT)) on the nature of C-F···F-C for the all unique dimers extracted from the crystal structure of CF<sub>4</sub>, C<sub>2</sub>F<sub>4</sub> and C<sub>6</sub>F<sub>6</sub>.<sup>71</sup> From the SAPT analysis, it was observed that the total stabilization energy was mainly dominated by the dispersion energy component and the electrostatic component can be stabilizing or destabilizing depending on the orientation of the interacting dimers. Fig. 6(b) represents the packing of molecules in **NM30** down the crystallographic *ac* plane.

#### *N*-Methyl-2-(trifluoromethyl)-*N*-(2-(trifluoromethyl)phenyl)benzamide (NM11)

Compound **NM11** crystallizes in a centrosymmetric monoclinic space group  $P2_1/c$  with Z = 4. Unlike other molecules in this series, the molecular structure is observed to be in the *trans* conformation with C=O and N-C bonds oriented opposite to each other. This may be due to the minimization of the steric effect when two CF<sub>3</sub> groups are present at the *ortho* position of the two phenyl rings in the molecule. (CH<sub>3</sub>)N-CO was observed to be disordered at two positions with the occupancy ratio of 0.939(3): 0.061(3) [modeled with PART command in the SHELXL 2013 at two orientations: 'A' (for higher occupancy) and 'B']. Selected molecular pairs extracted from the crystal packing are given in Fig. 7(a). A dimeric molecular motif, consisting of a pair of short and directional C(sp<sup>2</sup>)-H···O=C



Fig. 7 (a) Selected molecular pairs extracted from the crystal packing in **NM11** along with their interaction energies. (b) Molecular network formed with the utilization of weak  $C(sp^2)-H\cdots O=C$ ,  $C(sp^2)-H\cdots F-C(sp^3)$  hydrogen bonds and  $\pi\cdots\pi$  interactions in **NM11**. (c) Packing of molecules *via*  $C(sp^2)/(sp^3)-H\cdots F-C(sp^3)$  hydrogen bonds in **NM11**.

 $(2.46 \text{ Å}, 160^{\circ})$  and  $C(sp^2) - H \cdots F - C(sp^3)$  (2.49 Å, 144°) hydrogen bonds along with offset  $\pi \cdot \cdot \cdot \pi$  stacking interactions (motif I, I.E = -40.8 kJ mol<sup>-1</sup>), was observed to provide the highest stabilization towards the crystal packing. It is to be noted here that the  $\&E_{elec}$  contribution was 54% with a coulombic contribution of 42%. The next two stabilized motifs (II and III) were involved in the formation of  $\pi \cdots \pi$  stacking interactions between pair of molecules, the I.E being -22.0 and -17.8 kJ mol<sup>-1</sup>, respectively, with the stabilization being mainly dispersive in origin. It was observed that with an increase in the interacting distance of the Ph-ring (from motif II to motif III), the dispersion contribution towards the total stabilization increased from 74% to 94% with no stabilization from coulombic (positive coulombic contribution, Table 5) in the case of the latter. Furthermore, motifs IV and V were observed to contribute similar stabilization towards the crystal packing  $(-16.7 \text{ kJ mol}^{-1} \text{ and } -16.6 \text{ kJ mol}^{-1})$  but were different in the nature of the involved interactions. Motif IV

appeared to be connected via a long  $C(sp^2)$ -H···F-C(sp<sup>3</sup>) hydrogen bond with  $\% E_{elec}$  being 26%, whereas in motif V, the molecules were connected with short C(sp<sup>2</sup>)-H···O=C (2.35 Å, 144°) and  $C(sp^2)$ -H···F- $C(sp^3)$  (2.65 Å, 154°) hydrogen bonds. As expected, this results in the increase of the  $\% E_{elec}$  contribution to 59% with 45% coulombic contribution (Table 5). The packing of molecules in NM11 was recognized to involve the formation of molecular networks wherein motif I was connected with motif V [Fig. 7(b)]. Moreover, motif VI [consisting of the pair of weak  $C(sp^3)$ -H···F- $C(sp^3)$  and a C-H··· $\pi$  hydrogen bonds at distances longer than the sum of the van der Waals radii of the involved atoms, I.E = -15.8 kJ mol<sup>-1</sup>, %*E*<sub>disp</sub> = 93%] generate a molecular chain with the utilization of a 21-screw along the b-axis [Fig. 7(c)]. Such a chain was observed to be linked *via* the weakly stabilized molecular motif VII (I.E = 5.3 kJ mol<sup>-1</sup>,  $\% E_{disp}$  = 69%) down the *bc* plane, which involved two weak  $C(sp^2)-H\cdots F-C(sp^3)$ (2.58 Å, 156°; 2.78 Å, 147°) hydrogen bonds (Table 5).

#### *N*-Methyl-3-(trifluoromethyl)-*N*-(2-(trifluoromethyl)phenyl)benzamide (NM12)

Compound NM12 crystallizes in the monoclinic  $P2_1/c$  space group with Z = 4. The analysis of the molecular pairs extracted from the crystal packing [Fig. 8(a)] showed that the highest stabilized molecular motif I [ $-36.2 \text{ kJ mol}^{-1}$  with % $E_{\text{disp}} = 80\%$ ; involves  $C(sp^2)$ -H··· $\pi$  hydrogen bonds and  $\pi$ ··· $\pi$  interactions] appears to be a robust motif in this series of compounds as also previously recognized in NM02, NM03 and NM10. However, it can also be noted here that this was not observed in the molecular packing of NM00. The packing of molecules down the bc plane in NM12 displays the formation of a molecular chain along the crystallographic *c*-axis *via* motif **III** (I.E =  $22.3 \text{ kJ mol}^{-1}$ ), which was observed to be interlinked with motif II (I.E = -25.6 kJ mol<sup>-1</sup>) and motif V (I.E =  $-12.1 \text{ kJ mol}^{-1}$ ) [Fig. 8(b)]. Motif II consists of two short and directional C(sp<sup>2</sup>)-H···O=C hydrogen bonds (2.32 Å, 160°; 2.57 Å, 153°) with a 48% contribution from electrostatics (Table 5). In the case of motif **III** (I.E =  $-25.6 \text{ kJ mol}^{-1}$ ; %*E*<sub>elec</sub> = 41), a weak  $C(sp^2)$ -H···O=C along with a  $C(sp^2)$ -H···F-C(sp<sup>3</sup>) hydrogen bond was observed to connect the molecules, displaying a slightly less stabilization and electrostatic contribution than motif II (Table 5). Furthermore, dimeric  $C(sp^2)-H\cdots F-C(sp^3)$  hydrogen bonds (2.63 Å, 130°) were recognized to link the molecules in motif V (with  $\% E_{\text{disp}} = 75\%$ ). Moreover, a weak C(sp<sup>2</sup>)-H··· $\pi$  along with a weak  $C(sp^2)$ -H···F- $C(sp^3)$  hydrogen bond (2.78 Å, 149°) were also observed to stabilize the crystal packing in NM12 (motif IV,  $-15.8 \text{ kJ mol}^{-1}$ ; % $E_{\text{disp}} = 76$ %). A weakly stabilized molecular pair (motif VI, I.E = -3.8), involving weak C(sp<sup>2</sup>)-H···F-C(sp<sup>3</sup>) hydrogen bonds along with a type I  $C(sp^3)$ -F···F- $C(sp^3)$  interaction (Table 5), were also recognized in the crystal packing.

#### *N*-Methyl-3-(trifluoromethyl)-*N*-(3-(trifluoromethyl)phenyl)benzamide (NM22)

Compound **NM22** crystallizes in the centrosymmetric monoclinic space group  $(P2_1/c)$  with Z = 4. The molecular pairs, extracted from the crystal packing, are presented in Fig. 9(a). Three possible short and/or directional C(sp<sup>2</sup>)–H···O=C (2.21 Å, 140°; 2.43 Å, 173°; 2.69 Å, 152°) hydrogen bonds, with motif **I**,



Fig. 8 (a) Displaying molecular pairs extracted from molecular packing in **NM12**. (b) Packing of molecules down the *bc* plane with the utilization of weak  $C(sp^2)-H\cdots O=C$  and  $C(sp^2)-H\cdots F-C(sp^3)$  hydrogen bonds in **NM12**.

involving the acidic hydrogen atoms, form the most stabilized  $(I.E = -37.0 \text{ kJ mol}^{-1})$  pair in the crystal packing with the total stabilization being a 52% electrostatic (coulombic + polarization) contribution (Table 5). Motif II (I.E = 26 kJ mol<sup>-1</sup>), being the most common in this series of structures and consisting of a weak C(sp<sup>2</sup>)-H··· $\pi$  hydrogen bond and  $\pi$ ··· $\pi$  interaction, was observed to provide stabilization to the crystal packing, which was primarily of a dispersive (85%) origin. The packing of molecules in NM22 was observed to form a zig-zag chain via motif I with the utilization of a *c*-glide perpendicular to the *b*-axis. Such a chain is connected via the utilization of motifs III and IV [Fig. 9(b)] down the *bc* plane. Motif **III** (I.E =  $-24.2 \text{ kJ mol}^{-1}$ ) was found to involve a short C(sp<sup>2</sup>)-H··· $\pi$  (2.51 Å, 148°) along with a weak  $C(sp^2)$ -H···F-C(sp<sup>3</sup>) hydrogen bond, whereas motif **IV** (I.E =  $-15.6 \text{ kJ mol}^{-1}$ ) consisted of two C(sp<sup>2</sup>)-H···F-C(sp<sup>3</sup>) interactions. Both the motifs showed a similar contribution (67%) from dispersion towards the total stabilization. Moreover, a pair of bifurcated weak  $C(sp^2)$ -H···F- $C(sp^3)$  hydrogen bonds were also recognized to stabilize (motif V, I.E being -10.2 kJ mol<sup>-1</sup>) the crystal packing in NM22.

#### *N*-Methyl-4-(trifluoromethyl)-*N*-(3-(trifluoromethyl)phenyl)benzamide (NM23)

Compound **NM23** crystallizes in the centrosymmetric monoclinic space group ( $P2_1/c$ ) with Z = 4. Molecular pairs, extracted from the crystal packing of **NM23**, along with their stabilization energies are presented in Fig. 10(a). The analysis of the results depicts the presence of two similar dimeric stabilizing pairs [motif I (observed to be robust in this series) and motif II] in the crystal packing. Motif I (I.E = -39.1 kJ mol<sup>-1</sup>, % $E_{disp}$  of 71%) was recognized to involve a short C(sp<sup>2</sup>)–H···π (2.61 Å, 161°) bond along with the presence of a weak offset  $\pi \cdots \pi$  stacking



Fig. 9 (a) Selected molecular pairs extracted from the crystal packing in NM22. (b) Network of weak  $C(sp^2)-H\cdots O=C$  and  $C(sp^2)-H\cdots F-C(sp^3)$  hydrogen bonds in the crystal packing down the *bc* plane in NM22.

interactions, whereas a dimeric bifurcated weak  $C(sp^2)$ - $H \cdots O$ —C interaction was observed to stabilize (I.E = -38.7 kJ mol<sup>-1</sup> with % $E_{disp}$  reduced to 58%) motif II in NM23 (Table 5). Both dimeric motifs I and II were found to be connected *via* motif III and IV in the formation of a molecular layer down the *bc* plane [Fig. 10(b)]. Bifurcated weak  $C(sp^2)$ - $H \cdots O$ —C hydrogen bonds, involving acidic hydrogens, were recognized to link the molecules in motif III (I.E =  $-31.4 \text{ kJ mol}^{-1}$ , % $E_{disp}$  of 58%), whereas in the case of motif IV (I.E =  $-14.2 \text{ kJ mol}^{-1}$  with % $E_{disp}$  increased to 73%), a weak  $C(sp^3)$ - $H \cdots F$ - $C(sp^3)$  hydrogen bond along with  $\pi \cdots \pi$  stacking interaction were observed. Furthermore, a weak  $C(sp^2)$ - $H \cdots F$ - $C(sp^3)$  interaction [in motif V ( $-8.0 \text{ kJ mol}^{-1}$ ) and VI ( $-5.5 \text{ kJ mol}^{-1}$ )] were also found to stabilize the crystal packing in NM23 [Fig. 10(a) and Table 5].

#### *N*-Methyl-2-(trifluoromethyl)-*N*-(4-(trifluoromethyl)phenyl)benzamide (NM31)

Compound **NM31** also crystallizes in the  $P2_1/c$  space group with Z = 4. Fig. 11(a) depicts the extracted molecular pairs from the crystal packing in **NM31**, along with their stabilizing energy. All the molecular motifs were observed to be stabilized by the presence of weak intermolecular interactions. The highest stabilized motif I (I.E = -30.1 kJ mol<sup>-1</sup>) was found to involve a short C(sp<sup>2</sup>)-H···O=C (2.42 Å, 151°) hydrogen bond along with  $\pi \cdots \pi$  stacking with the dispersion contribution being 66%. Motif I connects the molecule along the *b*-axis, utilizing a  $2_1$ -screw in the formation of molecular chains in the crystal



**Fig. 10** (a) Selected molecular pairs, along with their interaction energies, in **NM23**. (b) Packing view down the *bc* plane in **NM23**, depicting network of weak  $C(sp^2)-H\cdots O=C$ ,  $C(sp^2)-H\cdots \pi$  and  $C(sp^3)-H\cdots F-C(sp^3)$  hydrogen bonds.

packing [Fig. 11(b)]. The chain is further stabilized via motif II (I.E =  $-22.1 \text{ kJ mol}^{-1}$  with % $E_{\text{disp}}$  being 52%), which involves a short  $C(sp^2)$ –H···O=C (2.54 Å, 149°) bond along with a short  $C(sp^2)$ -H···F- $C(sp^3)$  (2.38 Å, 135°) bond and a bifurcated weak  $C(sp^2)/(sp^3)-H\cdots F-C(sp^3)$  hydrogen bond. Furthermore, a weak  $C(sp^2)$ -H···O=C bond with support from a bifurcated  $C(sp^2)$ -H···F- $C(sp^3)$  hydrogen bond (motif IV, -18.2 kJ mol<sup>-1</sup>) was involved in the formation of a molecular chain with the utilization of the *c*-glide perpendicular to the *b*-axis. The chain was observed to be connected with motif I and motif III down the *ac* plane [Fig. 11(c)]. Motif III (I.E = -19.6 kJ mol<sup>-1</sup>, with  $\&E_{\text{disp}}$  of 73%) consists of a dimeric weak  $C(\text{sp}^3)$ -H···F- $C(\text{sp}^3)$ hydrogen bond along with  $\pi \cdots \pi$  stacking. The packing of molecules in NM31 was also observed to involve the formation of a molecular motif **V** with weak  $C(sp^3)$ -H··· $\pi$  interactions [the stabilization energy is -14.2 kJ mol<sup>-1</sup>]. Furthermore, weakly stabilized molecular motif VI  $[-9.2 \text{ kJ mol}^{-1};$  involving a dimeric  $C(sp^2)$ -H···F- $C(sp^3)$  hydrogen bonds] and motif VI  $[-4.9 \text{ kJ mol}^{-1}; \text{ involving } C(\text{sp}^3) - F \cdots F - C(\text{sp}^3) \text{ interactions}]$  were also recognized in the crystal packing of NM31.

#### *N*-Methyl-4-(trifluoromethyl)-*N*-(4-(trifluoromethyl)phenyl)benzamide (NM33)

Compound **NM33** crystallizes in the centrosymmetric triclinic space group  $P\bar{1}$  with Z = 4 (Z' = 2). Selected molecular motifs, which contribute towards the stabilization of the crystal packing, are presented in Fig. 12(a). The two molecules in the asymmetric unit were observed to be connected *via* motif **IV** (I.E = -28.2 kJ mol<sup>-1</sup>), which involved the presence of a bifurcated, short and directional C(sp<sup>2</sup>)-H···O=C (2.30 Å, 169°; 2.42 Å, 136°) hydrogen bond with the stabilization energy



Fig. 11 (a) Molecular pairs extracted from the crystal packing of NM31 along with their interaction energies. (b) Packing of molecules down the *ab* plane in NM31 *via* weak  $C(sp^2)-H\cdots O=C$ ,  $C-H\cdots F-C(sp^3)$  hydrogen bonds and  $\pi\cdots\pi$  interactions. (c) Packing of molecules down the *ac* plane with the utilization of weak  $C(sp^2)-H\cdots O=C$ ,  $C-H\cdots F-C(sp^3)$  hydrogen bonds and  $\pi\cdots\pi$  interactions in NM31.

having a substantial electrostatic contribution of 59% (Table 5). There are three more stabilized molecular pairs (motif I, II, III) other than motif IV, which were recognized in the crystal packing. The arrangements of the first four molecular motifs in the crystal packing of NM33 are depicted in Fig. 12(b) down the crystallographic bc plane. The highest stabilized molecular motif I (I.E = -37.8 kJ mol<sup>-1</sup>; %*E*<sub>elec</sub> of 40%) consists of a short and highly directional dimeric  $C(sp^2)$ -H···O=C (2.49 Å, 173°) hydrogen bond. The stabilization of motif I is significantly higher than motif IV, although both possess similar interactions. The reason for this may be the presence of some long-range dispersion interactions in motif I, as the net contribution from the dispersion energy in motif I were observed to be almost double than that in motif IV (Table 5). In motif II  $(I.E = -35.3 \text{ kJ mol}^{-1})$ , the molecules were found to be linked *via* weak C–H··· $\pi$  and  $\pi$ ··· $\pi$  interactions with the contribution from dispersion being significantly high (75%), whereas three weak  $C(sp^2)$ -H···F-C(sp<sup>3</sup>) hydrogen bonds along with  $\pi \cdot \cdot \cdot \pi$ 



Fig. 12 (a) Displaying selected molecular motifs connected with different intermolecular interactions in the crystal packing of NM33. (b) Part of the crystal packing down the *bc* plane in NM33, depicting the presence of weak  $C(sp^2)-H\cdots O=C$ ,  $C-H\cdots \pi$  and  $C(sp^2)-H\cdots F-C(sp^3)$  hydrogen bonds along with  $\pi\cdots\pi$  interactions. (c) Packing of molecules in NM33 *via* the network of weak  $C-H\cdots O=C$ ,  $C-H\cdots\pi$  and  $C-H\cdots F-C(sp^3)$  hydrogen bonds along with  $\pi\cdots\pi$  and  $C(sp^3)-F\cdots C=O$  interactions.

interactions were recognized to link the molecules in motif **III** with the  $\% E_{\text{disp}}$  contribution being reduced to 66%. Furthermore, motif **V** (I.E =  $-21.9 \text{ kJ mol}^{-1}$ ) and **VI** (I.E =  $-21.9 \text{ kJ mol}^{-1}$ ) were observed to provide similar stabilization to the crystal packing; however, the involved interactions were recognized to be significantly different. A weak  $C(\text{sp}^3)$ –H···O=C hydrogen bond along with a short  $C(\text{sp}^3)$ –H···\pi (2.63 Å, 138°) and  $\pi$ ··· $\pi$  interactions were found to stabilize motif **V**, whereas it was mainly the latter which linked the molecules in motif **VI**. The differences associated in the nature of interactions in the two motifs **V** and **VI** are clearly reflected in the dispersion energy contribution, as this is 67% in the case of the former, but 78% in the latter. A very short  $C(\text{sp}^2)$ –H···O=C (2.20 Å, 148°) hydrogen bond, involving acidic hydrogen, along with a weak  $C(\text{sp}^3)$ –H···F bond at higher distance

(2.81 Å, 125°) were observed to stabilize the crystal packing (motif **VII**, I.E =  $-15.0 \text{ kJ mol}^{-1}$ ), with a substantial electrostatic contribution (65%). A weak C(sp<sup>3</sup>)–F···C=O interaction and C(sp<sup>3</sup>)–H···F hydrogen bond (motif **VIII**, I.E is  $-14.0 \text{ kJ mol}^{-1}$ ) were found to direct the molecular chain of molecule 2 along the crystallographic *a*-axis [Fig. 12(c)]. Such chains were observed to be linked with adjacent molecular chains, formed with the utilization of a weak bifurcated C(sp<sup>2</sup>)/(sp<sup>3</sup>)–H···F hydrogen bond along the *a*-axis (motif **IX**; I.E =  $-10 \text{ kJ mol}^{-1}$ ) *via* the presence of the different intermolecular interactions involved in motifs **II**, **IV**, **V** and **VII** [Fig. 12(c)].

It can be noted that weakly stabilized molecular motifs possessing interactions involving organic fluorine were recognized in the crystal packing of NM33, with stabilization energies in the range from 10 kJ mol<sup>-1</sup> to 1.2 kJ mol<sup>-1</sup> [motif IX-XIV, Fig. 12(a)]. Motifs IX, X and XI were observed to provide similar stabilization (-10 kJ mol<sup>-1</sup>) but involve interactions of a different nature and geometry. Motif IX was found to involve bifurcated  $C(sp^2)/(sp^3)-H\cdots$ F hydrogen bonds (with one at a short distance of 2.43 Å, 148°), whereas a dimeric  $C(sp^2)$ -H···F bond and  $C(sp^3)$ -F···F- $C(sp^3)$  bond were observed in motif **X**. Furthermore, in the case of motif XI, bifurcated  $C(sp^3)$ -H···F hydrogen bonds (with one being short and directional; 2.48 Å, 160°) was recognized. Unlike motif IX, it involves a bifurcated acceptor, wherein two fluorine atoms of one CF<sub>3</sub> group are involved in the formation of the hydrogen bond with a hydrogen atom of the CH<sub>3</sub> group. Moreover, motifs XII and XIII were observed to consist of weak  $C(sp^2)$ -H···F- $C(sp^3)$  hydrogen bonds, providing similar stabilization (8.0 and 7.2 kJ mol $^{-1}$ , respectively). A dimeric  $C(sp^3)$ -F···F- $C(sp^3)$  interaction (with one contact, Type I geometry: 2.889(1) Å/101(1) $^{\circ}/101(1)^{\circ}$ ) was recognized in the formation of the molecular motif XIV [Fig. 11(a)], which provided the least stabilization (I.E = -1.2 kJ mol<sup>-1</sup>) to the crystal packing. The partition of the interaction energy into different contributions indicated a positive coulombic contribution, with the net stabilization originating mainly from the dispersive contribution (96%, Table 5).

#### Comparison of the crystal structures

From the analysis of the crystal structures of 11 compounds (ten derivatives of N-methyl-N-phenylbenzamide plus one unsubstituted compound) in this study, it was observed that seven molecules crystallized in the monoclinic space group  $P2_1/c$  (including NM03 and NM30 with Z' = 2 and NM11, wherein the molecule preferred the trans geometry) and none of them appeared to be isostructural.<sup>72</sup> This also included compounds NM10 and NM00, which crystallized in the same space group: orthorhombic centrosymmetric Pbca. Furthermore, except for NM11, all the compounds in this series appeared to have a similar molecular conformation (*cis*-geometry) [Fig. 1(c)]. Hence, it was of interest to compare these crystal structures to gain insights into the similarities and dissimilarities associated with the crystal packing. Therefore, XPac 2.073,74 was used to analyze the crystal packing of these structures, excluding NM11. The details of this analysis are presented in Section S2 in the ESI.† XPac identified the similar packing arrangements in the

two crystal structures, termed as 'supramolecular constructs (SC)'. It can be 3D (exactly similar arrangement or isostructural), 2D (layers of molecules are similar), 1D (a row of molecules is similar) or 0D similarity (isolated unit-like dimers are identical in the packing). The measure of the extent with which the two crystal structures deviate from the perfect geometrical similarity is defined as the 'dissimilarity index (X)'.<sup>75</sup> The lower the value of X, the better is the structural match. The analysis of the ten crystal structures (Table S2, ESI<sup>+</sup>) revealed that the arrangement of the molecules match (regarding the presence of 2D SCs) in the case of NM02 (packing of molecule 1) and NM03 (packing of molecule 2) with X = 6.7 (labeled as 'C1' Fig. 13 and Fig. S7, Table S2, ESI<sup>†</sup>). There was also the presence of 1D SCs [the presence of a molecular chain (6 types, B1 to B6), Fig. 13 and Fig. S8, Table S2, ESI<sup>†</sup>] observed in the case of the pairs NM02\_2/ NM03\_1; NM02\_2/NM10; NM03\_1/NM10; NM12/NM22; NM22/ NM23 and NM31/NM33\_2. There were 6 different types (A1 to A6, Fig. 13 and Fig. S9, ESI<sup>†</sup>) of similar molecular dimers (the presence of a 0D SC) also recognized in the different pairs of the crystal structure (Table S2, ESI<sup>†</sup>).

It was of further interest to compare all the present crystal structures with related crystal structures reported in CSD [Fig. 1(d)]. Comparisons with structures with a *cis*-geometry (CSD ref. code: YEGJEY, YEGKEA, YEGKIE, YEGKOK and YEGLAX) revealed no similarity with the unsubstituted compound, NM00 (ref. code: JAZJOJ10) [Table S2, ESI<sup>†</sup>]. There was also the presence of a similar molecular chain (1D SCs) on comparison of NM03\_1, NM10, NM12 with YEGLAX [Fig. S10(a) and Table S2, ESI<sup>†</sup>], which is analogous with the chain 'B2' [in pair NM03\_1/NM10; Fig. S8(b), ESI†]. In addition, the existence of 1D SC (similar chain) was also recognized for NM22/YEGLAX. Moreover, the pairs NM03\_1/YEGKEA, NM10/YEGKEA, NM10/ YEGKOK, NM12/YEGKEA and NM23/YEGKEA display the presence of a similar molecular robust dimer (equivalent with the dimer 'A1'; 0D SCs) in their crystal packing [Fig. S11(a), ESI<sup>†</sup>]. Furthermore, the presence of 0D SCs (similar molecular pairs) was also observed for the pairs NM02\_1/YEGKOK,



Fig. 13 Relationship of all the crystal structures from the XPac analysis (Section S2, ESI†). The compounds NM02, NM03, NM30 and NM33 have two symmetry independent molecules, represented by the number in the circle.

#### Paper

NM02\_1/YEGLAX NM22/YEGKOK, NM31/YEGLAX and NM22/ YEGKOK [Fig. S11(b)–(d), ESI†]. Furthermore, the comparison of the crystal structure of **NM11** with the structure reported in CSD with the *trans* geometry (ref. code: YEGJEY, DIBGIF and DIBGAX) indicates the presence of similar chains in the case of the pairs, NM11/DIBGAX\_1 and NM11/DIBGAX\_4, and surprisingly, no similarity was observed for NM11/YEGJEY (having four methyl substitution at *ortho* positions of both the phenyl rings in the molecule). Hence, from the overall comparison of the crystal structures, it can be observed that although none of these structures are isostructural, the presence of similar structural motifs can be realized in their crystal packing.

## Conclusions

The complete quantitative analysis of the molecular and crystal structure of ten out of the fifteen newly synthesized trifluoromethyl-substituted *N*-methyl-*N*-phenylbenzamides revealed the significance of weak interactions in stabilizing the molecular and crystal structure in the absence of any strong donor atom. Unlike the *N*-phenylbenzamides, the derivatives of *N*-methyl-*N*-phenylbenzamide prefer to possess the *cis*-conformation, wherein the molecular structure is stabilized by the presence of a weak  $C(sp^3)$ -H···O—C hydrogen bond. The steric crowd at the *ortho* position of both the phenyl rings may change the conformation to the *trans* geometry, similar to as observed in *N*-phenylbenzamide.

The computational procedures, which involve calculation of the lattice energy and the evaluation of the interaction energies for different intermolecular interactions, provided detailed insights into the nature of the weak intermolecular interactions present in the crystal packing of this series of compounds. In the absence of a strong donor, the crystal packing was observed to be stabilized by the cooperative interplay in the presence of weak intermolecular interactions, such as C-H···O=C and C-H··· $\pi$  hydrogen bonds, along with other weak interactions such as  $\pi \cdots \pi$  stacking. There are short C-H $\cdots$ O=C hydrogen bonds observed in the crystal packing of these compounds with a substantially high electrostatic (coulombic + polarization) contribution. The interactions involving organic fluorine, namely, C-H···F-C, C-F···F-C, and C-F···F-C, are ubiquitous and provide stabilization, albeit less, to the crystal packing, and are observed to be involved in the formation of different unique structural motifs. The detailed and comparative analysis of the nature of the different interactions involved in the different molecular motifs in the crystal packing with detailed inputs from energy calculations using the PIXEL method brings out the following observations: (i) the interaction energy in the decreasing order of weak hydrogen bonds was as follow:  $C-H\cdots O=C > C-H\cdots \pi > C-H\cdots F-C$  (ii) the contribution from dispersion energy towards the total stabilization follows the order: C-H···O=C < C-H···F-C < C-H··· $\pi$  (the contribution from the electrostatic follows the opposite order). (iii) There is an increase in the electrostatic contribution observed at short distances, and directional hydrogen bonds are present in the molecular motif. In future studies, it would be of interest to extend this study to the investigation of interactions involving organic fluorine in different electronic and chemical environments.

## Acknowledgements

PP thanks UGC-India for research scholarship. We acknowledge the IISER Bhopal for research facilities and infrastructure. The authors also thank Prof. T. N. Guru Row for SCXRD and PXRD data collection on the CCD facility at IISc, Bangalore under the IRHPA-DST Scheme. DC thanks DST-Fast Track Scheme for research funding.

### References

- 1 G. R. Desiraju, J. Am. Chem. Soc., 2013, 135, 9952-9967.
- 2 H.-J. Schneider, Angew. Chem., Int. Ed., 2009, 48, 3924-3977.
- 3 J. D. Dunitz and A. Gavezzotti, *Chem. Soc. Rev.*, 2009, **38**, 2622–2633.
- 4 A. Nangia and G. R. Desiraju, in *Design of Organic Solids*, ed.E. Weber, Springer-Verlag, Berlin, 1998.
- 5 D. Philip and J. F. Stoddart, *Angew. Chem., Int. Ed.*, 1996, 35, 1154–1196.
- 6 P. Panini, K. N. Venugopala, B. Odhav and D. Chopra, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2014, 70, 681–696.
- 7 E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaeergaard, A. C. Legon, B. Mennucci and D. J. Nesbitt, *Pure Appl. Chem.*, 2011, 83, 1619–1636.
- 8 G. R. Desiraju and T. Steiner, *The Weak Hydrogen Bond in Structural Chemistry and Biology*, Oxford University Press, Oxford, 1999.
- 9 C. A. Hunter, Angew. Chem., Int. Ed., 2004, 43, 5310-5324.
- O. Takahashi, Y. Kohno and M. Nishio, *Chem. Rev.*, 2010, 110, 6049–6076.
- 11 M. Nishio, Phys. Chem. Chem. Phys., 2011, 13, 13873-13900.
- 12 (a) K. Reichenbacher, H. I. Suss and J. Hulliger, *Chem. Soc. Rev.*, 2005, 34, 22; (b) P. Panini and D. Chopra, Hydrogen Bonded Supramolecular Structures, In *Lect. Notes Chem.*, ed. Z. Li and L. Wu, Springer-Verlag, Berlin, Heidelberg, 2015, vol. 87, pp. 37–67.
- 13 (a) H.-J. Schneider, *Chem. Sci.*, 2012, **3**, 1381–1394; (b) R. Shukla and D. Chopra, *CrystEngComm*, 2015, **17**, 3596–3609.
- 14 M. Egli, Acc. Chem. Res., 2012, 45, 1237-1246.
- 15 D. O'Hagan, Chem. Soc. Rev., 2008, 37, 308-319.
- 16 B. E. Smart, J. Fluorine Chem., 2001, 109, 3-11.
- 17 H. J. Bohm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Muller, U. Obst-Sander and M. Stahl, *ChemBioChem*, 2004, 5, 637–643.
- 18 J. Wang, M. Sanchez-Rosello, J. L. Acena, C. D. Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu, *Chem. Rev.*, 2014, **114**, 2432–2506.
- 19 J. D. Dunitz, ChemBioChem, 2004, 5, 614-621.

- 20 P. Panini and D. Chopra, CrystEngComm, 2013, 15, 3711–3733.
- 21 (a) P. Panini and D. Chopra, CrystEngComm, 2012, 14, 1972–1989; (b) P. Panini and D. Chopra, Cryst. Growth Des., 2014, 14, 3155–3168.
- 22 M. Perez-Torralba, M. A. García, C. Lopez, M. C. Torralba, M. R. Torres, R. M. Claramunt and J. Elguer, *Cryst. Growth Des.*, 2014, 14, 3499–3509.
- 23 S. Terada, K. Katagiri, H. Masu, H. Danjo, Y. Sei, M. Kawahata, M. Tominaga, K. Yamaguchi and I. Azumaya, *Cryst. Growth Des.*, 2012, 12, 2908–2916.
- A. Abad, C. Agulló, A. C. Cuñat, C. Vilanova, d. Ramírez and M. C. Arellano, *Cryst. Growth Des.*, 2006, 6, 46–57.
- 25 K. Müller, C. Faeh and F. Diederich, Science, 2007, 317, 1881.
- 26 R. Berger, G. Resnati, P. Metrangolo, E. Weber and J. Hulliger, *Chem. Soc. Rev.*, 2011, **40**, 3496–3508.
- 27 D. Chopra, Cryst. Growth Des., 2012, 12, 541-546.
- 28 D. Chopra and T. N. Guru Row, *CrystEngComm*, 2011, 13, 2175–2186.
- 29 A. R. Choudhury and T. N. Guru Row, *Cryst. Growth Des.*, 2004, 4, 47–52.
- 30 D. Chopra and T. N. Guru Row, CrystEngComm, 2008, 10, 54-67.
- 31 G. Kaur and A. R. Choudhury, *Cryst. Growth Des.*, 2014, 14, 1600–1616.
- 32 G. Kaur, P. Panini, D. Chopra and A. R. Choudhury, *Cryst. Growth Des.*, 2012, **12**, 5096–5110.
- 33 M. Karanam and A. R. Choudhury, *Cryst. Growth Des.*, 2012, 13, 4803.
- 34 V. Vasylyeva and K. Merz, *Cryst. Growth Des.*, 2010, **10**, 4250–4255.
- 35 A. G. Dikundwar, R. Sathishkumar, T. N. Guru Row and G. R. Desiraju, *Cryst. Growth Des.*, 2011, **11**, 3954–3963.
- 36 V. R. Hathwar, D. Chopra, P. Panini and T. N. Guru Row, *Cryst. Growth Des.*, 2014, 14, 5366–5369.
- 37 O. Jeannin and M. Fourmigue, *Chem. Eur. J.*, 2006, **12**, 2994–3005.
- 38 C. Jackel, M. Salwiczek and B. Koksch, Angew. Chem., Int. Ed., 2006, 45, 4198–4203.
- 39 M. Fioroni, K. Burger, A. E. Mark and D. Roccatano, J. Phys. Chem. B, 2003, 107, 4855–4861.
- 40 J. L. Kgokong, P. P. Smith and G. M. Matsabisa, *Bioorg. Med. Chem.*, 2005, **13**, 2935–2942.
- 41 J. A. K. Howard and H. A. Sparkes, *CrystEngComm*, 2008, **10**, 502–506.
- 42 (a) D. E. Braun, T. Gelbrich, V. Kahlenberg, G. Laus, J. Wieser and U. J. Griesser, New J. Chem., 2008, 32, 1677–1685; (b) M. O. BaniKhaled, J. D. Mottishaw and H. Sun, Cryst. Growth Des., 2015, 15, 2235–2242.
- 43 I. Azumaya, K. Yamaguchi, H. Kagechika, S. Saito, A. Itai and K. Shudo, *J. Pharm. Soc. Japan*, 1994, **114**, 414–430.
- 44 I. Azumaya, H. Kagechika, K. Yamaguchi and K. Shudo, *Tetrahedron*, 1995, **51**, 5277–5290.
- 45 R. Yamasaki, A. Tanatani, I. Azumaya, H. Masu, K. Yamaguchi and H. Kagechika, *Cryst. Growth Des.*, 2006, **6**, 2007–2010.
- 46 I. Azumaya, H. Kagechika, Y. Fujiwara, M. Itoh,
  K. Yamaguchi and K. Shudo, *J. Am. Chem. Soc.*, 1991, 113, 2833–2838.

- 47 F. D. Lewis and W. Liu, J. Phys. Chem. A, 2002, 106, 1976-1984.
- 48 T. Hirano, T. Osaki, S. Fujii, D. Komatsu, I. Azumaya, A. Tanatani and H. Kagechika, *Tetrahedron Lett.*, 2009, **50**, 488–491.
- 49 (a) L. Maschio, B. Civalleri, P. Ugliengo and A. Gavezzotti, J. Phys. Chem. A, 2011, 115, 11179–11186; (b) A. Gavezzotti, New J. Chem., 2011, 35, 1360–1368.
- 50 (a) J. D. Dunitz and A. Gavezzotti, *Cryst. Growth Des.*, 2005, 5, 2180–2189; (b) P. Panini, K. N. Venugopala, B. Odhav and D. Chopra, *Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.*, 2014, **70**, 681–696.
- 51 J. D. Dunitz and A. Gavezzotti, *Cryst. Growth Des.*, 2012, **12**, 5873–5877.
- 52 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343–350.
- 53 L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849-854.
- 54 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 55 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, 41, 466–470.
  56 M. Nardelli, *J. Appl. Crystallogr.*, 2007, 22, 650.
- 56 M. Nardelli, J. Appl. Crystallogr., 1995, 28, 659.
- 57 A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65, 148–155.
- 58 TURBOMOLE V6.2 2010, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
- 59 M. J. Frisch, et al., GAUSSIAN09, Revision A. 02, Gaussian, Inc., Wallingford, CT, USA, 2009.
- 60 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *Chem. Phys.*, 2010, **132**, 154104.
- 61 W. Hujo and S. Grimme, *Phys. Chem. Chem. Phys.*, 2011, 13, 13942–13950.
- 62 S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
- 63 R. Ahlrichs, M. Bar, M. Haser, H. Horn and C. Kolmel, *Chem. Phys. Lett.*, 1989, **162**, 165–169.
- 64 S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553-566.
- 65 S. L Cockroft, J. Perkin, C. Zonta, H. Adams, S. E. Spey, C. M. R. Low, J. G. Vinter, K. R. Lawson, C. J. Urch and C. A. Hunter, *Org. Biomol. Chem.*, 2007, 5, 1062–1080.
- 66 A. Bondi, J. Phys. Chem., 1964, 68, 441-451.
- 67 A. Mukherjee and G. R. Desiraju, IUCrJ, 2014, 1, 49-60.
- 68 P. Metrangolo and G. Resnati, IUCrJ, 2014, 1, 5-7.
- 69 E. D'Oria and J. J. Novoa, *CrystEngComm*, 2008, **10**, 423–436.
- 70 S. Kawahara, S. Tsuzuki and T. Uchimaru, J. Phys. Chem. A, 2004, 108, 6744–6749.
- 71 R. M. Osuna, V. Hernàndez, J. T. L. Navarrete, E. D'Oria and J. J. Novoa, *Theor. Chem. Acc.*, 2011, **128**, 541–553.
- 72 A. Kàlmàn, L. Pàrnkànyi and G. Argay, *Acta Crystallogr., Sect.* B: Struct. Sci., 1993, 49, 1039–1049.
- 73 T. Gelbrich and M. B. Hursthouse, *CrystEngComm*, 2005, 7, 324–336.
- 74 T. Gelbrich and M. B. Hursthouse, *CrystEngComm*, 2006, 8, 448–460.
- 75 T. Gelbrich, T. L. Threlfall and M. B. Hursthouse, *CrystEng-Comm*, 2012, 14, 5454–5464.