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We have explored the possibilities and challenges of structure-based virtual screening (SBVS) against the

human histamine H4 receptor (H4R), a key player in inflammatory responses. Several SBVS strategies,

employing different H4R ligand conformations, were validated and optimized with respect to their ability to

discriminate small fragment-like H4R ligands from true inactive fragments, and compared to ligand-based

virtual screening (LBVS) approaches. SBVS studies with a molecular interaction fingerprint (IFP) scoring

method enabled the identification of H4R ligands that were not identified in LBVS runs, demonstrating the

scaffold hopping potential of combining molecular docking and IFP scoring. Retrospective VS evaluations

against H4R homology models based on the histamine H1 receptor (H1R) crystal structure did not give

higher enrichments of H4R ligands than H4R models based on the beta-2 adrenergic receptor (β2R). Com-

plementary prospective SBVS studies against β2R-based and H1R-based H4R homology models led to the

discovery of different new fragment-like H4R ligand chemotypes. Of the 37 tested compounds, 9 frag-

ments (representing 5 different scaffolds) had affinities between 0.14 and 6.3 μM at the H4R.
Introduction

The histamine H4 receptor (H4R), belonging to the family of
G protein-coupled receptors (GPCRs),1 has been reported to
play an important role in allergic and inflammatory
processes.2–6 So far, one H4R ligand has entered Phase II clin-
ical trials,2,4 but no marketed drug currently targets this
receptor. The quest to find new ligands for H4R therefore
remains attractive. Most H4R ligands (including compounds
JNJ777120 (2) and VUF10497 (3); Fig. 1) have resulted from
high-throughput screening (HTS) campaigns and subsequent
medicinal chemistry programs.4–8

Fragment-based drug discovery (FBDD)9–11 is a new para-
digm in drug discovery that utilizes small molecules (molecu-
lar weight ≤300 Dalton, heavy atoms ≤22)12–14 as starting
points for hit optimization. Within the context of FBDD,
fragment-based screening is a more efficient way to sample
chemical space and generally yields higher hit rates than
n., 2015, 6, 1003–1017 | 1003

activity of histamine (1),
,81 and the flowchart of
ective VS protocols. See
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classical high-throughput screening (HTS) campaigns of
larger, drug-like compound.11,14,15 Biochemical and biophysi-
cal fragment screening studies of small chemical libraries
(circa 25–1010 compounds) against different GPCRs have
been reported with 0.4–14% hit rates yielding several new
chemical starting points for fragment-based GPCR ligand
optimization.14,16–22 So far only few experimental screens of
the same fragment library against multiple GPCR targets
have been reported14,16 that can provide information about
the molecular determinants of GPCR-ligand selectivity by
fragment-based chemogenomics analyses.14,23

Virtual fragment screening approaches, the in silico pre-
diction of fragment binding to protein binding sites that has
the potential to explore protein–ligand space more exten-
sively, have been successfully applied to identify new
fragment-like ligands for several GPCR targets, with 20–73%
hit rates (% of experimentally tested in silico hits with detect-
able binding affinity).18,20,22,24–27 While ligand-based virtual
screening methods often only allow the identification of
chemically similar ligands, protein-based virtual screening
approaches potentially offer the possibility of scaffold hop-
ping, the discovery of ligands with new chemical functional
groups.24,28–30 GPCR structure-based virtual fragment screen-
ing (SBVFS),18,22,24–26 the identification of smaller fragment-
like molecules by docking simulations31 of large chemical data-
bases in GPCR 3D structures, is however, still challenging
and several problems have been identified including: (i) Con-
formational sampling problem: proper consideration of protein
flexibility in docking simulations is difficult and small differ-
ences between experimentally-determined crystal structures,
as well as structural inaccuracies in protein homology
models, can affect sampling and scoring of different GPCR-
ligand conformations.32–35 In particular, docking small frag-
ments in a large binding pocket may result in multiple dis-
tinct binding modes with similar docking scores.36–38 (ii)
Scoring problem: the ability of docking scoring functions to
rank ligand docking poses in order to predict ligand binding
modes and discriminate ligands from inactive molecules
depends on the properties of the GPCR binding site and fine
details of GPCR-ligand interactions.27,30,34,39,40 Moreover,
docking scoring functions are generally not optimized for dis-
criminating docking poses of small fragment-like molecules
with comparable energy scores.36–38

(iii) Training problem: There are limited experimental data
on true inactive fragment-like compounds that are required
to optimize and validate structure-based virtual screening
approaches.14,20,25 Furthermore, experimentally-determined
crystal structures of the targeted protein in complex with
fragment-like ligands are often lacking, and therefore cannot
be used to validate structure-based virtual fragment screening
approaches.

Several recent developments in the field of GPCR struc-
tural biology and FBDD can help to address these conforma-
tional sampling, scoring, and training problems associated
with structure-based virtual fragment screening. In the past
eight years crystal structures of 27 different GPCRs have been
1004 | Med. Chem. Commun., 2015, 6, 1003–1017
solved,41–43 including the adrenergic beta-2-receptor (β2R)
44

and histamine H1 receptor (H1R).
45 Structure-based virtual

screening (SBVS) campaigns against GPCR crystal structures
(in particular β2R,

46 adenosine A2A receptor (A2AR),
47,48 dopa-

mine D3 receptor (D3R),
39 5-hydroxytryptamine receptor 2B

(5HT2BR),
49 and H1R

24 have resulted in relatively high hit
rates (24–73%) and yielded several small fragment-like
ligands (≤22 heavy atoms).18,22,27 Although some successful
SBVS studies with high hit rates (>20%) have also been
reported based on GPCR homology models,39,50,51 the GPCR
crystal structures seem to offer improved opportunities to
push the limits of structure-based ligand discovery and
design,18,20,22,24,27,30,52 including the application of virtual
fragment screening to GPCRs.22,27,30,52 The increasing num-
ber of GPCR crystal structures for different GPCR subfamilies
furthermore offer higher-resolution templates for modeling
the structures of GPCRs for which crystal structures have not
yet been solved.30,32,33,35,53 Three-dimensional H4R-ligand
binding-mode models have been derived by (combining)
ligand-based and protein-based modeling approaches, ligand
structure–activity relationships, and site-directed mutagenesis
studies.54–61 Experimentally validated homology models of
human H4R have been constructed based on bovine Rhodop-
sin (bRho),54–56 β2R,

58,59,62 and more recently the H1R crystal
structure.26,60,61 Although H4R shares more ligands with H1R
than with β2R,

23 sequence identity between the H4R and H1R
binding site (28%) is only slightly higher than between the
H4R and β2R binding site (26%, ESI† Fig. S1).23 Interestingly,
H4R models based on β2R and H1R crystal structure tem-
plates were equally successful in explaining H4R mutation
data, while H1R-based H4R models could better explain
ligand SAR than β2R-based H4R homology models.60

The challenges in structure-based virtual screening against
GPCR homology models have been demonstrated by previous
H4R virtual screening campaigns.26,56 In a large scale virtual
screening study of more than 5 million compounds against a
bRho-based H4R model (refined with histamine), 255 in silico
hits were selected for experimentally testing, of which 11 had
low affinity (>10 μM) and 5 had Ki values of 10 μM or lower
(compounds 4–7, ESI† Fig. S2).56 Although the discovery of
fragment-like molecules was not the aim of this study, most
of the identified ligands were fragment-like.12–14 In another
study retrospective virtual screening studies against MD sim-
ulation snapshots of a H1R-based H4R model (refined with
JNJ-777120), allowed for the identification of representative
H4R structures that gave optimal enrichments of known H4R
ligands versus decoy molecules compared to the initial H4R
homology model.34 This ensemble docking approach was
subsequently applied in a prospective virtual screening cam-
paign in which 50 in silico hits were selected for experimental
testing. Nine of the fragment hits had low H4R affinity (>10
μM) and one fragment (compound 8, ESI† Fig. S2) had a Ki

value of 8 μM.26

The aim of this study is to investigate the possibilities and
limitations of structure-based virtual screening for the identi-
fication of new fragment-like ligands for H4R. Conformational
This journal is © The Royal Society of Chemistry 2015
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sampling problems will be addressed by the construction of
different three-dimensional receptor models of the human
H4R with different ligands (compounds 1–3, Fig. 1),7,8,59,63

based on two different crystal structure templates (β2R
44

and H1R
45), and by the consideration of different

molecular dynamics simulation snapshots. Although crystal
structures of several aminergic GPCRs are available to con-
struct H4R homology models (i.e. β1R, β2R, D3R, H1R, M2R,
M3R, 5HT1BR, 5HT2BR),

44,45,64–68 β2R and H1R are selected as
H4R modelling templates because: i) this allows us to further
build from our β2R-based and H1R-based H4R modelling
studies;60 ii) H1R is the crystallized GPCR that shares the
highest number of ligands with H4R,

23 and iii) β2R
has been a frequently used crystal structure target46,69–71 and
GPCR modelling template26,39,72 in prospective structure-
based virtual screening studies in the past few years.27 Scor-
ing and training problems will be addressed by: i) the use of
a molecular interaction fingerprint (IFP) scoring method
that considers protein–ligand interaction similarity to experi-
mentally validated H4R-ligand binding-mode models consis-
tent with H4R ligand structure–activity and structure–selec-
tivity relationship and site-directed mutagenesis (SDM)
studies. ii) the retrospective validation, comparison, and
optimization of different virtual screening approaches based
on a training set containing not only known H4R fragment-
like ligands but also experimentally validated inactive frag-
ments.13,17 The IFP scoring method has been shown to
outperform energy-based scoring methods in previous GPCR
structure-based virtual (fragment) screening studies36,73,74

and enable the identification of new chemical ligand scaf-
folds.18,24,25 Optimal structure-based virtual screening
approaches identified in the current study will therefore be
compared with two-dimensional (2D) and three dimensional
(3D) ligand-based virtual screening methods. Although
pharmacophore-based virtual screening techniques were not
considered in the current study, it should be noted that scaf-
fold hopping potential of pharmacophoric methods is also
well recognized,75 as for example demonstrated in virtual
screening studies for new histamine H3 receptor ligands.25

Systematic analysis and comparison of hit sets in both retro-
spective and prospective virtual screening studies will pro-
vide insights into the relative performance and complemen-
tarity of different virtual screening approaches in the
identification of novel fragment-like H4R ligands. Fragment
training sets of experimentally determined binders/actives
and non-binders/inactives have been previously used for the
optimization and validation of ligand-based and protein-
based FLAP pharmacophore models for the discovery of new
fragment-like H3R ligands25 and the evaluation of dif-
ferent consensus-scoring strategies for ligand-based virtual
screening for fragment-like H1R and H4R ligands.76 In the
current study, training sets of experimentally determined
binders and non-binders have been used for the first time
to optimize and validate protein structure-based virtual
screening methods. The lessons learned from our compara-
tive retrospective and prospective virtual fragment screening
This journal is © The Royal Society of Chemistry 2015
studies can be used as a blueprint for future structure-based
virtual (fragment) screening studies.

Results
Retrospective evaluation ligand-based and structure-based
virtual screening methods

A dedicated training set, containing 100 unique fragment-like
H4R ligands from our in-house fragment library14,17 and the
ChEMBL database77 and 959 fragments inactive at human
H4R,

14,17 was used for retrospective validation of different
structure-based and ligand-based (LBVS) virtual screening
approaches (Fig. 1). The chemical structures and binding
modes of the H4R ligands histamine (1), JNJ7777120 (2), and
VUF10497 (3) (Fig. 1) were used as reference compounds in
the retrospective VS runs. These selected ligands represent
different steps in H4R ligand-optimization strategies in the
past years:4–6 (i) modification of the basic amine, and (ii) sub-
stitution of the imidazole ring with bioisosteres.4 Histamine
(1) is the endogenous ligand of H4R and JNJ7777120 (2) is
the first published selective non-imidazole H4R ligand, a
biased agonist for the β-arrestin pathway,78,79 and both have
served as reference compounds in previous ligand-based and
protein-based H4R virtual screening and ligand design stud-
ies.8,26,56,80 VUF10497 is a high affinity H4R inverse agonist
and is representative for a series based on an in-house dis-
covered H4R scaffold.8,63

The binding modes of the reference compounds in the H4R
binding pocket were derived following the information
extracted from previous structure–activity relationship and
mutation studies on H4R.

4,59,61,82 All compounds display
H-bond interactions to D943.32 and E1825.46.4,59 Mutagenesis
studies have indicated that these residues are essential
H-bond acceptor interaction points for H4R ligands54,55,60 and
suggest that D943.32 and E1825.46 form H-bond interaction net-
works with Q3477.42 and N1474.57, respectively.58,59 The trans-
membrane (TM) binding pocket is very similar in both H4R
models based on β2R and H1R (Fig. 2),4,59,82 but there are dif-
ferences in the second extracellular loop (EL2).74,83,84 These
differences slightly affect the binding orientation of
JNJ7777120 (2) (Fig. 2),58 while the binding poses of histamine
(1)58,85 and VUF10497 (3) remain very similar (Fig. 2). In the
β2R-based H4R model the chlorine atom of JNJ7777120 (2) is
located between EL2 (F168), TM5 (L1755.39), and TM6
(T3236.55), while in the H1R-based model the chlorine atom of
JNJ7777120 is accommodated between TM5 (L1755.39 and
T1785.42) and EL2 (F168) (Fig. 2).4,58 It should be noted that
the functional effect of these ligands vary considerably, from
inverse agonist (VUF10497 (3)) to biased agonist (JNJ-7777120
(2)) to full agonist (histamine). Clearly, the fragments to be
identified in these VS efforts do not represent optimized com-
pounds. It is apparent from literature that even the smallest
structural changes of a ligand during hit or lead optimization
(i.e., for fragments but also for drug-like molecules) can
completely alter the functional activity from agonist to antago-
nist and vice versa.86,87 Furthermore, the functional activity is
Med. Chem. Commun., 2015, 6, 1003–1017 | 1005
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Fig. 2 Comparison of β2R–carazolol (light green) crystal structure
44 (E)

based H4R models (A, C) and H1R–doxepin dark green) crystal structure
(F) based H4R models45 (B, D). H4R models are constructed with
JNJ7777120 (2, orange carbon atoms, A and B) and VUF10497 (3,
magenta, C and D). Protein–ligand interaction fingerprints (IFPs) of the
binding modes in A–F are presented in G. The backbone of TM helices
4, 5, 6, and 7 are represented by yellow tubes and part of TM3 is
shown as ribbon (the top of the helix is not shown for clarity).
Important binding residues identified previously4,55,56,59,61,82 are
depicted in grey.

Fig. 3 Graphs of % true positives (fragment-like H4R ligands) vs. %
false positives (fragments that do not bind H4R) in the ranked database
resulted from 2D-LBVS (A), 3D-LBVS (B), β2R-based SBVS ranked by
PLANTSChemPLP score (C), H1R-based SBVS ranked by PLANTSChemPLP

score (D), β2R-based SBVS re-ranked by Tc-IFP score (E), and H1R-
based SBVS re-ranked by Tc-IFP score (F) based on histamine (1,
green), JNJ-7777120 (2, orange), and VUF10497 (3, purple) reference
ligands (A–B) and ligand-H4R IFPs (C–F).
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highly dependent on the species investigated and on the sig-
nalling pathways studied.58,78,79,88–90 On a protein molecular
level this probably means that the differences between ago-
nists and antagonists can be relatively small, but the effect
these changes can have on the conformation (activation state)
of the receptor can be big.27 For this fragment-based VS cam-
paign, we have chosen not to focus on the functional effect of
the ligands, but on the affinity for H4R.

The retrospective VS flowchart is presented in Fig. 1. 2D-
LBVS and 3D-LBVS similarity searches of the test set of H4R
1006 | Med. Chem. Commun., 2015, 6, 1003–1017
binders and non-binders were ranked according to ECFP-4
(Tanimoto score)91 and ROCS-EON (Comboscore)92 similarity
against reference ligands (1–3).24 In the SBVS runs, com-
pounds were docked against molecular dynamics simulation
snapshots of β2R-based

44,58,59 and H1R-based
45 H4R homol-

ogy models. The resulting docking poses were ranked subse-
quently using PLANTSChemPLP

93 and interaction fingerprint
(IFP)36,74,94 similarity scores to reference binding modes of
ligands 1–3 (Fig. 2). ROC plots (% true positives (TP) versus
% false positives (FP) in the ranked database)74 of the retro-
spective analysis of 2D-LBVS, 3D-LBVS and SBVS hit lists are
presented in Fig. 3. The enrichment factor 1% (EF1%) of the
VS protocols together with the area under ROC curves are
summarized in Table 1.95–97

Table 1 and Fig. 3 indicate that 2D-LBVS, 3D-LBVS and
SBVS-IFP can give a good early enrichment. SBVS using
PLANTSChemPLP scoring on the other hand resulted in
This journal is © The Royal Society of Chemistry 2015
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Table 1 The enrichment factor 1% (EF1%) and the area under ROC curves (AUC) of the VS protocols

VS
protocol

References

Histamine (1) JNJ777120 (2) VUF10497 (3)

EF1% AUC (CIa ) EF1% AUC (CIa ) EF1% AUC (CIa )

Ligand-based VS
2Db 32.6 0.61 (0.54–0.98) 37.4 0.71 (0.64–0.78) 29.7 0.73 (0.66–0.80)
3Dc 5.7 0.77 (0.74–0.81) 37.4 0.89 (0.85–0.93) 25.9 0.85 (0.81–0.90)
β2R-based SBVS
PLANTSd 0.0 0.58 (0.52–0.65) 2.9 0.69 (0.64–0.73) 5.7 0.66 (0.61–0.71)
Tc-IFPe 4.8 0.62 (0.57–0.67) 23.0 0.78 (0.73–0.84) 40.3 0.94 (0.92–0.97)
H1R-based SBVS
PLANTS f 2.9 0.67 (0.62–0.72) 1.0 0.58 (0.52–0.63) 3.8 0.68 (0.63–0.73)
Tc-IFPg 1.9 0.68 (0.63–0.73) 17.3 0.73 (0.66–0.79) 28.8 0.89 (0.86–0.93)

a Confidence interval of the AUC with level of confidence of 95% calculated using pROC packages in R statistical computing software.95
b Fig 3A. c Fig 3B. d Fig 3C. e Fig 3D. f Fig 3E. g Fig 3F.

Fig. 4 Venn diagrams of the number of actives at a 1% false positive
rate resulted in 2D-LBVS (A), 3D-LBVS (B), β2R-based SBVS re-ranked
by Tc-IFP score (C), and H1R-based SBVS re-ranked by Tc-IFP score
(D). The circles proportionally indicate the number of actives at a 1%
false positive rate based on histamine (1, green), JNJ777120 (2, blue),
or VUF10497 (3, purple) references (Panels A–D). Venn diagrams of the
number of actives at a 1% false positive rate resulted in all used VS
methods using histamine (1, panel E), JNJ777120 (2, panel F),
VUF10497 (3, panel G) or consensus references (panel H). Red numbers
indicate active H4R fragments in the database that have an ECFP-4
Tanimoto similarity score of less than 0.26 to any of the references.98
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significantly lower enrichments. The 2D-LBVS runs result in a
lower global virtual screening accuracy (reflected by the area
under ROC curves) compared to the 3D approaches. On the
other hand, low early enrichments as well as global virtual
screening accuracies were obtained with the 3D approaches
using histamine (1) as the reference compound. JNJ7777120
(2) appeared to be the best reference for 2D- and 3D-LBVS
runs, while the VUF10497 (3) binding mode performed as the
best reference for post-processing SBVS docking simulations.
Interestingly, β2R-based SBVS resulted slightly higher enrich-
ments compared to H1R-based SBVS.

We furthermore evaluated the ability of the different
methods to identify “novel” fragment-like molecules (Fig. 4).
In our retrospective virtual screening studies “novel” frag-
ments were defined as compounds that have an ECFP-4
Tanimoto similarity (Tc-ECFP4) score to any reference com-
pounds of less than 0.26.98 β2R-based SBVS yielded the most
novel hits (Fig. 4C), followed by H1R-based SBVS (Fig. 4D)
and 3D-LBVS (Fig. 4B).

Histamine (1) (and histamine-H4R binding modes) was
only a suitable reference in 2D-LBVS runs (Fig. 4E), while
both JNJ7777120 (2) and VUF10497 (3) were good references
in different virtual screening protocols (Fig. 4F–G). Fig. 4E–H
show clear overlaps between 2D- and 3D-LBVS by using
JNJ7777120 (2) or VUF10497 (3) as the reference. Fig. 4F
shows a high number of hits only identified by the LBVS
studies, which were not identified in the SBVS studies by
using JNJ7777120 (2) as the reference. Fig. 4F shows that the
use of JNJ7777120 (2) in the SBVS studies increases the
chance to retrieve “novel” H4R fragments. The highest num-
ber of shared hits between all SBVS methods were retrieved
in the VUF10497-based SBVS studies (Fig. 4G). Collection of
the hits that were retrieved at a 1% false positive rate using
all references results in the Venn diagram presented in
Fig. 4H. Although most active H4R fragments were retrieved
using LBVS, SBVS provided a higher probability of retrieving
“novel” H4R fragments.

Based on the results of our retrospective virtual screening
studies, we performed the prospective SBVS campaigns using
This journal is © The Royal Society of Chemistry 2015
the β2R-based
44,58,59 and H1R-based

45 H4R homology models
in complex with reference ligands 2 and 3 (Fig. 3 and 5).
Prospective structure-based virtual screening studies to
discover new H4R ligands

The SBVS approach against the β2R-based H4R model was
determined to be the best method in identifying novel
fragment-like ligands (Fig. 4). We therefore used this model
in a prospective in silico screening study to discover new
Med. Chem. Commun., 2015, 6, 1003–1017 | 1007
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Fig. 5 Flowchart of the β2R-based and H1R-based prospective SBVS
campaigns. See Experimental section for more details. [a]Fragment-like
compounds collected from the ZINC database.37,99 [b]Filtering
fragments containing plausible reactive/toxic groups.100 [c]SBVS with
JNJ7777120 (2) as the reference compound.7,56,80 [d]SBVS with
VUF10497 (3) as the reference compound.8,56,63 [e]Results from the
β2R-based prospective SBVS studies. [f]Results from the H1R-based
prospective SBVS studies. [g]Fragments with ECFP-4 Tanimoto similar-
ity score of less than 0.40 to any of the H4R ligands used in the retro-
spective VS.24 In the H1R-based prospective SBVS campaigns, H4R pur-
chased hits from the β2R-based prospective SBVS studies were added
as the reference compounds in the dissimilarity filtering.

MedChemCommConcise Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
M

ar
ch

 2
01

5.
 D

ow
nl

oa
de

d 
on

 1
1/

21
/2

02
5 

11
:1

8:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
active H4R fragments from a subset of fragment-like (and
commercially-available) molecules extracted from the ZINC
database (Fig. 5, ESI† Table S1).99 Based on the results of the
retrospective VS studies (Table 1, Fig. 4), two β2R-based H4R
models and their corresponding IFP references were used in
parallel: i) The first SBVS run was rescored using the
Tanimoto coefficient-based IFP similarity (Tc-IFP) against the
JNJ7777120 (2) customized H4R model (SBVS-1), and ii) A sec-
ond in silico screen rescored using Tc-IFP against the
VUF10497 (3) based H4R model (SBVS-2) (Fig. 4). In the retro-
spective VS studies, the re-scoring using Tc-IFP clearly shows
the increase of SBVS quality compared to the ones using
PLANTSChemPLP scores (Table 1, Fig 3). Our retrospective
validation studies showed that many of the “novel” ligands
(i.e., not identified with 2D ligand-based VS) were identified
in the SBVS-1/SBVS-2 consensus hit list and the SBVS-1 hit
list (Fig. 4E).

We therefore especially selected compounds from these
lists in our prospective VS campaign: 23 fragments were
selected (ESI† Fig. S3 and ESI† Table S2) and purchased,
from which 6 were experimentally confirmed as H4R ligands
(Table 2), including three piperazine-benzofuropyrimidines
with submicromolar affinity (9a–c), and three pyrimido-
indole containing fragments with micromolar affinity
(10a–c). None of the validated hits had detectable binding
1008 | Med. Chem. Commun., 2015, 6, 1003–1017
affinity for β2R, demonstrating that the SBVS was not biased
towards the structural template39 used to construct the H4R
homology models (Table 2). Following the successful efforts
in the discovery of novel H4R fragments by using the β2R-
based H4R model, we subsequently performed similar SBVS
campaigns employing H1R-based H4R model (Fig. 5). In order
to increase our chances of finding ligands with a different
chemotype we added the newly discovered H4R hit ligands as
references compounds in the dissimilarity filter (Fig. 5). Four-
teen fragments were selected and purchased (ESI† Fig. S4
and ESI† Table S3). Three of the hits from the H1R-based pro-
spective SBVS (11–13) were experimentally confirmed as H4R
ligands (Table 3). In total, 37 fragments were selected and
purchased. Nine out of these 37 purchased fragments were
confirmed as H4R ligands with binding affinities between
0.14 and 6.9 μM (Tables 2–3; Fig. 6). The hits represent five
different scaffolds: the isosteric benzofuropyrimidines 9a–c
and pyrimido-indoles 10a–c scaffolds identified in the β2R-based
H4R model, and bezo-imidazole 11, triazoloquinoxaline 12, and
morpholinopyrimidine 13 identified in the H1R-based H4R model.

Discussion
Ligand- and protein-based virtual screening methods are
complementary

One of the challenges in SBVFS is the limited experimental
data on true inactive (fragment-like) compounds to properly
validate and optimize virtual screening approaches. Our
in-house fragment screening against H4R provided invaluable
data that enabled us to construct a balanced training set of
true active and true inactive H4R fragments.14,17 The H4R
active fragments from our in-house screens14,17 were
appended by active fragment-like H4R ligands from the
ChEMBL database77,101 to further increase the number of
true H4R active fragments. This dedicated training set of
fragment-like compounds enabled us to retrospectively vali-
date different ligand- and protein-based virtual fragment
screening protocols (Fig. 1).

Both (2D and 3D) ligand-based and structure-based (IFP)
virtual screening approaches gave good early enrichment in
our retrospective virtual screening studies (Fig. 3, Table 1).
SBVS using PLANTS scoring on the other hand resulted in
significantly lower enrichments (Fig. 3, Table 1). Although
2D-LBVS gave high early enrichments, the global virtual
screening accuracies (AUC values) of the ECFP-4 2D similarity
searches were relatively low, indicating that this method is,
as expected, rather dependent on the reference ligand. 3D-
LBVS runs also gave high enrichments for the relatively larger
reference ligands (Fig. 3, Table 1), and retrieved ligands that
were not identified in 2D-LBVS simulations (Fig. 5). Enrich-
ments obtained by 3D-similarity screens based on the rela-
tively small histamine reference ligand (only 8 heavy atoms)
are, however, significantly lower than 2D-similarity screens
based on the same ligand (5-fold lower EF1%). This suggests
that very small fragments are less distinguishable based on
shape and electrostatic/pharmacophore similarity. Indeed,
This journal is © The Royal Society of Chemistry 2015
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Table 2 The biological activities and the prospective VS parameters of the H4R confirmed hits identified employing β2R-based H4R homology model

Compounds

Biological
activities
(pKi ± SEM)a

Tc-IFP scored

(#rank)
PLANTSChemPLP scoree

(#rank)
ECFP4 similarity f

(#rank)

Reference
ROCS-EONg

(#rank)
ECFP4
similarityh

H4R
b β2R

c SBVS-1 SBVS-2 SBVS-1 SBVS-2 JNJ (2) VUF (3) JNJ (2) VUF (3) ChEMBL

VUF13682 (9a)

6.84 ±
0.12

<5 — 0.909
(#14)

−90.759
(#4653)

−97.161
(#3550)

0.121
(#8124)

0.178
(#1790)

1.513
(#3945)

1.506
(#408)

0.254

VUF13686 (9b)

6.83 ±
0.08

<5 0.750
(#4513)

0.909
(#10)

−76.260
(#25 334)

−99.754
(#2232)

0.119
(#8566)

0.178
(#1805)

1.519
(#3829)

1.513
(#352)

0.294

VUF13687 (9c)

6.57 ±
0.06

<5 0.750
(#4821)

0.909
(#6)

−68.907
(#36 530)

−101.757
(#1448)

0.113
(#10 241)

0.184
(#1462)

1.528
(#3651)

1.529
(#244)

0.268

VUF13690 (10a)

5.20 ±
0.06

<5 1.000
(#1)

0.864
(#103)

−92.650
(#3285)

−95.021
(#4986)

0.139
(#5171)

0.192
(#1038)

1.565
(#2886)

1.527
(#257)

0.261

VUF13694 (10b)

5.23 ±
0.06

<5 0.842
(#418)

0.955
(#1)

−83.531
(#12 968)

−97.851
(#3129)

0.159
(#3191)

0.223
(#306)

1.653
(#1455)

1529
(#243)

0.319

VUF13695 (10c)

5.23 ±
0.03

<5 0.810
(#777)

0.909
(#9)

−78.414
(#21 595)

−100.022
(#2097)

0.141
(#4888)

0.179
(#1721)

1.554
(#3102)

1.588
(#62)

0.286

a pKi values are calculated from at least three independent measurements as the mean ± SEM. b Measured by displacement of [3H]-histamine
binding using membranes of HEK293T cells transiently expressing the human H4R.

c Measured by displacement of [3H]-dihydroalprenolol
binding using membranes of HEK293T cells transiently expressing the human β2R.

d IFP Tanimoto similarity with the pose of either
JNJ7777120 (SBVS-1) or VUF10497 (SBVS-2) in the H4R model. Tc-IFP ranking is given between brackets. e PLANTSChemPLP docking score using
H4R model bound to JNJ7777120 (SBVS-1) or VUF10497 (SBVS-2). The ranking is given between brackets. f ECFP-4 2D Tanimoto similarity to
JNJ7777120 (2), or VUF10497 (3). A similarity higher than 0.40 is considered as significant.24 ECFP-4 ranking is given between brackets.
g ROCS/EON shape/electrostatic-based 3D similarity to JNJ7777120 (2), or VUF10497 (3) based on Comboscore. A similarity higher than 1.30 is
considered as significant. Comboscore ranking is given between brackets. h ECFP-4 circular fingerprint Tanimoto similarity to the closest
known H4R-active fragment used in the retrospective VS.17,101 A similarity higher than 0.40 is considered as significant.24
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histamine-based runs give relatively higher ROCS-EON scores
(% of compounds within the database with a score ≥1.3 =
32%), than when using JNJ7777120 (26%) and VUF10497
(15%) as a reference. Another explanation could be that only
disconnected groups are common between the reference and
the target compound (maximum common edge (MCE) sub-
graph).103 This is supported by the fact that 41% of the
actives and 21% of the inactives share an imidazole ring with
histamine. It should be noted that in a 3D-LBVS campaign,
using JNJ7777120 (2) as the reference compound, new H4R
This journal is © The Royal Society of Chemistry 2015
ligands were discovered80 that are similar to the experimen-
tally confirmed hits 9a–c that were independently identified
in our prospective SBVS study. These hit compounds from
Cramp et al. were, however, not yet published when we
performed our virtual screening and were therefore also not
yet included in the ChEMBL database77 version (downloaded
on August 19, 2010) used in our study for the novelty
assessment.

Structure-based virtual screening with a molecular interac-
tion fingerprint (IFP) scoring method to rank PLANTS
Med. Chem. Commun., 2015, 6, 1003–1017 | 1009
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Table 3 The biological activities and the prospective VS parameters of the H4R confirmed hits identified employing H1R-based H4R homology model

Compounds

Biological
activities
(pKi ± SEM)a

Tc-IFP scored

(#rank)
PLANTSChemPLP scoree

(#rank)
ECFP4 similarity f

(#rank)

Reference
ROCS-EONg

(#rank)
ECFP4
similarityh

H4R
b H1R

c SBVS-1 SBVS-2 SBVS-1 SBVS-2 JNJ (2) VUF (3) JNJ (2) VUF (3) ChEMBL

VUF13848 (11)

5.16 ±
0.03

<5i 0.800
(#413)

— −83.836
(#2764)

−89.297
(#10 026)

0.125
(#71 765)

0.120
(#87 147)

1.635
(#6966)

1.380
(#5019)

0.200

VUF13860 (12)

5.19 ±
0.07

>5 j 0.727
(#3374)

— −41.868
(#34 454)

−78.980
(#26 862)

0.215
(#12 441)

0.300
(#600)

1.624
(#8066)

1.563
(#142)

0.396

VUF13867 (13)

5.16 ±
0.04

>5 j — 0.739
(#626)

−74.071
(#12 599)

−93.292
(#1051)

0.213
(#13 059)

0.323
(#277)

1.643
(#6170)

1.472
(#1100)

0.264

a pKi values are calculated from at least three independent measurements as the mean ± SEM. b Measured by displacement of [3H]-histamine
binding using membranes of HEK293T cells transiently expressing the human H4R.

c Measured by displacement of [3H]-mepyramine binding
using membranes of HEK293T cells transiently expressing the human H1R.

d IFP Tanimoto similarity with the pose of either JNJ7777120 (SBVS-
1) or VUF10497 (SBVS-2) in the H4R model. Tc-IFP ranking is given between brackets. e PLANTSChemPLP docking score using H4R model bound
to JNJ7777120 (SBVS-1) or VUF10497 (SBVS-2). The ranking is given between brackets. f ECFP-4 2D Tanimoto similarity to JNJ7777120 (2), or
VUF10497 (3). A similarity higher than 0.40 is considered as significant.24 ECFP-4 ranking is given between brackets. g ROCS/EON shape/
electrostatic-based 3D similarity to JNJ7777120 (2), or VUF10497 (3) based on Comboscore. A similarity higher than 1.30 is considered as signif-
icant.102 Comboscore ranking is given between brackets. h ECFP-4 circular fingerprint Tanimoto similarity to the closest known H4R active frag-
ments used in the retrospective VS and the purchased hits based on β2R-based prospective VS.17,101 A similarity of higher than 0.40 is consid-
ered as significant.24 i At 10 μM, the compounds showed [3H]-mepyramine displacement of less than 50%. j At 10 μM, the compounds showed
[3H]-mepyramine displacement of more than 50%.
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docking poses in JNJ7777120- and VUF10497-customized H4R
homology models (based on β2R and H1R crystal structure
templates) gave comparably high enrichments as 2D and 3D
ligand-based virtual screening methods (Fig. 3, Table 1). In
fact, SBVS against the β2R-based H4R model refined with
VUF10497 (3) gave the best early enrichment of all methods
used in the retrospective evaluation. For both β2R-based H4R
models higher retrospective virtual screening enrichments
were obtained with VUF10497 (3) reference IFPs than with
JNJ7777120 (2) or histamine (1) reference IFPs. A possible
explanation for this result could be that the larger VUF10497
(3) ligand binds a larger part of the hydrophobic pocket
1010 | Med. Chem. Commun., 2015, 6, 1003–1017

Fig. 6 [3H]-histamine binding displacement by reference compound 1 and
representative binding curves of at least three experiments performed in tri
between TM helices 3–6 (between W3166.48, Y3196.51, and
L1755.39) than JNJ777712 and histamine (Fig. 2). As a result
the VUF10497 reference interaction fingerprint allows the
retrieval of H4R ligand docking poses that target the
subpocket between W3166.48 and Y3196.51 and/or the
subpocket between Y3196.51 and L1755.39, which may lead to
a better enrichment in the retrospective SBVS studies.36 It
should furthermore be noted that VUF10497 (3) has the
highest affinity compared to histamine (1) and JNJ7777120
(2).7,8 Comparison of the overlap of ligands retrieved by the
different methods furthermore shows that SBVS methods are
capable of identifying of novel ligands that are chemically
This journal is © The Royal Society of Chemistry 2015

the nine virtual screening hits (9a–c, 10a–c, 11, 12, 13). Data shown are
plicate. Error bars indicate SEM values.
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dissimilar from the ligands used to define the reference IFP
that are not retrieved by 2D or 3D LBVS methods (Fig. 4).
This indicates that ligand- and structure-based virtual screen-
ing methods are complementary as previously shown by
Krüger and Evers.29 Our results furthermore highlight the
scaffold-hopping potential of SBVS in combination with IFP,
as shown in previous studies.24
Structure-based virtual screening is an efficient way to
identify novel fragment-like H4R ligands

Based on the results of the retrospective VS studies (Table 1,
Fig. 2–3), two β2R-based H4R models and their corresponding
IFP references were used in prospective in silico screening
runs to discover new active H4R fragments from a subset of
fragment-like and commercially-available molecules extracted
from the ZINC database (Fig. 5). Six out of 23 purchased
in silico hits were experimentally confirmed as active H4R
fragments with pKi values of 5.2–6.8 (Table 2 and Fig. 7). By
re-ranking the docking poses according to their IFP similarity
the rank of the confirmed hits increased from #1448–#3550
for PLANTS to #1–#14 using IFP (Table 2). It should be noted
that compounds 9a–c (Table 2 and Fig. 7) is similar to the
H4R scaffold discovered by Cramp et al.80 in an independent
ligand-based virtual screening campaign. It should be empha-
sized however that the compounds discovered in this ligand-
based screening were not yet included in the ChEMBLdb
database77 version used in our study,101 and therefore were
identified after completion of our own prospective structure-
based virtual screening study.
This journal is © The Royal Society of Chemistry 2015

Fig. 7 Binding modes of the validated hits VUF13686 (9b, yellow,
panel A) and VUF13694 (10b, purple, B) in the β2R-based H4R model,
compared to the binding modes of VUF13848 (11, darkgreen, C), and
VUF13860 (12, brown, D) in the H1R-based H4R model. Rendering is
similar to Fig. 2.
We subsequently performed the prospective SBVS cam-
paigns studies against the H4R models that were built based
on the H1R crystal structure45 (Fig. 3 and 5). The SBVS runs
against the H1R-based H4R models identified three experi-
mentally confirmed H4R ligands (11–13) (Table 3, Fig. 6 and
7). These three additional ligands combine a basic amine
moiety with scaffolds (bezo-imidazole 11, triazoloquinoxaline
12, morpholinopyrimidine 13) that are different from the two
isosteric H4R ligand scaffolds (benzofuropyrimidines 9a–c
and pyrimido-indoles 10a–c) discovered in the prospective
SBVS campaigns against β2R-based H4R models (Tables 2–3,
ESI† Fig. S5). Although the TM fold of the β2R and H1R crys-
tal structure templates are similar,44,45 the different EL2 loop
conformations (in particular the orientation of F168) results
in different H4R models. As a result, the reference ligands
(2–3) and the novel ligands identified in prospective virtual
screening studies (9–13) have similar binding modes in β2R
based and H4R models, including H-bond conserved H-bond
interactions with D943.32 and E1825.46, but adopt slightly dif-
ferent orientations in the EL2 region (Fig. 2 and 7). These
subtle differences in both binding pocket structure and refer-
ence ligand binding mode result in relatively small differ-
ences in retrospective VS accuracies between H4R homology
models based on β2R and H1R crystal structure templates.
Both modeling templates yield H4R models with good early
enrichments, but the retrospective virtual screening accuracy
of the β2R-based models is somewhat higher than the H1R-
based H4R models (Table 1 and Fig. 2–3). Although the
sequence identity between the H4R and H1R binding site is
only slightly higher than between the H4R and β2R binding
site,23 H1R is expected be a better template to model the EL2
region downstream from the conserved C164EL2 that forms a
disulphide bridge with C773.25 (including F168, ESI† Fig. S1).
While H1R-based H4R models have previously been shown to
better explain ligand SAR than β2R-based H4R homology
models,60 the current study indicates that the differences
between H1R and β2R crystal structure templates does not
significantly affect structure-based virtual screening accuracy
of H4R homology models. Moreover, prospective virtual
screening studies against β2R-based and H1R-based H4R
models resulted both in the discovery of different new ligand
chemotypes (Tables 2–3, Fig. 7–8). Our results are in line with
recent comparative GPCR modeling studies which showed
that comparable virtual screening results can be obtained with
GPCR homology models and crystal structures.25,27,39,40,104

Notably, in contrast to the ligands found using β2R-based
H4R models the confirmed hits discovered in the prospective
SBVS campaigns against H1R-based H4R models were not the
highest ranking compounds. Re-ranking the docking poses
by their IFP similarity after the docking increased the rank of
the confirmed hits from #1051–#26 862 using PLANTS to
#413–#3374 using IFP (Table 3). This indicates that the post
SBVS campaign steps presented in Fig. 5 (dissimilarity filter
and visual inspection) has led to diverse sets of selected and
purchased hits. The Venn Diagram of Fig. 8 shows the over-
lap between the hit lists obtained for each of the homology
Med. Chem. Commun., 2015, 6, 1003–1017 | 1011
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Fig. 8 Venn diagram showing the SBVS hit overlap for all
prospectively applied homology models (see Fig. 5). The red bold
numbers, the black bold numbers and the black regular numbers
indicate the number of confirmed active hits (Tables 2 and 3),
purchased hits (ESI† Figs. S4 and S5), and the number of hits after
applying the IFP cutoffs, respectively.
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models (after applying the retrospectively identified IFP score
cutoffs, see Methods). The amount of unique ligands for each
approach shows the complementarity of employing different
modelling templates and different reference ligands to refine
homology models. The purchased hits cover 12 out of 15 pos-
sible Venn-diagram regions, i.e. overlap combinations
between homology-model hit lists (Fig. 8). Most of the con-
firmed active H4R fragments were present in the hit lists of
the VUF10497 models (7 out of 9). The remaining 2 con-
firmed H4R fragments were identified in the SBVS using the
H1R-based model with JNJ7777120. None of the confirmed
hits were unique for β2R-based model with JNJ7777120,
although one confirmed hit (VUF13848 (11)) was identified in
both JNJ7777120 homology models.

Most of previous ligands designs for H4R were highly
inspired from the structure of JNJ7777120 (2)4,59 since it was
the first published non-imidazole antagonist for H4R.

7 This
might be the cause that the JNJ7777120 H4R models resulted
in more diverse selected active hits compared to the SBVS
campaigns using VUF10497 (3) as the reference (Fig. 8). The
PLANTSChemPLP scores of the active H4R fragments were
higher (≤−90)24 in the SBVS with VUF10497 (3) as the refer-
ence compound (ESI† Fig. S6). The scoring distributions
(Fig. S5) also show that with a lower PLANTS score the IFP
score is increasing for only the VUF10497 models, which is in
line with the finding that 7 out of the 9 confirmed hits were
present in hit lists of these models. Hence, employing
PLANTSChemPLP score and Tc-IFP as a combined scoring func-
tion in SBVS campaigns could increase the SBVS quality (as it
did for the aforementioned H1R crystal structure-based VS),24

but it depends on the structure models and the IFP refer-
ences. Cut-offs optimization is therefore required to build
SBVS protocols with optimized quality.
1012 | Med. Chem. Commun., 2015, 6, 1003–1017
Similar to the SBVS on the H1R crystal structure,24 the
combined approaches can lead in to a good hit rate (9 out of
36) of H4R small fragments. Although the hit rate is lower
than the SBVS on the H1R crystal structure,24 these results
of the prospective virtual screening exercise validate our
structure-based virtual fragment screening method.

Conclusions

We have investigated the possibilities of structure-based vir-
tual fragment screening against optimized homology models
of the histamine H4R receptor. Structure- and ligand-based
methods performed equally well in retrospective virtual
screening studies, but structure-based virtual fragment
screening using an interaction fingerprint scoring method
enabled the identification of H4R ligands that were not iden-
tified in ligand-based VS runs. Surprisingly, retrospective vir-
tual screening validation studies against H4R homology
models based on the H1R crystal structure did not give higher
VS enrichments than H4R models based on the crystal struc-
ture of the more distantly-related β2R. Optimized SBVFS
methods were successfully used to find two new series of
fragment-like H4R ligands. Nine out of the 37 tested com-
pounds (representing five different scaffolds) had binding
affinities between 0.14 and 6.9 μM at the H4R. The results of
our comparative study can be used to guide future structure-
based virtual fragment screening campaigns.

Experimental section
Retrospective virtual screening

Residue numbering and nomenclature. The Ballesteros–
Weinstein residue numbering scheme105 was used through-
out this manuscript. For explicitly numbered residues in spe-
cific receptors, the UniProt106 residue number is given before
the Ballesteros–Weinstein residue number in superscript
(e.g., D943.32 in H4R).

Construction of retrospective validation database. Known
H4R active fragments were compiled from in-house libraries
(defined as fragments that show more than 50% displace-
ment of radioligand [3H]histamine at 10 μM)10,17 and
ChEMBL database77,101 (defined as fragment-like compounds
with pKi more than 7.0).14 The inactive H4R inactive frag-
ments from in-house libraries (defined as fragments show
less than 30% displacement of radioligand [3H]histamine at
10 μM).14,17 The tautomers and microspecies distributions at
pH 7.4 of the ligands were generated by employing cxcalc tool
of ChemAxon 5.2.5.1.107 The species with abundance of more
than 1% were selected. The 3D structures were generated
using CORINA 3.46 subsequently.108

Construction and refinement H4R homology models.
Starting from a previously published 3D model of H4R,

58,59,62

based on the β2R crystal structure (PDB-code 2RH1),44 new
structural models of H4R were constructed and refined by
docking and molecular dynamics simulations with three rep-
resentative H4R ligands: Histamine (1), JNJ7777120 (2), and
This journal is © The Royal Society of Chemistry 2015
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VUF10497 (3). For each H4R-ligand complex optimal struc-
tures were selected based on their ability to discriminate
between known fragment-like H4R ligands and true
fragment-like H4R inactives (see subsection Construction of
retrospective validation database) in retrospective virtual
screening studies. A second set of H4R models was built
based on the recently solved H1R crystal structure (PDB-code
3RZE)45 using Modeller (using the same protocol as the previ-
ously published β2R-based H4R model)58,59,62 and subjected
to the same optimization and validation protocols as the β2R-
based H4R homology models. The reference compounds were
docked using PLANTS version 1.1 into the H4R binding
pocket, which was defined using PLANTS bind tool.93 The
best pose of each reference was selected. The selected poses
show interaction to D943.32 and E1825.46 and have highest
IFP similarity Tanimoto coefficient (Tc-IFP)36,74 to the previ-
ously described 3D model of JNJ7777120 (2) in the
H4R.

58,59,62 The selected protein-ligand complex was then
minimized using AMBER 10 to relax the structure.109 Force-
field parameters for the ligands were derived using the Ante-
chamber program and partial charges for the ligands were
computed using the AM1-BCC procedure in Antechamber.109

Upper-bound distance restraint of 3.5 Å to maintain the inter-
action of the ligand to D3.32 was applied. The minimized
model was subsequently embedded in a pre-equilibrated
lipid bilayer consisting molecules of 1-palmitoyl-2-oleoyl-
phosphatidylcholine (POPC) and solvated with TIP3P water
molecules (box dimensions: 82.3 Å × 74.8 Å × 80.4 Å) as
described by Urizar et al.74,110 The complexes embedded in
the hydrated lipid bilayer were minimized shortly using
AMBER 10.109 The hydrogen bond to D3.32 constraint and a
positional harmonic constraint of 50 kcal mol−1 Å on Cα car-
bon atoms were applied. The entire system was then
subjected to a 1.1 ns constant pressure molecular dynamics
(MD) simulation. All bonds involving hydrogen atoms were
frozen with the SHAKE algorithm. During the first 100 ps,
the Cα carbon atoms were constrained and the hydrogen
bond of the ligand to D3.32 was restrained as previously
described and the temperature was linearly increased from
0 to 300 K. During the last 1000 ps, the temperature was kept
constant at 300 K and the pressure at 1 bar, using a coupling
constant of 0.2 ps and the Berendsen approach. Interactions
were calculated according to the AMBER03 force field, using
particle-mesh-Ewald (PME) summation to include the long
range electrostratic forces. Van der Waals interactions were
calculated using a cut-off of 8.0 Å. MD snapshots were clus-
tered with the GROMACS g_cluster tool with respect to the
Cα atoms of the defined binding residues and according to
the Jarvis–Patrick method, using a cutoff of 3 Å for defining
the nearest neighbours.111 This yielded 3 to 8 clusters per
simulation run. The binding pocket regions of MD snapshots
were then fitted to the corresponding binding pocket regions
of the initial 3D model. The MD-snapshots of the complexes
were finally energy minimized as described before. The mini-
mized ligand-protein complexes from the MD-snapshots were
subjected to perform SBVS campaigns retrospectively using
This journal is © The Royal Society of Chemistry 2015
PLANTS docking software. The IFP for each docked pose was
calculated subsequently. Pose with hydrogen bond to D3.32

and highest Tc-IFP value for each ligand was selected. Early
enrichment (EF1%) values derived from receiver operating
characteristic (ROC) curves were used as virtual screening
criteria to evaluate the applicability of the MD snapshots to
discriminate between known fragment-like H4R ligands and
true fragment-like H4R inactives (see subsection Construction
of retrospective validation database) in retrospective virtual
screening studies. Two best snapshots performing SBVS were
used further in prospective virtual screening.

Automated docking. All virtual screenings were performed
by docking program PLANTS (version 1.1).112 PLANTS com-
bines an ant colony optimization algorithm with an empirical
scoring function for the prediction and scoring of binding
poses in a protein structure.93,112 For each compound, 15
poses were calculated and scored by the ChemPLP scoring
function at speed setting 2. The binding pocket of H4R was
defined by the coordinates of the center of the reference
ligand and a radius of 5 Å (which is the maximum distance
from the center defined by a 5 Å radius around the reference
ligand). All other options of PLANTS were left at their default
setting. The same docking approach was used to dock experi-
mentally confirmed hits in the H1R crystal structure.45

IFP post-processing. The reference ligand binding modes
in the corresponding H4R-ligand complex models were used
to generate reference interaction fingerprints (IFPs) as previ-
ously described.36 Seven different interaction types (nega-
tively charged, positively charged, H-bond acceptor, H-bond
donor, aromatic face-to-edge, aromatic-face-to-face, and
hydrophobic interactions) were used to define the IFP. The
cavity used for the IFP analysis has been highlighted in ESI†
Fig. S1.

Automated docking. Note that for each PLANTS docking
pose, a unique subset of protein coordinates with rotated
hydroxyl hydrogen atoms were used to define the IFP. Stan-
dard IFP scoring parameters, and a Tanimoto coefficient (Tc-
IFP) measuring IFP similarity with the reference molecule
pose of histamine (1), JNJ7777120 (2), and VUF10497 (3) in
the H4R models, was used to filter and rank the docking
poses of 100 known fragment-like H4R ligands, 959 fragment-
like compounds that are inactive at H4R, and the focused
database of 23 112 fragment-like molecules (only poses
forming an H-bond and ionic interaction with D943.32 are
considered). For the H4R confirmed hits presented in Tables 2
and 3, the docking protocols against H1R crystal structure
were performed.24,45 The doxepin binding mode in the origi-
nal H1R X-ray structure45 was used to generate reference IFP.
The H1R cavity used for the IFP analysis consisted the same
set of 33 residues used in previously published SBVS
studies.24,73

ROCS 3D similarity search. The conformer database was
generated using standard settings OMEGA113 and searched
with ROCS92 using standard settings as well. The conforma-
tions of histamine (1), JNJ7777120 (2), and VUF10497 (3) in
the H4R models were used as query molecules for
Med. Chem. Commun., 2015, 6, 1003–1017 | 1013
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independent ROCS runs. Compounds were ranked by
decreasing EON score92 (combination of the shape and the
electrostatic potential Tanimoto similarity in this optimized
overlay). Score higher than 1.30 is considered as
significant.102

ECFP-4 2D similarity search. Two-dimensional similarity
searches were carried out using ECFP-4 (extended connectiv-
ity fingerprints)98 descriptors available in Pipeline Pilot ver-
sion 6.1.5 114 and compared using the Tanimoto coefficient.

Retrospective virtual screening analysis. A hundred known
fragment-like H4R ligands17,101 and 959 fragment-like com-
pounds that are inactive at H4R

17 were subjected to 2D-LBVS
(ECFP-4)98,114 and 3D-LBVS (ROCS-EON)92 runs and docked
into H4R models and scored with PLANTS and IFP.24,36,93,112

Virtual screening accuracies were first determined in terms
of area under the curve of receiver–operator characteristic
(ROC) plots, and its 95% confidence interval was computed
with R statistical computing software version 2.11.1.95,97

Enrichment in true positives (TP) is reported at a false posi-
tive rate (FP) of 1% (EF1%) as follows: EF1% = TP/FP1%. Early
enrichment at 1% rate was computed for each virtual
screen.115

Prospective virtual screening

Preparation of prospective virtual screening database. Sim-
ilar procedures to create fragment database to perform pro-
spective crystal structure based virtual screening to discover
H1R fragments were employed.24 From 16 vendors we
downloaded their commercial compound datasets in SMILES
format from the ZINC website. With use of Openeye's filter
(version 2.1.1),39,116 only fragment-like compounds were
selected (43 326 compounds). Plausible tautomers and pro-
tonation states at pH 7.4 were computed for these com-
pounds with cxcalc tool of ChemAxon 5.2.5.1.107 The species
with abundance of more than 20% were selected. The 3D
structures were generated using CORINA subsequently.108,117

Second filter was applied to select only compounds with a
formal charge of at least +1, this selection ensures that all
selected compounds have the possibility for an ionic bond
with key residue D943.32 in the pocket (42 620 compounds).
Subsequently, third filter was applied to remaining com-
pounds to select compounds which do not have plausible
reactive groups.100 This selection decreases the probability to
have hits which can lead to be toxic compounds.100

SBVS on β2R-based H4R model. Prospective fragment vir-
tual screenings were performed on compounds from ZINC
database.99 Fragment-like compounds,10 which come from
selected vendors in the database (ESI† Table S1) were
selected. The tautomers and microspecies distributions at pH
7.4 of the ligands were generated as described in subsection
Preparation of prospective virtual screening database. The
species with abundance of more than 20% were selected.
The 3D structures were then generated using CORINA as
described in subsection Preparation of prospective virtual
screening database.108 The structures were objected to the
SBVS campaigns using two selected MD snapshots (SBVS-1
1014 | Med. Chem. Commun., 2015, 6, 1003–1017
and 2). The Tc-IFP values of enrichment factor of 1% ranked
false positives (EF1%) of the selected SBVS protocols were
used as the cut-offs: 0.733 and 0.810 for SBVS-1 and SBVS-2,
respectively. To avoid similar scaffolds to the known H4R
fragments, the hits with ECFP-4 similarity values of less than
0.40 against all known H4R active fragments used in the ret-
rospective VS were selected and the remaining hits were
subjected to visual inspection.24 The compounds selected by
virtual screening were purchased from available screening
collections of 7 vendors (ESI† Tables S2 and S3). The purity
of all compounds was verified by liquid chromatography-
mass spectrometry (LC-MS). All experimentally validated hits
had a purity of 96% or higher (see Table S4†).

SBVS on H1R-based H4R model. Subsequently, the similar
protocol was used to virtually screen compounds against the
models built based on H1R crystal structures.45 The differ-
ences are: (i) The Tc-IFP values of enrichment factor of 1%
ranked false positives (EF1%) of the selected SBVS protocols
were used as the cut-offs: 0.727 and 0.714 for SBVS-1 and
SBVS-2, respectively; and (ii) The selected and purchased H4R
hits resulted from the SBVS on β2R-based H4R models were
added in the dissimilarity filtering.

Pharmacological assays

HEK293T cells were cultured in Dulbecco's modified Eagle
medium (DMEM) supplemented with 10% fetal bovine
serum, 50 IU ml−1 penicillin and 50 μg ml−1 streptomycin at
37 °C and 5% CO2. Approximately 4 × 10 6 cells in 10 cm
dishes were transiently transfected with 5 μg receptor DNA
using 25 kDa linear polyethylenimine (PEI; Polysciences, War-
rington, USA) as transfection reagent (1 : 4 DNA/PEI ratio).
The cells were harvested 2 days after transfection and homog-
enized in 50 mM Tris-HCl binding buffer (pH 7.4). Cell
homogenates were co-incubated with indicated concentra-
tions of compounds and ~3 nM [3H]-mepyramine (human
H1R), ~10 nM [3H]-histamine (human H4R), or ~2 nM [3H]-
dihydroalprenolol (human β2R) in a total volume of 100 μl
per well. All radioligands were purchased from PerkinElmer
Life Sciences. The reaction mixtures were incubated for
1–1.5 h at 25 °C on a microtiter shaker (750 rpm). Incuba-
tions were terminated by rapid filtration through Unifilter
glass fiber C plates (PerkinElmer Life Sciences) that were
presoaked in 0.3% polyethylenimine and subsequently washed
three times with ice-cold binding buffer (pH 7.4 at 4 °C).
Retained radioactivity was measured by liquid scintillation
using a MicroBeta Trilux (PerkinElmer Life Sciences).
Nonlinear curve fitting was performed using GraphPad Prism
version 6.00 for Windows/Mac OSX, GraphPad Software, La
Jolla California USA, www.graphpad.com. The Ki values
were calculated using the Cheng–Prusoff equation:118 Ki =
IC50/(1 + [radioligand]/Kd).

Acknowledgements

We thank Mitchell K. L. Han for assistance with radioligand
displacement and Antoni R. Blaazer for performing the
This journal is © The Royal Society of Chemistry 2015

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5md00022j


MedChemComm Concise Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
M

ar
ch

 2
01

5.
 D

ow
nl

oa
de

d 
on

 1
1/

21
/2

02
5 

11
:1

8:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
quality control of the compounds. This research was finan-
cially supported by The Netherlands Organization for Scien-
tific Research (NWO VENI Grant 700.59.408 to C. d. G. and
NWO TOP PUNT Grant to R. L.), Indonesian Directorate Gen-
eral of Higher Education (Fundamental Research Block Grant
1320/K5/KM/2014 to E. P. I.) and Institute for Research and
Community Services, Sanata Dharma University (Research
Grant 083/Panel/LPPM-USD/SP/X/2013 to E. P. I). A. J. K., H. F.
V., S. N., I. J. P. d. E., R. L., and C. d. G. participate in the Euro-
pean Cooperation in Science and Technology Action CM1207
[GPCR-Ligand Interactions, Structures, and Transmembrane
Signalling: A European Research Network (GLISTEN)].

Notes and references

1 M. C. Lagerström and H. B. Schiöth, Nat. Rev. Drug

Discovery, 2008, 7, 339–357.

2 R. Leurs, H. F. Vischer, M. Wijtmans and I. J. P. de Esch,

Trends Pharmacol. Sci., 2011, 32, 250–257.

3 H. D. Lim, R. A. Smits, R. Leurs and I. J. P. de Esch, Curr.

Top. Med. Chem., 2006, 6, 1365–1373.

4 E. P. Istyastono, C. de Graaf, I. J. P. de Esch and R. Leurs,

Curr. Top. Med. Chem., 2011, 11, 661–679.

5 R. A. Smits, R. Leurs and I. J. P. de Esch, Drug Discovery

Today, 2009, 14, 745–753.

6 H. Engelhardt, R. A. Smits, R. Leurs, E. Haaksma and

I. J. P. de Esch, Curr. Opin. Drug Discovery Dev., 2009, 12,
628–643.

7 J. A. Jablonowski, C. A. Grice, W. Chai, C. A. Dvorak, J. D.

Venable, A. K. Kwok, K. S. Ly, J. Wei, S. M. Baker, P. J.
Desai, W. Jiang, S. J. Wilson, R. L. Thurmond, L. Karlsson,
J. P. Edwards, T. W. Lovenberg and N. I. Carruthers, J. Med.
Chem., 2003, 46, 3957–3960.

8 R. A. Smits, I. J. P. de Esch, O. P. Zuiderveld, J. Broeker, K.

Sansuk, E. Guaita, G. Coruzzi, M. Adami, E. Haaksma and
R. Leurs, J. Med. Chem., 2008, 51, 7855–7865.

9 D. A. Erlanson, R. S. McDowell and T. O'Brien, J. Med.

Chem., 2004, 47, 3463–3482.

10 G. E. de Kloe, D. Bailey, R. Leurs and I. J. P. de Esch, Drug

Discovery Today, 2009, 14, 630–646.

11 C. W. Murray, M. L. Verdonk and D. C. Rees, Trends

Pharmacol. Sci., 2012, 33, 224–232.

12 M. Congreve, R. Carr, C. Murray and H. Jhoti, Drug

Discovery Today, 2003, 8, 876–877.

13 S. M. Boyd and G. E. de Kloe, Drug Discovery Today:

Technol., 2010, 7, e173–e180.

14 C. de Graaf, H. F. Vischer, G. E. de Kloe, A. J. Kooistra, S.

Nijmeijer, M. Kuijer, M. H. Verheij, P. J. England, J. E. van
Muijlwijk-Koezen, R. Leurs and I. J. de Esch, Drug Discovery
Today, 2013, 18, 323–330.

15 A. R. Leach and M. M. Hann, Curr. Opin. Chem. Biol.,

2011, 15, 489–496.

16 M. Congreve, R. L. Rich, D. G. Myszka, F. Figaroa, G. Siegal

and F. H. Marshall, Methods Enzymol., 2011, 493, 115–136.

17 M. H. P. Verheij, C. de Graaf, G. E. de Kloe, S. Nijmeijer,

H. F. Vischer, R. A. Smits, O. P. Zuiderveld, S. Hulscher,
This journal is © The Royal Society of Chemistry 2015
L. Silvestri, A. J. Thompson, J. E. van Muijlwijk-Koezen,
S. C. R. Lummis, R. Leurs and I. J. P. de Esch, Bioorg.
Med. Chem. Lett., 2011, 21, 5460–5464.

18 A. Visegrady and G. M. Keseru, Expert Opin. Drug Discovery,

2013, 8, 811–820.

19 D. Chen, J. C. Errey, L. H. Heitman, F.H. Marshall, A. P.

Ijzerman and G. Siegal, ACS Chem. Biol., 2012, 7, 2064–2073.

20 D. Chen, A. Ranganathan, I. J. AP, G. Siegal and J. Carlsson,

J. Chem. Inf. Model., 2013, 53, 2701–2714.

21 J. A. Christopher, J. Brown, A. S. Dore, J. C. Errey, M.

Koglin, F. H. Marshall, D. G. Myszka, R. L. Rich, C. G. Tate,
B. Tehan, T. Warne and M. Congreve, J. Med. Chem.,
2013, 56, 3446–3455.

22 S. P. Andrews, G. A. Brown and J. A. Christopher,

ChemMedChem, 2014, 9, 256–275.

23 A. J. Kooistra, S. Kuhne, I. J. de Esch, R. Leurs and C. de

Graaf, Br. J. Pharmacol., 2013, 170, 101–126.

24 C. de Graaf, A. J. Kooistra, H. F. Vischer, V. Katritch, M.

Kuijer, M. Shiroishi, S. Iwata, T. Shimamura, R. C. Stevens,
I. J. de Esch and R. Leurs, J. Med. Chem., 2011, 54,
8195–8206.

25 F. Sirci, E. P. Istyastono, H. F. Vischer, A. J. Kooistra, S.

Nijmeijer, M. Kuijer, M. Wijtmans, R. Mannhold, R. Leurs,
I. J. P. de Esch and C. de Graaf, J. Chem. Inf. Model.,
2012, 52, 3308–3324.

26 M. Vass, É. Schmidt, F. Horti and G. M. Keserű, Eur. J. Med.

Chem., 2014, 77, 38–46.

27 A. J. Kooistra, R. Leurs, I. J. P. de Esch and C. de Graaf,

Adv. Exp. Med. Biol., 2014, 796, 129–157.

28 J. Venhorst, S. Nunez, J. W. Terpstra and C. G. Kruse,

J. Med. Chem., 2008, 51, 3222–3229.

29 D. M. Krüger and A. Evers, ChemMedChem, 2010, 5, 148–158.

30 A. J. Kooistra, L. Roumen, R. Leurs, I. J. P. de Esch and C.
de Graaf, Methods Enzymol., 2013, 522, 279–336.
31 N. Moitessier, P. Englebienne, D. Lee, J. Lawandi and C. R.
Corbeil, Br. J. Pharmacol., 2008, 153(Suppl 1), S7–26.
32 M. Michino, E. Abola, GPCR Dock 2008 participants, C. L.
Brooks 3rd, J. S. Dixon, J. Moult and R. C. Stevens, Nat. Rev.
Drug Discovery, 2009, 8, 455–463.

33 I. Kufareva, M. Rueda, V. Katritch, R. C. Stevens, R.

Abagyan and GPCR Dock 2010 participants, Structure,
2011, 19, 1108–1126.

34 A. Tarcsay, G. Paragi, M. Vass, B. Jójárt, F. Bogár and G. M.

Keserű, J. Chem. Inf. Model., 2013, 53, 2990–2999.

35 I. Kufareva, V. Katritch, GPCR Dock 2013 participants, R. C.

Stevens and R. Abagyan, Structure, 2014, 22, 1120–1139.

36 G. Marcou and D. Rognan, J. Chem. Inf. Model., 2007, 47,

195–207.

37 K. Loving, I. Alberts and W. Sherman, Curr. Top. Med.

Chem., 2010, 10, 14–32.

38 M. L. Verdonk, I. Giangreco, R. J. Hall, O. Korb, P. N.

Mortenson and C. W. Murray, J. Med. Chem., 2011, 54,
5422–5431.

39 J. Carlsson, R. G. Coleman, V. Setola, J. J. Irwin, H. Fan, A.

Schlessinger, A. Sali, B. L. Roth and B. K. Shoichet, Nat.
Chem. Biol., 2011, 7, 769–778.
Med. Chem. Commun., 2015, 6, 1003–1017 | 1015

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5md00022j


MedChemCommConcise Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
M

ar
ch

 2
01

5.
 D

ow
nl

oa
de

d 
on

 1
1/

21
/2

02
5 

11
:1

8:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
40 S. Vilar, G. Ferino, S. S. Phatak, B. Berk, C. N. Cavasotto

and S. Costanzi, J. Mol. Graphics Modell., 2011, 29, 614–623.

41 V. Katritch, V. Cherezov and R. C. Stevens, Annu. Rev.

Pharmacol. Toxicol., 2013, 53, 531–556.

42 A. J. Venkatakrishnan, X. Deupi, G. Lebon, C. G. Tate, G. F.

Schertler and M. M. Babu, Nature, 2013, 494, 185–194.

43 A. J. Kooistra, C. de Graaf and H. Timmerman, Neurochem.

Res., 2014, 39, 1850–1861.

44 V. Cherezov, D. M. Rosenbaum, M. A. Hanson, S. G.

Rasmussen, F. S. Thian, T. S. Kobilka, H. J. Choi, P. Kuhn,
W. I. Weis, B. K. Kobilka and R. C. Stevens, Science,
2007, 318, 1258–1265.

45 T. Shimamura, M. Shiroishi, S. Weyand, H. Tsujimoto, G.

Winter, V. Katritch, R. Abagyan, V. Cherezov, W. Liu, G. W.
Han, T. Kobayashi, R. C. Stevens and S. Iwata, Nature,
2011, 475, 65–70.

46 P. Kolb, D. M. Rosenbaum, J. J. Irwin, J. J. Fung, B. K.

Kobilka and B. K. Shoichet, Proc. Natl. Acad. Sci. U. S. A.,
2009, 106, 6843–6848.

47 V. Katritch, V. P. Jaakola, J. R. Lane, J. Lin, A. P. Ijzerman,

M. Yeager, I. Kufareva, R. C. Stevens and R. Abagyan,
J. Med. Chem., 2010, 53, 1799–1809.

48 J. Carlsson, L. Yoo, Z. Gao, J. J. Irwin, B. K. Shoichet and

K. A. Jacobson, J. Med. Chem., 2010, 53, 3748–3755.

49 D. Rodriguez, J. Brea, M. I. Loza and J. Carlsson, Structure,

2014, 22, 1140–1151.

50 J. Varady, X. Wu, X. Fang, J. Min, Z. Hu, B. Levant and S.

Wang, J. Med. Chem., 2003, 46, 4377–4392.

51 A. Evers and T. Klabunde, J. Med. Chem., 2005, 48,

1088–1097.

52 M. Congreve, J. M. Dias and F. H. Marshall, Prog. Med.

Chem., 2014, 53, 1–63.

53 K. A. Jacobson and S. Costanzi, Mol. Pharmacol., 2012, 82,

361–371.

54 N. Shin, E. Coates, N. J. Murgolo, K. L. Morse, M. Bayne,

C. D. Strader and F. J. Monsma, Mol. Pharmacol., 2002, 62,
38–47.

55 A. Jongejan, H. D. Lim, R. A. Smits, I. J. de Esch, E.

Haaksma and R. Leurs, J. Chem. Inf. Model., 2008, 48,
1455–1463.

56 R. Kiss, B. Kiss, A. Konczol, F. Szalai, I. Jelinek, V. Laszlo, B.

Noszal, A. Falus and G. M. Keseru, J. Med. Chem., 2008, 51,
3145–3153.

57 Y. Tanrikulu, E. Proschak, T. Werner, T. Geppert, N.

Todoroff, A. Klenner, T. Kottke, K. Sander, E. Schneider, R.
Seifert, H. Stark, T. Clark and G. Schneider, ChemMedChem,
2009, 4, 820–827.

58 H. D. Lim, C. de Graaf, W. Jiang, P. Sadek, P. M. McGovern,

E. P. Istyastono, R. A. Bakker, I. J. de Esch, R. L. Thurmond
and R. Leurs, Mol. Pharmacol., 2010, 77, 734–743.

59 E. P. Istyastono, S. Nijmeijer, H. D. Lim, A. van de Stolpe, L.

Roumen, A. J. Kooistra, H. F. Vischer, I. J. de Esch, R. Leurs
and C. de Graaf, J. Med. Chem., 2011, 54, 8136–8147.

60 S. Schultes, S. Nijmeijer, H. Engelhardt, A. J. Kooistra, H. F.

Vischer, I. J. P. de Esch, E. E. J. Haaksma, R. Leurs and C.
de Graaf, Med. Chem. Commun., 2013, 4, 193.
1016 | Med. Chem. Commun., 2015, 6, 1003–1017
61 S. Schultes, H. Engelhardt, L. Roumen, O. P. Zuiderveld,

E. E. Haaksma, I. J. de Esch, R. Leurs and C. de Graaf,
ChemMedChem, 2013, 8, 49–53.

62 M. Wijtmans, C. de Graaf, G. de Kloe, E. P. Istyastono, J.

Smit, H. Lim, R. Boonnak, S. Nijmeijer, R. A. Smits, A.
Jongejan, O. Zuiderveld, I. J. P. de Esch and R. Leurs,
J. Med. Chem., 2011, 54, 1693–1703.

63 R. A. Smits, M. Adami, E. P. Istyastono, O. P. Zuiderveld,

C. M. van Dam, F. J. de Kanter, A. Jongejan, G. Coruzzi, R.
Leurs and I. J. de Esch, J. Med. Chem., 2010, 53, 2390–2400.

64 T. Warne, M. J. Serrano-Vega, J. G. Baker, R.

Moukhametzianov, P. C. Edwards, R. Henderson, A. G.
Leslie, C. G. Tate and G. F. Schertler, Nature, 2008, 454,
486–491.

65 E. Y. Chien, W. Liu, Q. Zhao, V. Katritch, G. W. Han, M. A.

Hanson, L. Shi, A. H. Newman, J. A. Javitch, V. Cherezov
and R. C. Stevens, Science, 2010, 330, 1091–1095.

66 K. Haga, A. C. Kruse, H. Asada, T. Yurugi-Kobayashi, M.

Shiroishi, C. Zhang, W. I. Weis, T. Okada, B. K. Kobilka, T.
Haga and T. Kobayashi, Nature, 2012, 482, 547–551.

67 A. C. Kruse, J. Hu, A. C. Pan, D. H. Arlow, D. M.

Rosenbaum, E. Rosemond, H. F. Green, T. Liu, P. S. Chae,
R. O. Dror, D. E. Shaw, W. I. Weis, J. Wess and B. K.
Kobilka, Nature, 2012, 482, 552–556.

68 C. Wang, Y. Jiang, J. Ma, H. Wu, D. Wacker, V. Katritch,

G. W. Han, W. Liu, X. P. Huang, E. Vardy, J. D. McCorvy, X.
Gao, X. E. Zhou, K. Melcher, C. Zhang, F. Bai, H. Yang, L.
Yang, H. Jiang, B. L. Roth, V. Cherezov, R. C. Stevens and
H. E. Xu, Science, 2013, 340, 610–614.

69 S. Topiol and M. Sabio, Bioorg. Med. Chem. Lett., 2008, 18,

1598–1602.

70 D. R. Weiss, S. Ahn, M. F. Sassano, A. Kleist, X. Zhu, R.

Strachan, B. L. Roth, R. J. Lefkowitz and B. K. Shoichet,
ACS Chem. Biol., 2013, 8, 1018–1026.

71 A. J. Kooistra, I. J. de Esch, R. Leurs and C. de Graaf, PhD

Thesis, VU University Amsterdam, 2015.

72 M. M. Mysinger, D. R. Weiss, J. J. Ziarek, S. Gravel, A. K.

Doak, J. Karpiak, N. Heveker, B. K. Shoichet and B. F.
Volkman, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 5517–5522.

73 D. Rognan, Top. Curr. Chem., 2012, 317, 201–222.

74 C. de Graaf, N. Foata, O. Engkvist and D. Rognan, Proteins,
2008, 71, 599–620.
75 G. Hessler and K.-H. Baringhaus, Drug Discovery Today:
Technol., 2010, 7, e263–e269.
76 S. Schultes, A. J. Kooistra, H. F. Vischer, S. Nijmeijer, E.
Haaksma, R. Leurs, I. J. P. de Esch and C. de Graaf,
J. Chem. Inf. Model., 2015, DOI: 10.1021/ci500694c.

77 A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies,

A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-
Lazikani and J. P. Overington, Nucleic Acids Res., 2012, 40,
D1100–1107.

78 S. Nijmeijer, H. F. Vischer, E. M. Rosethorne, S. J. Charlton

and R. Leurs, Mol. Pharmacol., 2012, 82, 1174–1182.

79 S. Nijmeijer, H. F. Vischer, F. Sirci, S. Schultes, H.

Engelhardt, C. de Graaf, E. M. Rosethorne, S. J. Charlton
and R. Leurs, Br. J. Pharmacol., 2013, 170, 78–88.
This journal is © The Royal Society of Chemistry 2015

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5md00022j


MedChemComm Concise Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
M

ar
ch

 2
01

5.
 D

ow
nl

oa
de

d 
on

 1
1/

21
/2

02
5 

11
:1

8:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
80 S. Cramp, H. J. Dyke, C. Higgs, D. E. Clark, M. Gill, P. Savy,

N. Jennings, S. Price, P. M. Lockey, D. Norman, S. Porres, F.
Wilson, A. Jones, N. Ramsden, R. Mangano, D. Leggate, M.
Andersson and R. Hale, Bioorg. Med. Chem. Lett., 2010, 20,
2516–2519.

81 H. D. Lim, R. M. V. Rijn, P. Ling, R. A. Bakker, R. L.

Thurmond and R. Leurs, J. Pharmacol. Exp. Ther.,
2005, 314, 1310–1321.

82 S. Nijmeijer, H. Engelhardt, S. Schultes, A. C. van de Stolpe,

V. Lusink, C. de Graaf, M. Wijtmans, E. E. Haaksma, I. J. de
Esch, K. Stachurski, H. F. Vischer and R. Leurs, Br. J.
Pharmacol., 2013, 170, 89–100.

83 J. A. Salon, D. T. Lodowski and K. Palczewski, Pharmacol.

Rev., 2011, 63, 901–937.

84 D. Wacker, G. Fenalti, M. A. Brown, V. Katritch, R. Abagyan,

V. Cherezov and R. C. Stevens, J. Am. Chem. Soc., 2010, 132,
11443–11445.

85 H. D. Lim, A. Jongejan, R. A. Bakker, E. Haaksma, I. J. de

Esch and R. Leurs, J. Pharmacol. Exp. Ther., 2008, 327,
88–96.

86 M. Govoni, H. D. Lim, D. El-Atmioui, W. M. P. B. Menge, H.

Timmerman, R. A. Bakker, R. Leurs and I. J. P. De Esch,
J. Med. Chem., 2006, 49, 2549–2557.

87 B. M. Savall, J. P. Edwards, J. D. Venable, D. J. Buzard, R.

Thurmond, M. Hack and P. McGovern, Bioorg. Med. Chem.
Lett., 2010, 20, 3367–3371.

88 E. M. Rosethorne and S. J. Charlton, Mol. Pharmacol.,

2011, 79, 749–757.

89 R. Seifert, E. H. Schneider, S. Dove, I. Brunskole, D.

Neumann, A. Strasser and A. Buschauer, Mol. Pharmacol.,
2011, 79, 631–638.

90 D. Wifling, K. Löffel, U. Nordemann, A. Strasser, G.

Bernhardt, S. Dove, R. Seifert and A. Buschauer, Br. J.
Pharmacol., 2015, 172, 785–798.

91 D. Rogers and M. Hahn, J. Chem. Inf. Model., 2010, 50,

742–754.

92 OpenEye Scientific Software Inc., 2009, ROCS version 2.3.1,

Santa Fe. http://www.eyesopen.com.

93 O. Korb, T. Stützle and T. E. Exner, J. Chem. Inf. Model.,

2009, 49, 84–96.

94 C. de Graaf and D. Rognan, Curr. Pharm. Des., 2009, 15,

4026–4048.

95 R Development Core Team, 2008, R: A Language and

Environment for Statistical Computing, Vienna. http://www.
r-project.org.

96 M. H. Zweig and G. Campbell, Clin. Chem., 1993, 39, 561–577.

97 X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C.
Sanchez and M. Müller, BMC Bioinf., 2011, 12, 77.
98 A. Steffen, T. Kogej, C. Tyrchan and O. Engkvist, J. Chem.
Inf. Model., 2009, 49, 338–347.
99 J. J. Irwin and B. K. Shoichet, J. Chem. Inf. Model., 2005, 45,
177–182.
This journal is © The Royal Society of Chemistry 2015
100 T. I. Oprea, J. Comput. Mol. Des., 2000, 14, 251–264.

101 European Bioinformatics Institute, ChEMBLdb, 2010,
Cambridgeshire. https://www.ebi.ac.uk/chembldb Accessed
19 August 2010.

102 A. B. Yongye, J. R. Appel, M. A. Giulianotti, C. T. Dooley,

J. L. Medina-Franco, A. Nefzi, R. A. Houghten and K.
Martínez-Mayorga, Bioorg. Med. Chem., 2009, 17,
5583–5597.

103 J. W. Raymond, E. J. Gardiner and P. Willett, J. Chem. Inf.

Comput. Sci., 2002, 42, 305–316.

104 J. C. Mobarec, R. Sanchez and M. Filizola, J. Med. Chem.,

2009, 52, 5207–5216.

105 J. A. Ballesteros and H. Weinstein, Methods Neurosci.,

1995, 25, 366–428.

106 C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, W. C.

Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R.
Lopez, M. Magrane, M. J. Martin, R. Mazumder, C.
O'Donovan, N. Redaschi and B. Suzek, Nucleic Acids Res.,
2006, 34, D187–D191.

107 ChemAxon, 2009, MarvinBeans 5.2.5.1, Budapest.

108 Molecular Networks GmbH., 2008, Corina version 3.46,
Erlangen, http://www.molecular-networks.com/products/
corina.

109 D. A. Case, T. A. Darden, T. E. Cheatham III, C. L.

Simmerling, J. Wang, R. E. Duke, R. Luo, M. Crowley, R. C.
Walker, W. Zhang, K. M. Merz, B. Wang, S. Hayik, A.
Roitberg, G. Seabra, I. Kolossváry, K. F. Wong, F. Paesani, J.
Vanicek, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, L.
Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D. H.
Mathews, M. G. Seetin, C. Sagui, V. Babin and P. A.
Kollman, Amber 10, University of California, San Francisco,
2008.

110 E. Urizar, S. Claeysen, X. Deupí, C. Govaerts, S. Costagliola,

G. Vassart and L. Pardo, J. Biol. Chem., 2005, 280,
17135–17141.

111 D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E.

Mark and H. J. C. Berendsen, J. Comput. Chem., 2005, 26,
1701–1718.

112 O. Korb, T. Stützle and T. E. Exner, Proc. IEEE Swarm Intell.

Symp., 2007, 1, 115–134.

113 OpenEye Scientific Software Inc., 2008, OMEGA version

2.3.2, Santa Fe. http://www.eyesopen.com.

114 Accelrys, 2007, Pipeline Pilot version 6.1.5,San Diego. http://

accelrys.com/products/pipeline-pilot.

115 A. N. Jain and A. Nicholls, J. Comput.-Aided Mol. Des.,

2008, 22, 133–139.

116 OpenEye Scientific Software Inc., 2009, FILTER version

2.1.1, Santa Fe. http://www.eyesopen.com.

117 J. Sadowski, J. Gasteiger and G. Klebe, J. Chem. Inf. Model.,

1994, 34, 1000–1008.

118 Y. Cheng and W. H. Prusoff, Biochem. Pharmacol., 1973, 22,

3099–3108.
Med. Chem. Commun., 2015, 6, 1003–1017 | 1017

http://www.eyesopen.com.
http://www.r-project.org.
http://www.r-project.org.
https://www.ebi.ac.uk/chembldb.
http://www.molecular-networks.com/products/corina.
http://www.molecular-networks.com/products/corina.
http://www.eyesopen.com
http://accelrys.com/products/pipeline-pilot
http://accelrys.com/products/pipeline-pilot
http://www.eyesopen.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5md00022j

