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Property-based characterization of kinase-like
ligand space for library design and virtual
screening†

Dávid Bajusz, György G. Ferenczy and György M. Keserű*

A property-based desirability scoring scheme has been developed for kinase-focused library design and

ligand-based pre-screening of large compound sets. The property distributions of known kinase inhibitors

from the ChEMBL Kinase Sarfari database were investigated and used for a desirability function-based

score. The scoring scheme is easily interpretable as it accounts for six molecular properties: topological

polar surface area and the number of rotatable bonds, hydrogen bond donors, aromatic rings, nitrogen

atoms and oxygen atoms. The performance of the Kinase Desirability Score (KiDS) is evaluated on both

public and proprietary experimental screening data.

Introduction

Phosphorylation is a ubiquitous signaling and regulating
mechanism in living organisms. Kinases are enzymes that
carry out the phosphorylation of mostly other proteins or
other types of substrates. They function by transferring a
phosphate group from a bound ATP molecule to a Ser/Thr/Tyr
residue on the substrateĲs). There are more than 500 protein
kinases encoded in the human genome,1 accounting for a
total of 2% of all human genes.2 Abnormalities in protein
phosphorylation are precursors to a variety of malignancies
ranging from cancer to autoimmune diseases: for many of
them, small-molecule inhibition of the involved protein
kinase has been shown to be an effective therapy. Conse-
quently, protein kinases currently constitute the second most
exploited drug target class after GPCRs.3

Since kinases have one well-defined function and share
their endogenous ligand (ATP), their ATP-binding pockets are
very well-conserved across the whole kinome. Thus, medici-
nal chemists face a great challenge in designing kinase inhib-
itors with sufficient selectivity towards the given target to
avoid unwanted side effects. Even though the field has seen
the advent of type II inhibitors in the 2000s,4 the majority of
reported kinase inhibitors are still type I ligands. (Type II
inhibitors bind to the inactive or “DFG-out” conformation of
kinases as opposed to type I inhibitors which bind to the

ATP-binding pocket in an active or “DFG-in” conformation.)
Moreover, as our understanding of the mechanism of action
of type II inhibitors improves, it is becoming clearer that this
class of compounds is not inherently more selective than ATP-
site inhibitors.5 Thus, the predominant approach towards
kinase inhibitor design is still the small-molecule targeting of
the ATP-site, even more so as the majority of available struc-
tural and biochemical data refer to type I inhibitors.

Virtual screening has been proven to be a useful approach
in the hit discovery of kinase targets.6,7 However, due to the
significant increase of the commercially and/or synthetically
available drug-like (and lead-like) chemical space, structure-
based screening methods are facing capacity challenges. As a
solution, less accurate but quicker filters can be applied prior
to the actual virtual screening (e.g. docking) to derive a more
focused dataset of manageable size.

Various approaches have been applied previously to assem-
ble kinase-focused compound libraries (virtual and physical
as well), including substructure-based methods8–13 and
similarity-based methods.14–16 Most recently, Singh and
coworkers explored the possibility of characterizing kinase-
like ligands based on physicochemical descriptors.17 With the
increasing amount of publicly available inhibitor activity
data,18 this approach becomes an attractive opportunity, since
substructure- and similarity-based methods inherently
retrieve molecules that are structurally similar to the reference
compoundĲs), limiting the ability to identify inhibitors
with novel scaffolds. In contrast, property-based methods do
not have this limitation. The Kinase-Like Score (KLS) intro-
duced by Singh and coworkers characterizes kinase-like
ligand space on a statistical basis: it considers nine descrip-
tors and scores them according to a formula that assumes a
normal distribution.
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A suitable MPO (multi-parameter optimization19) method
for compound profile optimization is the desirability func-
tion.20,21 The essence of the underlying concept is that for
each descriptor, a tailor-made scoring function is introduced,
which reflects the “desirability” of the various possible values
of that descriptor (e.g. how prevalent that descriptor value is
among reference compounds). Desirability functions usually
take values between 0 and 1, and generally either a sum or a
product of the individual scores is calculated at the end of
the process to produce the overall desirability score. Recent
examples of studies that involve desirability function-based
optimizations include Cruz-Monteagudo and coworkers'
paper on global QSAR studies,22 Avram and coworkers' article
on the characterization of pesticide-like compounds,23 and a
GPCR-focused library design implementation by our group.24

In this paper, we present a desirability function-based
scoring scheme (Kinase Desirability Score or KiDS) using
topological descriptors to screen kinase-like ligands. Based
on this study, KiDS can be applied as a pre-filter for kinase-
like ligands in virtual screening campaigns, or alternatively,
it might support the design of kinase-focused libraries.

Methods

We have developed and tested a desirability function-based
scoring scheme (KiDS) for the quick and computationally
efficient filtering of large compound collections. The study
mostly involved enrichment tests on datasets, where known
kinase inhibitors were mixed into a larger set of random mol-
ecules from a commercial compound database. A thorough
external validation was also carried out on publicly available
(PubChem Bioassay) and proprietary (Gedeon Richter Plc.)
HTS datasets. We have also examined the correlation between
KiDS score and kinase promiscuity using full matrix data
from the EMD Millipore Kinase Screening dataset in
ChEMBL.25 The following sections cover the applied compu-
tational methods in more detail.

Database retrieval

Structure and activity data of known kinase inhibitors (used
as actives) were retrieved from the ChEMBL Kinase Sarfari
database (version 17).26 Duplicate entries were removed and
the largest fragment was kept for each entry. Only those mol-
ecules with a corresponding activity measurement of type B
(“Binding”, such as IC50 or Ki in an enzyme-based assay) were
kept and the activity values were converted to IC50, where Ki

or Kd was provided. For molecules with multiple activities,
the lowest IC50 values were kept. Actives were defined as mol-
ecules that exhibit an IC50 value ≤ 10 μM on at least one
kinase. The Mcule Purchasable Compounds Database was
utilized as the source of random molecules (identified as
non-actives),27 which were filtered to exclude any known
kinase actives present in the ChEMBL Kinase Sarfari or the
PubChem test set (see below). To reduce the effect of molecu-
lar size, the input databases were focused on lead-like com-
pounds, as defined by Teague and co-workers (250 ≤ MW ≤

350, logP ≤ 3.5, rotB ≤ 7).28 Several datasets were compiled,
where actives and non-actives were mixed in an approxi-
mately 1 : 9 ratio. The Training set contained 2500 actives
from ChEMBL and 22 803 non-actives from Mcule, while Test
set 1 counted 1923 actives (ChEMBL) and 18 000 non-actives
(Mcule), and Test set 2 counted 730 actives (PubChem29) and
6300 non-actives (Mcule). Both test sets were used for exter-
nal validation. An additional effort for external validation
involved the exchange of random molecules: in Test sets Z,
1Z and 2Z, the non-actives from Mcule were exchanged to
20 000 randomly selected lead-like compounds from ZINC30,31

(while the kinase actives were the same as in the Training set
and Test sets 1 and 2, respectively). The open source
cheminformatics platform KNIME (version 2.9.1) was used
for all dataset operations.32 The removal of counter ions and
calculation of molecular descriptors were carried out with the
KNIME implementation of JChem software (version 6.3.0),
using Standardizer and Calculator Plugins.33 The KNIME
workflow for the calculation of KiDS is available on our
website: http://medchem.ttk.mta.hu. A quick visual reference
for the calculation of KiDS is provided in Fig. 1.

Desirability functions

Scoring (classifier) variables were selected from a pool of
commonly used molecular descriptors: molecular weight, log
P, TPSA, pKa of the most acidic and basic centers and the
number of hydrogen bond acceptors and donors, heavy
atoms, rings, rotatable bonds, nitrogen and oxygen atoms,
and aromatic, aliphatic and fused rings. (For the actual
descriptors that finally constituted the Kinase Desirability
Score, see the “Results” section.) As a first measure of inspec-
tion, Mann–Whitney U tests were carried out to establish
whether the differences in the medians of the descriptors are
statistically significant. The descriptors were tested for 2500
active and 2500 non-active molecules from the Training set
and the results were significant at the p = 0.05 level (in fact, p
values approximated 0). Since there is a known trend for sta-
tistical tests to be more sensitive as the size of the sample

Fig. 1 Workflow representation of the calculation of KiDS. The last
step corresponds to the application of KiDS as a filtering criterion.
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increases, we have inspected the distributions visually as well
(on categorized histograms) and preferred those descriptors
for which substantial differences were detected. For statistical
testing and histogram plotting, STATISTICA 12 was applied.34

The desirability functions as introduced by Harrington20

and Derringer21 were defined for a number of molecular
descriptors as custom-made functions that assign a value
between 0 and 1 (desirability score) to each possible descriptor
value. Generally, the assigned desirability scores were higher
as the prevalence of the given descriptor value was higher
among actives and lower among non-actives. (For a more
detailed description, see the “Results” section and Fig. S1–
S6.†) The additive approach was taken to summarize the sepa-
rate desirabilities based on the descriptors, i.e. the overall
Kinase Desirability Score was defined as the sum of the desir-
ability scores obtained for the descriptors independently.

Evaluation

To assess the performance of the scoring scheme, enrich-
ment studies were carried out on the Training set and on the
two independent Test sets. The enrichment factors (EF) at
0.5%, 1%, 2% and 5%, receiver operating characteristic
curves (ROC) and area under the ROC curve (AUC) values
were calculated to evaluate the results. The enrichment fac-
tors were defined as suggested by Jain and Nicholls35 to pro-
vide a size-independent measure of early enrichment:

EFx% = (TPRx%)/x%, (1)

i.e. the enrichment factor is equal to the ratio of the true pos-
itive rate and the false positive rate for a given false positive
rate x% (in other words, Y/X for a specific point in the ROC
curve). Conventional enrichment factors, defined as:

EFx% = (Nact,x%/Nx%)/(Nact/N) (2)

were also calculated and included in the ESI.† (Here, Nact,x%

and Nx% are the number of actives and the total number of
compounds in the top x% of the ranked list (respectively),
while Nact and N are the number of actives and the total
number of compounds in the whole dataset, respectively.)

The ROC curve is the plot of %(true positives) vs. %(false
positives) for the ranked list of objects (here, molecules). The
straight diagonal line is a reference that corresponds to a
random classification. AUC is the area under the ROC curve
which is calculated numerically. 95% confidence intervals are
reported for both the AUC values and the enrichment factors
as elaborated by Nicholls.36

Results
Development of the scoring scheme

Six descriptors were chosen to be included in the Kinase
Desirability Score: topological polar surface area (TPSA) and
the number of rotatable bonds (rotB), nitrogen atoms (NN),
oxygen atoms (NO), aromatic rings (Arom) and hydrogen

bond donors (HBD). For discrete descriptors (all of the above
except for TPSA), desirability scores are assigned based on a
simple decision matrix presented in Table 1. The score for a
given property value is assigned based on robust statistical
parameters (the median and the interquartile range) of that
property among kinase actives and random molecules. (For
example, if the property value for a compound is inside the
interquartile range of that property for kinase actives, but
outside of the interquartile range for random molecules, the
desirability score assigned to that property is 1.) For the
TPSA, the score continuously increases from 0 to 1 between
the median TPSAs of random molecules and kinase actives,
and decreases to 0 as it approaches the top of the upper
quartile for kinase actives (see Fig. S1†). The graphical repre-
sentations of the desirability functions are reported in Fig.
S1–S6,† while the definitions of the functions are reported in
Table S1.†

From the distributions of these descriptors among kinase-
like and random molecules, the following general observa-
tions can be drawn: among kinase-like compounds, less oxy-
gen atoms and rotatable bonds, higher polar surface area,
and more aromatic rings, nitrogen atoms and hydrogen bond
donors are preferred than what can be observed for random
compounds. These differences are reflected in the definitions
of the desirability functions of KiDS.

Evaluation of the scoring scheme

Performance on the Training and Test sets. The ROC
curves presented in Fig. 2 display high AUC values, together
with a steep initial curve that corresponds to good early
enrichments (see Table 2). Early enrichments are especially
important when a small portion of the top scoring functions
is sought while the general character of the ROC curve and
the good AUC value are substantial when a larger part of the
screened dataset is selected for subsequent studies. The
results suggest the applicability of KiDS for both scenarios.
(Conventional enrichment factors are reported in Table S2,†
while categorized histograms of the KiDS distributions are
presented in Fig. S7–S9†).

External validation has been carried out on Test sets 1
and 2, and clearly the deterioration of the results (with
respect to the Training set) is negligible, confirming the
robustness of the scoring method. An additional external vali-
dation was carried out to verify the robustness of the Kinase

Table 1 Decision matrix for the assignment of desirability scores

Median (act.) IQR (act.) Other (act.)

Median (rand.) —a 0.5 0
IQR (rand.) 1 0.5 0
Other (rand.) 1 1 0, 0.2b

a No descriptors were selected where the medians of the kinase
actives and random molecules coincide. b In cases where a value is
outside the interquartile range (IQR) for both sets, a score of 0.2 is
assigned when the given value is visibly more common among
kinase actives than random molecules (see Fig. S1–S6).
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Desirability Score: the random compounds from Mcule (in the
Training and both Test sets) were exchanged to a set of 20 000
random lead-like compounds from ZINC to assess whether the
scoring method is dependent on the starting dataset (Fig. 2B).
The deterioration of the performance parameters was negligi-
ble, suggesting that the performance of KiDS does not depend
significantly on the source of the examined database. (Enrich-
ment factors and AUC values are reported in Tables S3 and
S4†). The active : non-active ratio on the other hand influences
this performance as shown in the next section.

KiDS also outperforms the Kinase-Like Score (KLS) of
Singh et al.17 (presented in Fig. 2 as a reference), justifying
its use for the mentioned purposes. An explanation for the
improved performance of KiDS relative to the Kinase-Like
Score (KLS)17 is that while KLS accounts only for the property

distributions of kinase actives, KiDS considers the differences
between kinase actives and random, commercially available
compounds. The same can be specified as the reason for KLS
being sensitive to the source of random compounds, while
KiDS is not (Fig. 2B). In this context, it is worth noting that
the ability to distinguish and characterize different com-
pound databases was a key requirement during the develop-
ment of KLS. While the primary purpose of KLS was to exam-
ine compound databases, KiDS was developed with the
intention of providing a general tool for property-based pre-
screening for structure-based virtual screens and as such, it
provides a better alternative for this task than KLS.

Performance on screening datasets. As an additional mea-
sure to validate the Kinase Desirability Score, one proprietary
(Gedeon Richter) and three publicly available (PubChem

Fig. 2 Evaluation of the Kinase Desirability Score. (A) ROC curves of the evaluation of the Training and Test sets with KiDS. In addition to the AUC
values being close to 0.8, the initial slopes are quite high, which corresponds to good early enrichment factors (as reported in Table 2). A
negligible deterioration of the results is observable for the Test sets (relative to the Training set), which suggests that the predictive power of the
scoring method is sufficiently high, and thus it can be used for prospective applications. A ROC curve acquired for the Training set with the
application of the Kinase-Like Score (KLS) of Singh et al.17 is provided as a reference (thick black line). (B) Additional validation has been carried out
with a different set of non-actives. The actives from the Training and Test sets were mixed with 20000 randomly selected lead-like molecules
from the ZINC lead-like subset30,31 to produce Test sets Z, 1Z and 2Z. The results are consistent with the curves presented in (A), confirming that
no deterioration of performance was observed upon the exchange of the source of random compounds. A reference curve is provided once again
for Test set Z with the KLS score of Singh et al.17

Table 2 Performance evaluation of the Kinase Desirability Score: early enrichment factors and AUC values

Dataset Active
Random
compounds

EF0.5%
a EF1%

a

KiDS KLSb KiDS KLSb

Training 2500 22 803 23.2 (1.9 × 10−2) 1.90 (5.1 × 10−3) 14.2 (9.9 × 10−3) 1.79 (3.5 × 10−3)
Test 1 1923 18 000 22.6 (2.4 × 10−2) 1.87 (6.5 × 10−3) 14.0 (1.3 × 10−2) 1.40 (3.9 × 10−3)
Test 2 730 6300 18.9 (6.1 × 10−2) 3.78 (2.6 × 10−2) 14.8 (3.6 × 10−2) 3.15 (1.7 × 10−2)

EF2%
a EF5%

a AUCa

KiDS KLSb KiDS KLSb KiDS KLSb

10.6 (5.6 × 10−3) 1.78 (2.4 × 10−3) 7.1 (2.5 × 10−3) 1.44 (1.3 × 10−3) 0.786 (9.6 × 10−3) 0.544 (0.012)
10.9 (7.2 × 10−3) 1.46 (2.8 × 10−3) 6.9 (3.2 × 10−3) 1.33 (1.7 × 10−3) 0.778 (0.011) 0.537 (0.014)
9.9 (1.9 × 10−2) 2.81 (1.1 × 10−2) 6.2 (8.6 × 10−3) 1.81 (5.3 × 10−3) 0.757 (0.019) 0.532 (0.023)

a 1.96σ values (corresponding to 95% confidence intervals) are given in parentheses.36 b Performance parameters obtained for the same
datasets with the KLS score of Singh et al. are provided as a reference.17
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Bioassay) HTS datasets were subjected to scoring and evalua-
tion with KiDS (and also with KLS as a reference). With this
calculation, we assess whether the application of KiDS as a
pre-filtering step increases the chance of finding active mole-
cules in a smaller portion of the entire HTS set (thus reduc-
ing the effective cost of finding an active molecule). Since

KiDS was developed for the pre-screening of lead-like mole-
cules, the HTS sets were first focused on this size range.28

Table 3 summarizes the composition of these (pre-filtered)
HTS sets, as well as the AUC values of their evaluation with
KiDS and KLS.17 The ROC curves of the evaluations are
presented in Fig. 3. (Due to the very small number of

Table 3 Summary of the HTS sets applied for external validation

#a AIDb Target
Activity threshold
(μM)c

Confirmed
active Inactive

KiDS
AUCd

KLS
AUCd,e

A GR Undisclosed kinase target 70% f 28 7480 0.574 0.397
(0.110) f (0.116)

B 524 (screening) Protein kinase A (PKA) 60 40 22 447 0.700 0.557
548 (confirmatory) (0.075) (0.086)

C 604 (screening) Rho-associated protein
kinase 2 (ROCK2)

10 35 20 895 0.682 0.603
644 (confirmatory) (0.080) (0.083)

D 619 (screening) Polo-like kinase 1 (PLK1) 50 14 30 336 0.791 0.523
785 (confirmatory) (0.102) (0.131)

a Panel identifier in Fig. 3. b PubChem Bioassay IDs (where applicable). GR: Gedeon Richter Plc. proprietary HTS dataset. c IC50 value, below
which a molecule is considered a confirmed active. d 1.96σ values (corresponding to 95% confidence intervals) are given in parentheses.36
e AUC values obtained for the same datasets with the KLS score of Singh et al. are provided as a reference.17 f 70% inhibition at an HTS
screening concentration of 10 μM (as a confirmation, single-point inhibition measurements were carried out at 10 μM in duplicate).

Fig. 3 External validation of KiDS on proprietary (A) and publicly available (B–D) datasets of HTS campaigns (see Table 3 for details). The ROC
curves suggest the applicability of KiDS as a pre-screening step in HTS campaigns to reduce the necessary instrumentation (and thus, the effective
cost) for finding hit compounds.
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confirmed actives, enrichment factors are not reported for
these datasets.)

It is apparent from the results that the scoring of the scre-
ened datasets with KiDS is effective in selecting a subset
enriched with kinase ligands. For example, the experimental
testing of the top half of the HTS set published as AID 604 in
the PubChem Bioassay (Fig. 3C) would result in identifying
80% of the actives that are found during the testing of the
whole dataset. A similar result is obtained for AID 524 while
KiDS gave somewhat inferior results for the Gedeon Richter's
HTS (60% confirmed actives in the top scored 50%) and
performed better for AID 619 where over 90% of actives are
identified in the top scored 50% set. (Clearly, the perfor-
mance is worse than for the Training and Test sets presented
earlier, but that can be attributed to the much lower active :
inactive ratios of the PubChem Bioassay HTS sets.) Moreover,
KiDS proved to be superior to KLS in each case. These results
support the fact that the application of KiDS as a pre-filtering
step can reduce the effective cost of finding active molecules
in a kinase-directed high-throughput screening.

KiDS and kinase promiscuity. To examine the relationship
between KiDS and the likeliness of activity on a kinase, we
have calculated the KiDS scores for the EMD Millipore Kinase
Screening dataset in ChEMBL.25 The dataset contains 158
well-known kinase inhibitors, out of which 40 are lead-like.28

Promiscuity was defined as the number of kinase targets on
which a compound is active. (Actives were defined as those
compounds that exhibit ≤50% residual activity in a screening
concentration of 1 or 10 μM.) It is important to stress that
the purpose of KiDS is not the selection of promiscuous com-
pounds: correlating KiDS to the promiscuity of well character-
ized compounds only serves as a tool here to assess the
likeliness of a given compound to be active on an arbitrary
kinase. In Fig. 4, a significant linear correlation can be

observed between KiDS and the average number of kinases
hit (with a correlation coefficient of R2 = 0.838). In other
words, a higher KiDS score does confer a higher chance of
finding the given compound to be active on an arbitrary
kinase of interest.

Conclusions

Virtual screening of large chemical databases is one of the
most powerful strategies in generating viable chemical
starting points for kinase inhibitor discovery programs.6,7

Structure-based methods, however, are increasingly demand-
ing computationally as the size of the screened database
increases. Although substructure- and similarity-based screen-
ing methods are faster, they are less likely to identify structur-
ally novel hit compounds, and thus they are less suited to
expand the chemical space of kinase inhibitors. To get around
this problem, we identified property-based pre-screening as a
useful step prior to structure-based approaches.

In this study we introduced a molecular property-based
scoring scheme, the Kinase Desirability Score (KiDS). The
scoring scheme involves custom desirability functions based
on six molecular descriptors: topological polar surface area
(TPSA) and the number of rotatable bonds (rotB), nitrogen
atoms (NN), oxygen atoms (NO), aromatic rings (Arom) and
hydrogen bond donors (HBD). Scores between 0 and 1 are
assigned to each of the descriptors and summed up to give
the Kinase Desirability Score. KiDS is flexible in the sense that
it does not impose very strict constraints regarding either of
the involved molecular properties. Therefore, it allows for the
identification of structurally novel kinase inhibitors.

KiDS was developed and tested using a dataset of known
kinase inhibitors (ChEMBL) and random compounds from
commercial compound databases (Mcule and ZINC), and its
performance was assessed with early enrichment factors,
ROC curves and AUC values on Training and independent
Test sets. External validation also involved testing its perfor-
mance on proprietary and public HTS datasets as well as full
matrix screening data. In the latter case, a significant correla-
tion between the KiDS score and kinase promiscuity could be
observed.

The good and consistent performance parameters suggest
that KiDS is useful as a pre-screening step in virtual screen-
ing workflows and for kinase-focused library design, as well.
It also presents a more efficient alternative for these tasks
than the previously suggested Kinase-Like Score (KLS). In
HTS campaigns, a KiDS-based pre-screening can reduce the
effective cost of finding hit compounds.

Abbreviations

AUC Area under the (ROC) curve
EF Enrichment factor
GPCR G-protein coupled receptor
HBD Number of hydrogen bond donors
IC50 Half maximal inhibitory concentration

Fig. 4 Plot of KiDS vs. average number of kinases hit for the EMD
Millipore Kinase Screening dataset in ChEMBL.25 For each point (X, Y),
Y is equal to the number of kinases hit averaged over the compounds
possessing a KiDS score less than or equal to X. A significant linear
correlation can be observed between the KiDS score and kinase
promiscuity, with R2 = 0.838.
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IQR Interquartile range
KiDS Kinase Desirability Score
logP Logarithm of the n-octanol/water partition coefficient
MPO Multi-parameter optimization
QSAR Quantitative structure–activity relationship
ROC Receiver operating characteristic
rotB Rotatable bond count
TPSA Topological polar surface area
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