NJC

View Article Online PAPER

Cite this: New J. Chem., 2015 **39**, 7633

Received (in Victoria Australia) 26th March 2015 Accepted 11th May 2015

DOI: 10.1039/c5nj00761e

www.rsc.org/njc

A structural investigation of heteroleptic lanthanide substituted cyclopentadienyl complexes†‡

Fabrizio Ortu, Jonathan M. Fowler, Matthew Burton, Alasdair Formanuik and David P. Mills*

The substituted cyclopentadienyl group 1 transfer agents KCp", KCp"' and KCp^{tt} (Cp" = $\{C_5H_3(SiMe_3)_2-1,3\}^-$; $Cp''' = \{C_5H_2(SiMe_3)_3-1,2,4\}^-; Cp^{tt} = \{C_5H_3(^tBu)_2-1,3\}^-\}$ were prepared by modification of established procedures and the structure of $[K(Cp'')(THF)]_{\infty}$. THF (1) was obtained. KCp'' and KCp^{tt} were reacted variously with $[Ln(I)_3(THF)_4]$ (Ln = La, Ce) in 2:1 stoichiometries to afford monomeric $[La(Cp'')_2(I)(THF)]$ $(2a \cdot THF)$ and the dimeric complexes $[La(Cp'')_2(\mu-1)]_2$ (2a), $[Ce(Cp'')_2(\mu-1)]_2$ (2b) and $[Ce(Cp^{tt})_2(\mu-1)]_2$ (3). KCp'''was reacted with [Ce(I)₃(THF)₄] to afford the mono-ring complex [Ce(Cp'')(I)₂(THF)₂] (4), regardless of the stoichiometric ratio of the reagents. Complex 4 was reacted with $[KN(SiMe_3)_2]$ to yield $[Ce(Cp''')_2(I)(THF)]$ (5), $[Ce(Cp''')\{N(SiMe_3)_2\}_2]$ (6) and $[Ce\{N(SiMe_3)_2\}_3]$ by ligand scrambling. Complexes **1–6** have all been structurally authenticated and are variously characterised by other physical methods.

Introduction

Since the first reported synthesis of lanthanide (Ln) cyclopentadienyl (Cp) complexes in the 1950s, substituted Cp ligands, Cp^R, in which up to five ring protons have been replaced by various R-groups, have been employed ubiquitously in f-element organometallic chemistry.2 CpR ligands typically occupy three coordination sites and their steric demands are readily tunable. Bulky R-groups may be used to block undesired ligand scrambling and oligomerisation decomposition pathways. This, together with the electronically stabilising multihapto-donor properties of Cp^R ligands, has been exploited in the stabilisation of Ln Cp^R complexes that exhibit unusual Ln oxidation states and bonding modes.³ Cp^R ligands have been shown to be particularly effective in stabilising heterobimetallic systems that contain Ln-transition metal (TM) bonds, in which the two fragments are supported by the metalmetal interaction.4,5 There are currently very few examples of structurally characterised Ln-TM bonds,⁶ and given that recent landmark metal-metal bonds have provided step changes in our understanding of chemical bonding⁷ it would be considered prudent to explore novel Ln-TM systems.

A well-established synthetic route for the synthesis of heterobimetallic Ln-TM complexes is alkane elimination. 4c However, alkali

School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. E-mail: david.mills@manchester.ac.uk

metal salt elimination pathways provide a useful synthetic alternative that can be less sluggish and produce fewer byproducts over alkane elimination in some cases. 4b,5b It follows that novel heteroleptic $[Ln(Cp^R)_2(X)]$ (X = halide) complexes that offer significant kinetic stabilisation and are robust with respect to ligand exchange could be useful precursors for supporting novel Ln-element bonding motifs in the future. For the larger lanthanides (La, Ce, Pr, Nd) there is a surprising lack of reports on structurally authenticated [Ln(CpR)2(X)] complexes, 4b,8 and there are very few examples that contain bromide or iodide.9 The employment of the heavier halides is particularly advantageous in salt elimination reactions, where they are less prone to ate complex formation and can offer facile reaction workups due to the insolubility of salts such as KI in most organic solvents.5a,b

To target the synthesis of novel [Ln(Cp^R)₂(I)] complexes of the larger Ln, we focused our attention on a family of established CpR ligands: 1,3-bis(trimethylsilyl)cyclopentadienyl $(Cp'', \{C_5H_3(SiMe_3)_2-1,3\}^-), 1,2,4-tris(trimethylsilyl)cyclopenta$ dienyl (Cp''', $\{C_5H_2(SiMe_3)_3-1,2,4\}^-$) and 1,3-bis(tert-butyl)cyclopentadienyl (Cp^{tt} , { $C_5H_3(^tBu)_2$ -1,3} $^-$). These ligands have been previously utilised to prepare a variety of homoleptic and heteroleptic La and Ce complexes. 3d,8b-d,10 Herein we report the reactions of the group 1 ligand transfer agents KCp", KCp" and KCptt in salt metathesis reactions with selected Ln triiodides, leading to the stabilisation and structural authentication of novel monomeric and dimeric $[Ln(Cp^R)_2(I)]$ (Ln = La, Ce) complexes that are robust towards ligand exchange side-reactions over typical experimental timescales.

[†] This article is part of the 'Frontiers of Organo-f-element Chemistry' themed issue. \ddagger Electronic supplementary information (ESI) available. CCDC 1056158–1056165 for 1, 2a-b, 2a-THF and 3-6. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5nj00761e

Paper

Results and discussion

KCp'', ¹¹ KCp'' ¹¹ and $KCp^{tt \, 12}$ $(Cp'' = \{C_5H_3(SiMe_3)_2 - 1, 3\}^-; Cp''$ = $\{C_5H_2(SiMe_3)_3-1,2,4\}^-$; $Cp^{tt} = \{C_5H_3(^tBu)_2-1,3\}^-$) were prepared by slight modifications of published procedures by deprotonation of the pro-ligands with KH or [KN(SiMe₃)₂]. On one occasion, crystals of [K(Cp")(THF)]_{\infty}·THF (1) were obtained, and these were subjected to a single crystal XRD study. The crystals were of poor quality and weakly diffracting, leading to a poor quality dataset. As a result no discussion is given of the metrical parameters although the connectivity is clear-cut (see ESI‡). KCp" and KCptt were reacted separately in 2:1 stoichiometric ratios with $[La(I)_3(THF)_4]$ and $[Ce(I)_3(THF)_4]$ to afford $[La(Cp'')_2(\mu-I)]_2$ (2a), $[Ce(Cp'')_2(\mu-I)]_2$ (2b) and $[Ce(Cp^{tt})_2(\mu-I)]_2$ (3) (Scheme 1). The synthesis of [La(Cp^{tt})₂(μ-I)]₂ was not attempted. Complexes 2a and 2b were obtained in fair crystalline yields but the yield of 3 was significantly lower. It is noteworthy that the syntheses of 2b and 3 from CeI₃ were discussed previously by Andersen, although no characterisation data were reported. 10h

The ¹H NMR spectra of **2a** and **2b** in d_6 -benzene exhibit resonances for the SiMe₃ protons (**2a**: $\delta = 0.49$ ppm; **2b**: $\delta = -3.23$ and 0.29 ppm) and three signals for the Cp" ring protons (**2a**: $\delta = 7.16$, 7.22 and 7.27 ppm; **2b**: $\delta = -7.30$, -6.88 and -0.04 ppm). The reason for the difference in the number of SiMe₃ group resonances in solution for **2a** and **2b** is unknown as they have similar solid state structures (see below). A single resonance was observed in the ²⁹Si{¹H} NMR spectrum of **2a** ($\delta = -9.69$ ppm), but no resonance was observed in the ²⁹Si{¹H} NMR spectrum of **2b** due to paramagnetic broadening. The ¹H NMR spectrum of **3** displays one broad signal for the *tert*-butyl protons ($\delta = -1.71$ ppm) and three resonances ($\delta = -5.86$ ppm, 0.29 and 1.13 ppm) for the Cp^{tt} ring protons. Elemental analyses of all three complexes are in good agreement with donor solvent-free [Ln(Cp^R)₂(µ-I)]₂ formulations.

Crystals suitable for X-ray diffraction studies were obtained for **2a**, **2b** and **3**, and their solid state structures were determined (Fig. 1 and 2; see ESI‡). Complexes **2a** and **2b** are structurally analogous, featuring the same open metallocene-type array, so only the structure of **2b** is depicted here (for a picture of **2a** see ESI‡). The two compounds display very similar metrical parameters, such as the Ln···Cp_{centroid} [**2a**: La···Cp_{centroid} = 2.519(7) Å mean; **2b**: Ce···Cp_{centroid} = 2.505(3) Å mean] and Ln–I distances [**2a**: La–I = 3.2128(16) Å mean; **2b**: Ce–I = 3.1958(6) Å mean]. These values may be compared to $[La(Cp'')_2(\mu\text{-F})]_2$, ^{8c} the only other structurally authenticated heteroleptic Cp'' La or Ce halidebridged dimer, to the best of our knowledge. In $[La(Cp'')_2(\mu\text{-F})]_2$

Scheme 1 Synthesis of complexes 2-4.

Fig. 1 Molecular structure of **2b** with selective atom labelling, with displacement ellipsoids set at the 50% probability level; hydrogen atoms have been omitted for clarity. Symmetry operation to generate equivalent atoms: i = 2 - x, -y, -z. Selected bond distances [Å] and angles [°] for **2b**: Ce(1)-I(1) 3.1943(6), Ce(1)-I(1i) 3.1973(6), Ce(1)···Cp_{centroid}(1) 2.511(3), Ce(1)···Cp_{centroid}(2) 2.499(3), Ce(1)···Ce(1i) 4.7342(9), I(1)-Ce(1)-I(1i) 84.422(15), Ce(1)-I(1)-Ce(1i) 95.578(15).

Fig. 2 Molecular structure of **3** with selective atom labelling, with displacement ellipsoids set at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and angles [°] for **3**: Ce(1)-I(1) 3.2238(5), Ce(1)-I(2) 3.2410(4), Ce(2)-I(1) 3.2157(4), Ce(2)-I(2) 3.2286(5), $Ce(1)\cdots Cp_{centroid}(1)$ 2.510(2), $Ce(1)\cdots Cp_{centroid}(2)$ 2.516(2), $Ce(1)\cdots Ce(2)$ 5.0121(4), I(1)-Ce(1)-I(2) 77.963(11), I(1)-Ce(2)-I(2) 78.259(11), Ce(1)-I(1)-Ce(2) 102.218(12), Ce(1)-I(2)-Ce(2) 101.560(12).

the La···Cp_{centroid} distances [2.548(9) and 2.561(8) Å] are longer than the corresponding distances in 2a and 2b; also the Cp_{centroid}-Ln-Cp_{centroid} angle in [La(Cp")₂(μ -F)]₂ [129.42(19)°] is smaller than the analogous angles in 2a [132.8(3)°] and 2b [132.19(10)°]. Such variations are consistent with previous observations on the flexibility of coordinated Cp^R ligands in Ln chemistry, as they are capable of interlocking with each other in various conformations in order to best accommodate the

NJC

Fig. 3 Different conformations of La and Ce open metallocenes supported by 1,3-di-substituted Cp^R ligands. 8d,10i

space required by co-ligands. This behaviour was reported for a series of heteroleptic Cptt cerium complexes, which exhibited three different Cp^{tt} ring orientations in the solid state (Fig. 3A-C).^{8d,10i} Complexes 2a and 2b adopt orientation C in the solid state and the presence of two SiMe₃ resonances in the ¹H NMR spectra of 2a and 2b (see above) indicates that a low-symmetry orientation is maintained in solution.

On one occasion in an attempted synthesis of 2a we were able to determine the molecular structure of the monomeric THF adduct [La(Cp")₂(I)(THF)], 2a·THF (Fig. 4; see ESI‡), which resulted from incomplete removal of THF in vacuo prior to recrystallization from toluene. Complex 2a·THF displays similar La···Cp_{centroid} distances to its dimeric counterpart [La(1)···Cp_{centroid} = 2.539(4) Å mean], however the Cp_{centroid}-La-Cp_{centroid} angle in 2a·THF [127.97(12)°] is smaller. This is due to the absence of a relatively rigid La₂I₂ rhomboid in 2a THF, which enables the two Cp" rings to interlock in a staggered conformation (Fig. 3D). To the best of our knowledge, this has not previously been observed for heteroleptic Cp" and Cp^{tt} lanthanum and cerium complexes, but it has been reported in Cp" and Cptt U(IV) chemistry.13

Fig. 4 Molecular structure of 2a-THF with selective atom labelling, with displacement ellipsoids set at the 50% probability level; hydrogen atoms and disorder components have been omitted for clarity. Selected bond distances [Å] and angles [°] for 2a-THF: La(1)-I(1) 3.094(16), La(1)-O(1) 2.51(3), 93.0(7), Cp_{centroid}(1)-La(1)-Cp_{centroid}(2) 127.97(12)

In the solid state 3 exhibits a dimeric structure, with Ce···Cp_{centroid} distances ranging between 2.510(2) and 2.528(2) Å. These distances are comparable to those observed for [Ce(Cp^{tt})₂- $(\mu\text{-Cl})_2$ [2.523(10) Å mean] and $[Ce(Cp^{tt})_2(\mu\text{-H})]_2$ [2.538(4) Å mean] 8d,10i but are longer than those observed in $[Ce(Cp^t)_2(\mu-I)]_2$ [range Ce···Cp_{centroid} 2.492(5)-2.510(4) Å]. Furthermore, the Cp_{centroid}-Ce-Cp_{centroid} angles in 3 are relatively small [124.49(7)° and 125.29(7)°], bringing the Cp^{tt} rings closer to each other than the Cp" rings in 2a and 2b. These angles are even smaller than those observed in 2a·THF, in which a staggered conformation of the Cptt rings was observed in the solid state, yet 3 exhibits a pseudoeclipsed configuration of the Cptt rings (Fig. 3B). It is noteworthy that the ¹H NMR spectrum of 3 exhibits only one signal for the tert-butyl protons (see above), indicating that this high symmetry environment is maintained in solution. In $[Ce(Cp^{tt})_2(\mu-Cl)]_2$ the two Cptt rings deviate even further from the ideal parallel sandwich configuration [Cp_{centroid}-Ce-Cp_{centroid} = 121.0(2)°], ^{8d} highlighting the potentially large effect of crystal packing interactions on these configurations.14

An increase in the number of sterically demanding R-groups around a Cp^R ring can have significant effects on its coordination to metal centres. It has previously been shown that salt metathesis reactions between group 1 salts of the more sterically encumbered Cp''' ligand with LaI₃ afford the mono-ring complex [La(Cp''')(I)₂(py)₃] as the main product, 15 with the bis-Cp''' derivative $[La(Cp''')_2(I)(py)]$ isolated in poor yields. 8b Germane to this, the mono-ring complex [Ce(C5Me5)(I)2(THF)3] was synthesised from $[CeI_3(THF)_x]$ and KC_5Me_5 , whilst $[Li(Et_2O)_2][Ce(C_5Me_5)_2(Cl)_2]$ was isolated when CeCl3 and LiC5Me5 were employed as starting materials. 16 Similarly, the reaction of KCp" with [Ce(I)3(THF)4] yielded [Ce(Cp''')(I)2(THF)2] (4), regardless of the stoichiometric ratio employed. The ¹H NMR spectrum of 4 exhibits two SiMe₃ proton resonances ($\delta = -3.74$ and 0.27 ppm) and two signals are observed for the Cp''' ring protons ($\delta = -0.03$ and 0.76 ppm). The elemental analysis of 4 was consistent with its formulation.

The solid state structure of 4 is depicted in Fig. 5 (see ESI‡). Complex 4 exhibits a four-legged piano stool coordination motif, with the two iodides and THF molecules mutually trans-with respect to each other $[I(1)-Ce(1)-I(2) = 125.53(2)^{\circ}; O(1)-Ce(1)-O(2) =$ 149.48(18)°]. The Cp''' ring is closer to the cerium centre $[Ce(1)\cdots Cp_{centroid} = 2.495(4) \text{ Å}]$ than the Cp^{R} rings in 2b and 3 and this parameter is shorter than the corresponding distance in $[La(Cp''')(I)_2(py)_3]$ $(La \cdot \cdot \cdot Cp_{centroid} = 2.557 \text{ Å}).^{15}$ As a monoring complex typically has reduced steric crowding around the metal centre compared with the corresponding open metallocene, the Ce-I bond lengths of 4 [3.0859(7) and 3.1209(6) Å] are shorter than those observed in 2b and 3. These distances are also shorter than those exhibited by [Ce(C₅Me₅)(I)₂(THF)₃] [3.2269(12) and 3.1733(12) Å], although this complex contains an additional molecule of THF.16

In an attempt to prepare a heteroleptic Cp'''-silylamide cerium complex, "[Ce(Cp"")(I){N(SiMe₃)₂}]", complex 4 was reacted with one equivalent of [KN(SiMe₃)₂] (Scheme 2). An orange crystalline product was obtained from the reaction mixture, allowing the structural identification of [Ce(Cp")2(I)(THF)] (5), which has formed by ligand scrambling (Fig. 6; see ESI‡). Complex 5 is Paper NJC

Fig. 5 Molecular structure of **4** with selective atom labelling, with displacement ellipsoids set at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and angles [$^{\circ}$] for **4**: Ce(1)–I(1) 3.0859(7), Ce(1)–I(2) 3.1209(6), Ce(1)–O(1) 2.495(5), Ce(1)–O(2) 2.505(5), Ce(1)···Cp_{centroid}(1) 2.495(4), I(1)–Ce(1)–I(2) 125.53(2), O(1)–Ce(1)–O(2) 149.48(18), I(1)–Ce(1)–O(1) 81.88(13), I(1)–Ce(1)–O(2) 89.39(13).

monomeric in the solid state, analogous to the related La Cp''' complex $[La(Cp''')_2(I)(py)]$. 8b The Ce–O distance in 5 [Ce(1)–O(1) = 2.490(3) Å] is consistent with those measured for 4 (see above) and the Ce···Cp_{centroid} distances of 5 [2.534(2) Å mean] are longer than those in the mono-ring complex 4, as would be expected from the increased steric demands of two Cp''' ligands in 5. The Cp_{centroid}–Ce–Cp_{centroid} angle in 5 [133.77(6)°] is comparable to the Cp_{centroid}–La–Cp_{centroid} angle observed for $[La(Cp''')_2(I)(py)]$ [134.50(7)°], 8b though it is noteworthy that $[Ce(Cp^R)_2(X)]_n$ (X = anionic ligand) complexes with larger Cp_{centroid}–Ce–Cp_{centroid} angles have been previously reported in the literature. 8a,9b,c

Further evidence of the steric repulsion in 5 is given by the SiMe₃ substituents, which are pushed away from the cerium centre in comparison to 4 [range of Cp_{centroid}-C-Si angles, 5: 157.4(3)–169.4(4)°; 4: 168.1(6)–168.9(5)°] and are similar to the corresponding angles observed for [La(Cp''')₂(I)(py)] [156.5(4)–167.4(4)°]. Sb Complex 5 was further characterised by ¹H NMR spectroscopy, giving a simple spectrum with two resonances for the SiMe₃ protons (δ = 0.30 and 0.90 ppm) and two signals for the Cp''' protons (δ = -5.75 and -5.34 ppm). The elemental analysis of 5 was in good agreement with the proposed formulation.

In order to better understand the ligand scrambling process which led to the formation of 5, several crystals obtained from

Fig. 6 Molecular structure of **5** with selective atom labelling, with displacement ellipsoids set at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and angles [°] for **5**: Ce(1)–I(1) 3.1000(4), Ce(1)–O(1) 2.490(3), Ce(1)···Cp_{centroid}(1) 2.5416(16), Ce(1)···Cp_{centroid}(2) 2.5259(19), I(1)–Ce(1)–O(1) 89.01(7), Cp_{centroid}(1)–Ce(1)–Cp_{centroid}(2) 133.77(6).

the third crop of 5 were screened by single crystal XRD. Two additional crystal types were observed: orange needles and dark orange blocks. The needles were identified as [Ce{N(SiMe₃)₂}₃] and the blocks were found to be the heteroleptic complex $[Ce(Cp''')\{N(SiMe_3)_2\}_2]$ (6) (Fig. 7; see ESI‡). The structure of 6 is based on a two-legged piano stool motif and is comparable to [Ce(C₅Me₅){N(SiMe₃)₂}₂],¹⁷ which exhibits similar Ce-N distances [2.353(7) Å mean] to 6 [2.353(8) Å mean]. The Ce···Cp_{centroid} distance in 6 [2.551(5) Å] is comparable to that observed for 4 and all other metrical parameters of 6 are unremarkable. It was not possible to fractionally crystallise analytically pure 6 under the conditions employed due to the similar solubility of [Ce{N(SiMe₃)₂}₃] in hexanes/toluene, therefore no further analytical data were obtained. The global yield of 5 from this reaction was 50%, however, reaction conditions were not optimised as such ligand scrambling mechanisms can be difficult to control. It has been reported that mono-ring C5Me5 cerium complexes can undergo ligand scrambling in solution (Scheme 3), 17 and if similar processes are occurring during the synthesis of 5 this would affect the yields of all the products.

The Evans method was employed to determine the room temperature solution magnetic moments of all isolated cerium complexes. ¹⁸ The values obtained for **2b** ($\mu_{\rm eff}$ = 2.79 $\mu_{\rm B}$), 3 (2.23 $\mu_{\rm B}$), 4 (2.41 $\mu_{\rm B}$) and 5 (2.22 $\mu_{\rm B}$) are in good agreement with the

Scheme 2 Synthesis of 5-6.

NJC Paper

Fig. 7 Molecular structure of 6 with selective atom labelling, with displacement ellipsoids set at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected bond distances [A] and angles [o] for **6**: Ce(1)-N(1) 2.355(8), Ce(1)-N(2) 2.350(7), Ce(1)···Cp_{centroid}(1) 2.551(5), N(1)-Ce(1)-N(2) 119.0(3)

predicted magnetic moment for a Ce(III) 4f1 2F5/2 ground state $(2.54 \mu_{\rm B})^{19}$ and previously reported magnetic moments of Ce(III) complexes in the literature (range 1.88–2.75 $\mu_{\rm B}$). ²⁰

Conclusions

We have reported the synthesis and structural characterisation of a novel series of heteroleptic substituted Cp Ln complexes using salt metathesis methodologies. These include bis-substituted Cp^R Ln dimeric complexes with bridging iodides (2-3) and for the bulky Cp" ligand we were able to isolate a mono-ring Ce complex 4, as disubstitution was not possible for this ligand under the conditions employed. The monomeric Ce complex 5 was prepared by the reaction of 4 with [KN(SiMe₃)₂], triggering a ligand scrambling process which gave 5 in fair yield together with the mixed substituted Cp''' silylamide Ce complex 6 and $[Ce\{N(SiMe_3)_2\}_3]$. Although the yield of 5 is only moderate, it is considerable when compared to the previously reported low-yielding synthesis of the closely related La complex, [La(Cp''')₂(I)(py)].^{8b} Solid state characterisation of 2-6 provides in-depth knowledge of the structural features of these systems and this will help us to predict their reactivity profile. In our hands, complexes 2a-b and 5 have not shown any tendency to ligand scramble in both coordinating and non-coordinating solvents over experimental timescales. As such, we envisage that they will be useful precursors for the preparation and stabilisation of novel La/Ce-element bonding motifs, including the preparation of heterobimetallic species, by salt metathesis methodologies.

2 [Ce(Cp^R)(X)₂]
$$\Longrightarrow$$
 [Ce(Cp^R)₂(X)] + CeX₃
Cp^R = substituted Cp; X = Halide

Scheme 3 Ligand scrambling of heteroleptic mono-ring Ce complexes. 17

Experimental

Materials and methods

All manipulations were carried out using standard Schlenk and glove box techniques under an atmosphere of dry argon. Solvents were dried by refluxing over potassium and were degassed before use. All solvents were stored over potassium mirrors (with the exception of THF, which was stored over activated 4 Å molecular sieves). Deuterated solvents were distilled from potassium, degassed by three freeze-pump-thaw cycles, and stored under argon. KCp", 11 KCp''', ¹¹ KCp^{tt} , ¹² $[Ln(I)_3(THF)_4]$ (Ln = La, Ce)²¹ and $[KN(SiMe_3)_2]^{22}$ were prepared according to published procedures. KH was obtained as a suspension in mineral oil and was washed three times with hexane and dried in vacuo. ¹H, ¹³C(¹H) and ²⁹Si(¹H) NMR spectra were recorded on a spectrometer operating at 400.2, 100.6 and 79.5 MHz respectively; chemical shifts are quoted in ppm and are relative to TMS. FTIR spectra were recorded as Nujol mulls in KBr discs on a PerkinElmer Spectrum RX1 spectrometer. Elemental microanalyses were carried out by Stephen Boyer at the Microanalysis Service, London Metropolitan University, UK.

Synthetic procedures

 $[La(Cp'')_2(\mu-I)]_2$ (2a). A Schlenk flask was charged with KCp" (1.74 g, 7 mmol) and $[La(I)_3(THF)_4]$ (2.83 g, 3.5 mmol). The flask was cooled to -78 °C and THF (15 ml) was added dropwise with stirring. The yellow reaction mixture was allowed to warm slowly and stirred for 72 h, during which time a suspension formed. The mixture was allowed to settle for 2 hours and the suspension was filtered. The solvent was removed in vacuo (10^{-2} mbar) and the solid residue extracted with toluene (10 ml). The solution was concentrated to approximately 3 ml and stored at -30 °C to afford 2a as colourless crystals (1.16 g, 48%). On one occasion crystals of 2a-THF were found. Anal. calcd (%) for C₄₄H₈₄La₂I₂Si₈: C, 38.59; H, 6.18. Found: C, 38.47; H, 6.28. ¹H NMR (d_6 -benzene, 298 K): $\delta = 0.49$ (s, 72H, Si(C H_3)₃), 7.16 (m, 4H, Cp"-CH), 7.22 (m, 4H, Cp"-CH), 7.27 (m, 4H, Cp"-CH). ¹³C{¹H} NMR (d_6 -benzene, 298 K): $\delta = 1.51$ (Si(CH_3)₃), 123.32 (Cp''-C), 126.27 (Cp''-CH), 132.28 (Cp''-CH). ²⁹Si $\{^{1}H\}$ NMR $(d_6$ -benzene, 298 K): $\delta = -9.69$ (s, Si(CH₃)₃). FTIR (Nujol, cm⁻¹): $\nu = 1318$ (m), 1249 (br s), 1077 (s), 919 (s), 833 (br s), 752 (s), 690 (m).

[Ce(Cp")₂(μ-I)]₂ (2b). A Schlenk flask was charged with KCp" (4.97 g, 20 mmol) and [Ce(I)₃(THF)₄] (8.01 g, 10 mmol). The flask was cooled to -30 °C and THF (20 ml) was added dropwise with stirring. The reaction mixture was allowed to slowly warm to room temperature and then stirred for a further 16 hours. The mixture was allowed to settle for 2 hours and the suspension was filtered, giving a clear yellow solution. Volatiles were removed in vacuo (10⁻² mbar), affording a bright pink solid. Recrystallisation from toluene (30 ml) afforded 2b as a crystalline product (2.85 g, 42%). ¹H NMR (d_6 -benzene, 298 K): $\delta = -7.30$ (s, 4H, Cp"-CH), -6.88, (s, 4H, Cp''-CH), -3.23 (s, 36H, Si(CH₃)₃), -0.04 (s, 4H, Cp''-CH),0.29 (s, 36H, $Si(CH_3)_3$). Anal calcd (%) for $C_{44}H_{84}Ce_2I_2Si_8$: C, 38.39; H, 6.23. Found (%): C, 38.52; H, 6.18. μ_{eff} (Evans method, 298 K, d_6 -benzene): 2.79 μ_B . FTIR (Nujol, cm⁻¹): ν = 1260 (s), 1078 (br s), 919 (m), 836 (br m), 800 (br m).

Paper

 $[Ce(Cp^{tt})_2(\mu-I)]_2$ (3). A Schlenk flask was charged with KCp^{tt} (0.82 g, 4 mmol) and $[Ce(I)_3(THF)_4]$ (1.62 g, 2 mmol). The flask was cooled to -78 °C and THF (15 ml) was added dropwise with stirring. The yellow reaction mixture was allowed to slowly warm to room temperature and then stirred for a further 16 hours. The

was cooled to -78 °C and THF (15 mI) was added dropwise with stirring. The yellow reaction mixture was allowed to slowly warm to room temperature and then stirred for a further 16 hours. The mixture was allowed to settle for 2 hours and the suspension was filtered. Volatiles were removed *in vacuo* (10^{-2} mbar), affording a bright orange solid. The solid residue was extracted with toluene (8 ml) and stored at room temperature, affording 3 as an orange crystalline product (0.30 g, 24%). ¹H NMR (d_6 -benzene, 298 K): $\delta = -5.86$ (br m, 6H, Cp^{tt}-CH), -1.71, (br s, 72H, C(CH₃)₃), 0.29 (s, 2H, Cp^{tt}-CH), 1.13 (s, 4H, Cp^{tt}-CH). Anal calcd (%) for C₅₂H₈₄Ce₂I₂: C, 50.24; H, 6.81. Found (%): C, 49.88; H, 6.68. μ_{eff} (Evans method, 298 K, d_6 -benzene): 2.23 μ_{B} . FTIR (Nujol, cm⁻¹): $\nu = 1250$ (m), 1201 (w), 1165 (m), 1089 (w), 1054 (br m), 1021 (m), 819 (s), 810 (s), 767 (m).

[Ce(Cp''')(I)₂(THF)₂] (4). A THF (20 ml) solution of KCp''' (1.60 g, 5 mmol) was added dropwise to a THF (15 ml) slurry of $[Ce(I)_3(THF)_4]$ (4.05 g, 5 mmol) at -4 °C with stirring. A colour change to yellow with a white precipitate was observed, and the mixture was slowly warmed to room temperature and stirred for 72 hours. Volatiles were removed in vacuo, yielding a bright yellow powder. The solid was extracted with hexane (20 ml) and volatiles were removed in vacuo (10⁻² mbar), affording 4 as a yellow powder (2.39 g, 58%). A small crop of crystals were grown from hexanes (2 ml) at -25 °C. ¹H NMR (d_6 -benzene, 298 K): $\delta = -3.74$ (s, 18H, Si(CH₃)₃), -0.03 (s, 1H, Cp'''-CH), 0.27 (s, 1H, Cp'''-CH), 0.76 (s, 9H, $Si(CH_3)_3$), 2.25 (br m, 16H, THF). Anal calcd (%) for C₂₂H₄₅CeI₂O₂Si₃: C, 32.23; H, 5.53. Found (%): C, 32.08; H, 5.61. μ_{eff} (Evans method, 298 K, d_6 -benzene): 2.41 $\mu_{\rm B}$. FTIR (Nujol, cm⁻¹): $\nu = 1260$ (m), 1249 (m), 1092 (br m), 1019 (br m), 934 (w), 837 (br s), 723 (w).

 $[Ce(Cp''')_2(I)(THF)]$ (5) and $[Ce(Cp''')\{N(SiMe_3)_2\}_2]$ (6). A toluene (20 ml) solution of [KN(SiMe₃)₂] (1.00 g, 5 mmol) was added dropwise to a toluene (20 ml) solution of 4 (4.10 g, 5 mmol) at -20 °C with stirring. The reaction mixture was warmed to room temperature and stirred for 16 hours, forming a dark orange mixture with a white precipitate. The suspension was filtered, the solution concentrated to 5 ml and cooled to 4 °C, yielding orange crystals of 5. More crops of 5 were obtained from the supernatant liquid of the first crystallisation (2.36 g, 50%). From the third recrystallization several crystals with different morphologies were observed. These were identified as [Ce(N{SiMe₃}₂)₃] (orange needles) and 6 (orange blocks) via single crystal X-ray studies. Data for 5: ¹H NMR (d_6 -benzene, 298 K) $\delta = -5.75$ (s, 2H, Cp'''-CH), -5.34 (br s, 2H, Cp'''-CH), 0.30 (s, 36H, Si(CH₃)₃), 0.90 (s, 18H, Si(C H_3)₃). $\mu_{\rm eff}$ (Evans method, 298 K, d_6 -benzene): 2.22 $\mu_{\rm B}$. Anal calcd (%) for C₂₈H₅₈CeISi₆: C, 42.64; H, 7.27. Found: C, 42.72; H, 7.38 (%). FTIR (Nujol, cm⁻¹): $\nu = 1249$ (s), 1090 (s), 986 (s), 935 (m), 837 (br s), 753 (m).

Acknowledgements

We thank the EPSRC and The University of Manchester for generously supporting this work. This work was funded by the

Engineering and Physical Sciences Research Council (grant numbers EP/K039547/1 and EP/L014416/1).

Notes and references

- 1 G. Wilkinson and J. M. Birmingham, *J. Am. Chem. Soc.*, 1954, 76, 6210.
- 2 (a) S. Arndt and J. Okuda, *Chem. Rev.*, 2002, **102**, 1953;
 (b) F. T. Edelmann and V. Lorenz, *Coord. Chem. Rev.*, 2000, **209**, 99.
- (a) M. R. MacDonald, J. E. Bates, J. W. Ziller, F. Furche and W. J. Evans, J. Am. Chem. Soc., 2013, 135, 9857; (b) W. J. Evans, J. Alloys Compd., 2009, 488, 493; (c) W. J. Evans, Inorg. Chem., 2007, 46, 3435; (d) M. C. Cassani, D. J. Duncalf and M. F. Lappert, J. Am. Chem. Soc., 1998, 120, 12958; (e) W. J. Evans, S. L. Gonzales and J. W. Ziller, J. Am. Chem. Soc., 1991, 113, 7423.
- 4 (a) M. V. Butovskii, B. Oelkers, T. Bauer, J. M. Bakker, V. Bezugly, F. R. Wagner and R. Kempe, Chem. Eur. J., 2014, 20, 2804; (b) M. V. Butovskii, C. Döring, V. Bezugly, F. R. Wagner, Y. Grin and R. Kempe, Nat. Chem., 2010, 2, 741; (c) M. V. Butovskii, O. L. Tok, F. R. Wagner and R. Kempe, Angew. Chem., Int. Ed., 2008, 47, 6469; (d) I. P. Beletskaya, A. Z. Voskoboynikov, E. B. Chuklanova, N. I. Kirillova, A. K. Shestakova, I. N. Parshina, A. I. Gusev and G. K. I. Magomedov, J. Am. Chem. Soc., 1993, 115, 3156.
- 5 For other ligand systems see: (a) M. P. Blake, N. Kaltsoyannis and P. Mountford, *Chem. Commun.*, 2013, 49, 3315; (b) P. L. Arnold, J. Mc Master and S. T. Liddle, *Chem. Commun.*, 2009, 818; (c) S. T. Liddle, *Proc. R. Soc. A*, 2009, 465, 1673.
- 6 (a) D. Patel and S. T. Liddle, Rev. Inorg. Chem., 2012, 32, 1;
 (b) S. T. Liddle and D. P. Mills, Dalton Trans., 2009, 5592.
- 7 See, for example: (a) S. P. Green, C. Jones and A. Stasch, Science, 2007, 318, 844; (b) T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger, G. J. Long and P. P. Power, Science, 2005, 310, 1754; (c) I. Resa, E. Carmona, E. Gutierrez-Puebla and A. Monge, Science, 2004, 305, 1136.
- 8 (a) L. Maron, E. L. Werkema, L. Perrin, O. Esienstein and R. A. Andersen, J. Am. Chem. Soc., 2005, 127, 2792; (b) G. R. Giesbrecht, G. E. Collis, J. C. Gordon, D. L. Clark, B. L. Scott and N. J. Hardman, J. Organomet. Chem., 2004, 689, 2177; (c) Z. Xie, K. Chui, Q. Yang, T. C. W. Mak and J. Sun, Organometallics, 1998, 17, 3937; (d) E. B. Lobkovsky, Yu. K. Gun'ko, B. M. Bulychev, V. K. Belsky, G. L. Soloveichik and M. Yu. Antipin, J. Organomet. Chem., 1991, 406, 343; (e) W. J. Evans, J. M. Olofson, H. Zhang and J. L. Atwood, Organometallics, 1988, 7, 629.
- (a) T. Mehdoui, J.-C. Berthet, P. Thuéry and M. Ephritikhine, Dalton Trans., 2005, 1263; (b) T. Mehdoui, J.-C. Berthet, P. Thuéry and M. Ephritikhine, Chem. Commun., 2005, 2860; (c) P. N. Hazin, C. Lakshminarayan, L. S. Brinen, J. L. Knee, J. W. Bruno, W. E. Streib and K. Folting, Inorg. Chem., 1988, 27, 1393; (d) M. D. Walter, D. Bentz, F. Weber, O. Schmitt, G. Wolmershäuser and H. Sitzmann, New J. Chem., 2007, 31, 305.
- 10 (a) M. P. Coles, P. B. Hitchcock, M. F. Lappert and A. V. Protchenko, *Organometallics*, 2012, 31, 2682;

- (b) P. B. Hitchcock, M. F. Lappert, L. Maron and A. V. Protchenko, Angew. Chem., Int. Ed., 2008, 47, 1488; (c) Y. K. Gun'ko, P. B. Hitchcock and M. F. Lappert, Organometallics, 2000, 19, 2832; (d) M. C. Cassani, Y. K. Gun'ko, P. B. Hitchcock, M. F. Lappert and F. Laschi, Organometallics, 1999, 18, 5539; (e) Z. Xie, K. Chui, Z. Liu, F. Xue, Z. Zhang, T. C. W. Mak and J. Sun, J. Organomet. Chem., 1997, 16, 239; (f) M. C. Cassani, Y. K. Gun'ko, P. B. Hitchcock and M. F. Lappert, Chem. Commun., 1996, 1987; (g) Y. K. Gun'ko, P. B. Hitchcock and M. F. Lappert, J. Organomet. Chem., 1995, 499, 213; (h) C. D. Sofield and R. A. Andersen, J. Organomet. Chem., 1995, 501, 271; (i) Y. K. Gun'ko, B. M. Bulychev, G. L. Soloveichik and V. K. Belsky, J. Organomet. Chem., 1992, 424, 289; (j) S. D. Stults, R. A. Andersen and A. Zalkin, Organometallics, 1990, 9, 115; (k) P. N. Hazin, J. W. Bruno and G. K. Schulte, Organometallics, 1990, 9, 416.
- 11 M. J. Harvey, T. P. Hanusa and M. Pink, J. Chem. Soc., Dalton Trans., 2001, 1128.
- 12 F. Jaroschik, F. Nief, X.-F. Le Goff and L. Ricard, *Organometallics*, 2007, 26, 3552.
- 13 W. W. Lukens Jr., S. M. Beshouri, L. L. Blosch, A. L. Stuart and R. A. Andersen, *Organometallics*, 1999, **18**, 1235.

- 14 A. Gavezzotti, Acta Crystallogr., Sect. B: Struct. Sci., 1996, 52, 201.
- 15 G. R. Giesbrecht, D. L. Clark, J. C. Gordon and B. L. Scott, *Appl. Organomet. Chem.*, 2003, 17, 473.
- 16 (a) P. N. Hazin, J. C. Huffman and J. W. Bruno, Organometallics, 1987, 6, 23; (b) M. D. Rausch, K. J. Moriarty, J. L. Atwood, J. A. Weeks, W. E. Hunter and H. G. Brittain, Organometallics, 1986, 5, 1281.
- 17 H. J. Heeres, A. Meetsma, J. H. Teuben and R. D. Rogers, *Organometallics*, 1989, **8**, 2637.
- 18 (a) D. F. Evans, J. Chem. Soc., 1959, 2003; (b) S. K. Sur, J. Magn. Reson., 1989, 82, 169; (c) D. H. Grant, J. Chem. Educ., 1995, 72, 39.
- 19 J. H. van Vleck, Theory of Electric and Magnetic Susceptibilities, Oxford University Press, Oxford, UK, 1932.
- 20 See, for example: (a) A. J. Wooles, D. P. Mills, W. Lewis, A. J. Blake and S. T. Liddle, *Dalton Trans.*, 2010, 39, 500;
 (b) G. Marshall, A. J. Wooles, D. P. Mills, W. Lewis, A. J. Blake and S. T. Liddle, *Inorganics*, 2013, 1, 46.
- 21 K. Izod, S. T. Liddle and W. Clegg, Inorg. Chem., 2004, 43, 214.
- 22 K. F. Tesh, T. P. Hanusa and J. C. Huffman, *Inorg. Chem.*, 1990, 29, 1584.