Structure-based virtual screening for fragment-like ligands of the G protein-coupled histamine H₄ receptor†

Enade P. Istyastono,†‡ab Albert J. Kooistra,†a Henry F. Vischer,a Martien Kuijer,a Luc Roumen,a Saskia Nijmeijer,a Rogier A. Smits,c Iwan J. P. de Esch,a Rob Leurs,a and Chris de Graaf*a

We have explored the possibilities and challenges of structure-based virtual screening (SBVS) against the human histamine H₄ receptor (H₄R), a key player in inflammatory responses. Several SBVS strategies, employing different H₄R ligand conformations, were validated and optimized with respect to their ability to discriminate small fragment-like H₄R ligands from true inactive fragments, and compared to ligand-based virtual screening (LBVS) approaches. SBVS studies with a molecular interaction fingerprint (IFP) scoring method enabled the identification of H₄R ligands that were not identified in LBVS runs, demonstrating the scaffold hopping potential of combining molecular docking and IFP scoring. Retrospective VS evaluations against H₄R homology models based on the histamine H₁ receptor (H₁R) crystal structure did not give higher enrichments of H₄R ligands than H₁R models based on the β₂ adrenergic receptor (β₂R). Complementary prospective SBVS studies against β₂R-based and H₁R-based H₄R homology models led to the discovery of different new fragment-like H₄R ligand chemotypes. Of the 37 tested compounds, 9 fragments (representing 5 different scaffolds) had affinities between 0.14 and 6.3 μM at the H₄R.

Introduction

The histamine H₄ receptor (H₄R), belonging to the family of G protein-coupled receptors (GPCRs),¹ has been reported to play an important role in allergic and inflammatory processes.²–⁶ So far, one H₄R ligand has entered Phase II clinical trials,²,⁴ but no marketed drug currently targets this receptor. The quest to find new ligands for H₄R therefore remains attractive. Most H₁R ligands (including compounds JNJ777120 (2) and VUF10497 (3); Fig. 1) have resulted from high-throughput screening (HTS) campaigns and subsequent medicinal chemistry programs.⁷–⁸

Fragment-based drug discovery (FBDD)⁹–¹¹ is a new paradigm in drug discovery that utilizes small molecules (molecular weight ≤300 Dalton, heavy atoms ≤22)¹²–¹⁴ as starting points for hit optimization. Within the context of FBDD, fragment-based screening is a more efficient way to sample chemical space and generally yields higher hit rates than...
classical high-throughput screening (HTS) campaigns of larger, drug-like compound. Biochemical and biophysical fragment screening studies of small chemical libraries (circum 25–1010 compounds) against different GPCRs have been reported with 0.4–14% hit rates yielding several new chemical starting points for fragment-based GPCR ligand optimization.14,16–22 So far only few experimental screens of the same fragment library against multiple GPCR targets have been reported14,16 that can provide information about the molecular determinants of GPCR-ligand selectivity by fragment-based chemogenomics analyses.1,23

Virtual fragment screening approaches, the \textit{in silico} prediction of fragment binding to protein binding sites that has the potential to explore protein–ligand space more extensively, have been successfully applied to identify new fragment-like ligands for several GPCR targets, with 20–73% hit rates (% of experimentally tested \textit{in silico} hits with detectable binding affinity).18,20,22–24 While ligand-based virtual screening methods often only allow the identification of chemically similar ligands, protein-based virtual screening approaches potentially offer the possibility of scaffold hopping, the discovery of ligands with new chemical functional groups.14,28–38 GPCR structure-based virtual fragment screening (SBVFS),18,22,24–27 the identification of smaller fragment-like molecules by docking simulations31 of large chemical databases in GPCR 3D structures, is however, still challenging and several problems have been identified including: (i) Conformational sampling problem: proper consideration of protein flexibility in docking simulations is difficult and small differences between experimentally-determined crystal structures, as well as structural inaccuracies in protein homology models, can affect sampling and scoring of different GPCR-ligand conformations.32–35 In particular, docking small fragments in a large binding pocket may result in multiple distinct binding modes with similar docking scores.36–38 (ii) Scoring problem: the ability of docking scoring functions to rank ligand docking poses in order to predict ligand binding modes and discriminate ligands from inactive molecules depends on the properties of the GPCR binding site and fine details of GPCR-ligand interactions.27,30,34,39,40 Moreover, docking scoring functions are generally not optimized for discriminating docking poses of small fragment-like molecules with comparable energy scores.36–38 (iii) Training problem: There are limited experimental data on true inactive fragment-like compounds that are required to optimize and validate structure-based virtual screening approaches.14,20,25 Furthermore, experimentally-determined crystal structures of the targeted protein in complex with fragment-like ligands are often lacking, and therefore cannot be used to validate structure-based virtual fragment screening approaches.

Several recent developments in the field of GPCR structural biology and FBDD can help to address these conformational sampling, scoring, and training problems associated with structure-based virtual fragment screening. In the past eight years crystal structures of 27 different GPCRs have been solved,41–43 including the adrenergic beta-2 receptor (\(\beta_2R\)),44 and histamine H\(_1\) receptor (H\(_1\)R).45 Structure-based virtual screening (SBVS) campaigns against GPCR crystal structures (in particular \(\beta_2R\),46 adenosine A\(_2A\) receptor (A\(_2A\)R),47,48 dopamine D\(_1\) receptor (D\(_1\)R),39 5-hydroxytryptamine receptor 2B (5HT\(_2BR\)),49 and H\(_2\)R44 have resulted in relatively high hit rates (24–73%) and yielded several small fragment-like ligands (≤22 heavy atoms).18,22–27 Although some successful SBVS studies with high hit rates (>20%) have also been reported based on GPCR homology models,39,50,51 the GPCR crystal structures seem to offer improved opportunities to push the limits of structure-based ligand discovery and design.18,20,22,24,27,30,52 The increasing number of GPCR crystal structures for different GPCR subfamilies furthermore offer higher-resolution templates for modeling the structures of GPCRs for which crystal structures have not yet been solved.30,32,33,35,37 Three-dimensional H\(_2\)R-ligand binding-mode models have been derived by (combining) ligand-based and protein-based modeling approaches, ligand structure–activity relationships, and site-directed mutagenesis studies.54–61 Experimentally validated homology models of human H\(_4\)R have been constructed based on bovine Rhodopsin (bRhO),54–56 \(\beta_3R\),58,59,62 and more recently the H\(_4\)R crystal structure.60,61 Although H\(_4\)R shares more ligands with H\(_3\)R than with \(\beta_3R\),23 sequence identity between the H\(_4\)R and H\(_3\)R binding site (28%) is only slightly higher than between the H\(_4\)R and \(\beta_2R\) binding site (26%, ESI† Fig. S1).23 Interestingly, H\(_3\)R models based on \(\beta_2R\) and H\(_4\)R crystal structure templates were equally successful in explaining H\(_4\)R mutation data, while H\(_3\)R-based H\(_4\)R models could better explain ligand SAR than \(\beta_3R\)-based H\(_4\)R homology models.50

The challenges in structure-based virtual screening against GPCR homology models have been demonstrated by previous H\(_1\)R virtual screening campaigns.26,56 In a large scale virtual screening study of more than 5 million compounds against a bRho-based H\(_1\)R model (refined with histamine), 255 \textit{in silico} hits were selected for experimentally testing, of which 11 had low affinity (<10 \(\mu\)M) and 5 had \(K_i\) values of 10 \(\mu\)M or lower (compounds 4–7, ESI† Fig. S2).56 Although the discovery of fragment-like molecules was not the aim of this study, most of the identified ligands were fragment-like.12–14 In another study retrospective virtual screening studies against MD simulation snapshots of a H\(_1\)R-based H\(_1\)R model (refined with JNJ-777120), allowed for the identification of representative H\(_1\)R structures that gave optimal enrichments of known H\(_1\)R ligands \textit{versus} decoy molecules compared to the initial H\(_1\)R homology model.24 This ensemble docking approach was subsequently applied in a prospective virtual screening campaign in which 50 \textit{in silico} hits were selected for experimental testing. Nine of the fragment hits had low H\(_1\)R affinity (>10 \(\mu\)M) and one fragment (compound 8, ESI† Fig. S2) had a \(K_i\) value of 8 \(\mu\)M.26

The aim of this study is to investigate the possibilities and limitations of structure-based virtual screening for the identification of new fragment-like ligands for H\(_4\)R.
sampling problems will be addressed by the construction of different three-dimensional receptor models of the human H4R with different ligands (compounds 1–3, Fig. 1),7,8,39,63 based on two different crystal structure templates (βR,44 and H1R β45), and by the consideration of different molecular dynamics simulation snapshots. Although crystal structures of several aminergic GPCRs are available to construct H4R homology models (i.e. β1R, β2R, D1R, H1R, M1R, M3R, 5HT1A R, 5HT1B R),44,45,64–66 β2R and H1R are selected as H4R modelling templates because: i) this allows us to further build from our β2R-based and H1R-based H4R modelling studies;50 ii) H1R is the crystallized GPCR that shares the highest number of ligands with H4R,23 and iii) β2R has been a frequently used crystal structure target46,69–71 and GPCR modelling template26,39,72 in prospective structure-based virtual screening studies in the past few years.27 Scoring and training problems will be addressed by: i) the use of a molecular interaction fingerprint (IFP) scoring method that considers protein–ligand interaction similarity to experimentally validated H4R-ligand binding-mode models consistent with H1R ligand structure–activity and structure–selectivity relationship and site-directed mutagenesis (SDM) studies. ii) the retrospective validation, comparison, and optimization of different virtual screening approaches based on a training set containing not only known H1R fragment-like ligands but also experimentally validated inactive fragments.13,17 The IFP scoring method has been shown to outperform energy-based scoring methods in previous GPCR structure-based virtual (fragment) screening studies.36,73,74 and enable the identification of new chemical ligand scaffolds.18,24,25 Optimal structure-based virtual screening approaches identified in the current study will therefore be compared with two-dimensional (2D) and three dimensional (3D) ligand-based virtual screening methods. Although pharmacophore-based virtual screening techniques were not considered in the current study, it should be noted that scaffold hopping potential of pharmacophoric methods is also well recognized,75 as for example demonstrated in virtual screening studies for new histamine H3 receptor ligands.25 Systematic analysis and comparison of hit sets in both retrospective and prospective virtual screening studies will provide insights into the relative performance and complementarity of different virtual screening approaches in the identification of novel fragment-like H4R ligands. Fragment training sets of experimentally determined binders/actives and non-binders/inactives have been previously used for the optimization and validation of ligand-based and protein-based FLAP pharmacophore models for the discovery of new fragment-like H4R ligands25 and the evaluation of different consensus-scoring strategies for ligand-based virtual screening for fragment-like H4R and H2R ligands.76 In the current study, training sets of experimentally determined binders and non-binders have been used for the first time to optimize and validate protein structure-based virtual screening methods. The lessons learned from our comparative retrospective and prospective virtual fragment screening studies can be used as a blueprint for future structure-based virtual (fragment) screening studies.

Results

Retrospective evaluation ligand-based and structure-based virtual screening methods

A dedicated training set, containing 100 unique fragment-like H4R ligands from our in-house fragment library14,17 and the ChEMBL database27 and 959 fragments inactive at human H1R,14,17 was used for retrospective validation of different structure-based and ligand-based (LBVS) virtual screening approaches (Fig. 1). The chemical structures and binding modes of the H4R ligands histamine (1), JNJ7777120 (2), and VUF10497 (3) (Fig. 1) were used as reference compounds in the retrospective VS runs. These selected ligands represent different steps in H4R ligand-optimization strategies in the past years:4–6 (i) modification of the basic amine, and (ii) substitution of the imidazole ring with bioisosteres.4 Histamine (1) is the endogenous ligand of H4R and JNJ7777120 (2) is the first published selective non-imidazole H4R ligand, a biased agonist for the β-arrestin pathway,78,79 and both have served as reference compounds in previous ligand-based and protein-based H4R virtual screening and ligand design studies.8,26,36,80 VUF10497 is a high affinity H4R inverse agonist and is representative for a series based on an in-house discovered H4R scaffold.8,63

The binding modes of the reference compounds in the H4R binding pocket were derived following the information extracted from previous structure–activity relationship and mutation studies on H4R4,29,61,82 All compounds display H-bond interactions to D94β32 and E1825.46 Mutagenesis studies have indicated that these residues are essential H-bond acceptor interaction points for H4R ligands54,55,60 and suggest that D94β32 and E1825.46 form H-bond interaction networks with Q3477.42 and N147β45, respectively.58,59 The transmembrane (TM) binding pocket is very similar in both H4R models based on β2R and H1R (Fig. 2)4,29,82 but there are differences in the second extracellular loop (EL2).74,83,84 These differences slightly affect the binding orientation of JNJ7777120 (2) (Fig. 2),58 while the binding poses of histamine (1)18,85 and VUF10497 (3) remain very similar (Fig. 2). In the β2R-based H4R model the chlorine atom of JNJ7777120 (2) is located between EL2 (F168), TM5 (L175β39), and TM6 (T323β55), while in the H1R-based model the chlorine atom of JNJ7777120 is accommodated between TM5 (L175β39 and T1785.42) and EL2 (F168) (Fig. 2).4,58 It should be noted that the functional effect of these ligands vary considerably, from inverse agonist (VUF10497 (3)) to biased agonist (JNJ7777120 (2)) to full agonist (histamine). Clearly, the fragments to be identified in these VS efforts do not represent optimized compounds. It is apparent from literature that even the smallest structural changes of a ligand during hit or lead optimization (i.e., for fragments but also for drug-like molecules) can completely alter the functional activity from agonist to antagonist and vice versa.46,87 Furthermore, the functional activity is
highly dependent on the species investigated and on the signalling pathways studied.58,78,79,88–90 On a protein molecular level this probably means that the differences between agonists and antagonists can be relatively small, but the effect these changes can have on the conformation (activation state) of the receptor can be big.27 For this fragment-based VS campaign, we have chosen not to focus on the functional effect of the ligands, but on the affinity for H4R.

The retrospective VS flowchart is presented in Fig. 1. 2D-LBVS and 3D-LBVS similarity searches of the test set of H4R binders and non-binders were ranked according to ECFP-4 (Tanimoto score)91 and ROCS-EON (Comboscore)92 similarity against reference ligands (1–3).24 In the SBVS runs, compounds were docked against molecular dynamics simulation snapshots of β2R-based14,58,59 and H1R-based45 H4R homology models. The resulting docking poses were ranked subsequently using PLANTS\textsubscript{ChemPLP}93 and interaction fingerprint (IFP)36,74,94 similarity scores to reference binding modes of ligands 1–3 (Fig. 2). ROC plots (% true positives (TP) vs. % false positives (FP) in the ranked database)74 of the retrospective analysis of 2D-LBVS, 3D-LBVS and SBVS hit lists are presented in Fig. 3. The enrichment factor 1% (EF1%) of the VS protocols together with the area under ROC curves are summarized in Table 1.95–97

Table 1 and Fig. 3 indicate that 2D-LBVS, 3D-LBVS and SBVS-IFP can give a good early enrichment. SBVS using PLANTS\textsubscript{ChemPLP} scoring on the other hand resulted in
significantly lower enrichments. The 2D-LBVS runs result in a lower global virtual screening accuracy (reflected by the area under ROC curves) compared to the 3D approaches. On the other hand, low early enrichments as well as global virtual screening accuracies were obtained with the 3D approaches using histamine (1) as the reference compound. JNJ777120 (2) appeared to be the best reference for 2D- and 3D-LBVS runs, while the VUF10497 (3) binding mode performed as the best reference for post-processing SBVS docking simulations. Interestingly, β3R-based SBVS resulted in slightly higher enrichments compared to H1R-based SBVS.

We furthermore evaluated the ability of the different methods to identify "novel" fragment-like molecules (Fig. 4). In our retrospective virtual screening studies “novel” fragments were defined as compounds that have an ECFP-4 Tanimoto similarity score of less than 0.26 to any of the references. β3R-based SBVS yielded the most novel hits (Fig. 4C), followed by H1R-based SBVS (Fig. 4D) and 3D-LBVS (Fig. 4B).

Histamine (1) and histamine-H4R binding modes were only a suitable reference in 2D-LBVS runs (Fig. 4E), while both JNJ777120 (2) and VUF10497 (3) were good references in different virtual screening protocols (Fig. 4F–G). Fig. 4E–H show clear overlaps between 2D- and 3D-LBVS by using JNJ777120 (2) or VUF10497 (3) as the reference. Fig. 4F shows a high number of hits only identified by the LBVS studies, which were not identified in the SBVS studies by using JNJ777120 (2) as the reference. Fig. 4G shows that the use of JNJ777120 (2) in the SBVS studies increases the chance to retrieve "novel" H4R fragments. The highest number of shared hits between all SBVS methods were retrieved in the VUF10497-based SBVS studies (Fig. 4G). Collection of the hits that were retrieved at a 1% false positive rate using all references results in the Venn diagram presented in Fig. 4H. Although most active H4R fragments were retrieved using LBVS, SBVS provided a higher probability of retrieving "novel" H4R fragments.

Based on the results of our retrospective virtual screening studies, we performed the prospective SBVS campaigns using the β3R-based and H1R-based H4R homology models in complex with reference ligands 2 and 3 (Fig. 3 and 5).

Prospective structure-based virtual screening studies to discover new H4R ligands

The SBVS approach against the β3R-based H4R model was determined to be the best method in identifying novel fragment-like ligands (Fig. 4). We therefore used this model in a prospective in silico screening study to discover new

Table 1 The enrichment factor 1% (EF1%) and the area under ROC curves (AUC) of the VS protocols

<table>
<thead>
<tr>
<th>VS protocol</th>
<th>References</th>
<th>JNJ777120 (2)</th>
<th>VUF10497 (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EF1%</td>
<td>AUC (CI95)</td>
<td>EF1%</td>
</tr>
<tr>
<td>Ligand-based VS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>32.6</td>
<td>0.61 (0.54–0.98)</td>
<td>37.4</td>
</tr>
<tr>
<td>3D</td>
<td>5.7</td>
<td>0.77 (0.74–0.81)</td>
<td>37.4</td>
</tr>
<tr>
<td>β3R-based SBVS</td>
<td>0.0</td>
<td>0.58 (0.52–0.65)</td>
<td>2.9</td>
</tr>
<tr>
<td>2D</td>
<td>23.0</td>
<td>0.78 (0.73–0.84)</td>
<td>40.3</td>
</tr>
<tr>
<td>3D</td>
<td>2.9</td>
<td>0.67 (0.62–0.72)</td>
<td>1.0</td>
</tr>
<tr>
<td>β3R-based SBVS</td>
<td>1.9</td>
<td>0.68 (0.63–0.73)</td>
<td>17.3</td>
</tr>
<tr>
<td>2D</td>
<td>28.8</td>
<td>0.89 (0.86–0.93)</td>
<td>29.7</td>
</tr>
<tr>
<td>3D</td>
<td>5.7</td>
<td>0.66 (0.61–0.71)</td>
<td>25.9</td>
</tr>
</tbody>
</table>

\[a \] Confidence interval of the AUC with level of confidence of 95% calculated using pROC packages in R statistical computing software.
\[b \] Fig 3A.
\[c \] Fig 3B.
\[d \] Fig 3C.
\[e \] Fig 3D.
\[f \] Fig 3E.
\[g \] Fig 3F.
selected (ESI† lists in our prospective VS campaign: 23 fragments were in the SBVS-1/SBVS-2 consensus hit list and the SBVS-1 hit (Fig. 4E).

37 active H4R fragments from a subset of fragment-like (and commercially-available) molecules extracted from the ZINC database (Fig. 5, ESI† Table S1).99 Based on the results of the retrospective VS studies (Table 1, Fig. 4), two β2R-based H4R models and their corresponding IFP references were used in parallel: i) The first SBVS run was rescored using the Tanimoto coefficient-based IFP similarity (Tc-IFP) against the JN|7777120 (2) customized H4R model (SBVS-1), and ii) A second in silico screen rescored using Tc-IFP against the VUF10497 (3) based H4R model (SBVS-2) (Fig. 4). In the retrospective VS studies, the re-scoring using Tc-IFP clearly shows the increase of SBVS quality compared to the ones using PLANTSChemPLP scores (Table 1, Fig 3). Our retrospective virtual screening studies (Fig. 3, Table 1). Following the successful efforts in the discovery of novel H4R fragments by using the β2R-based H4R model, we subsequently performed similar SBVS campaigns employing H2R-based H4R model (Fig. 5). In order to increase our chances of finding ligands with a different chemotype we added the newly discovered H2R hit ligands as references compounds in the dissimilarity filter (Fig. 5). Fourteen fragments were selected and purchased (ESI† Fig. S4 and ESI† Table S3). Three of the hits from the H2R-based prospective SBVS (11–13) were experimentally confirmed as H2R ligands (Table 3). In total, 37 fragments were selected and purchased. Nine out of these 37 purchased fragments were confirmed as H2R ligands with binding affinities between 0.14 and 6.9 μM (Tables 2–3; Fig. 6). The hits represent five different scaffolds: the isosteric benzofuropyrimidines 9a–c and pyrimido-indoles 10a–c scaffolds identified in the β2R-based H4R model, and bezo-imidazole 11, triazoloquinazoline 12, and morpholinopyrimidine 13 identified in the H2R-based H4R model.

Discussion

Ligand- and protein-based virtual screening methods are complementary

One of the challenges in SBVFS is the limited experimental data on true inactive (fragment-like) compounds to properly validate and optimize virtual screening approaches. Our in-house fragment screening against H1R provided invaluable data that enabled us to construct a balanced training set of true active and true inactive H1R fragments.14,17 The H1R active fragments from our in-house screens14,17 were appended by active fragment-like H1R ligands from the ChEMBL database17,101 to further increase the number of true H1R active fragments. This dedicated training set of fragment-like compounds enabled us to retrospectively validate different ligand- and protein-based virtual fragment screening protocols (Fig. 1).

Both (2D and 3D) ligand-based and structure-based (IFP) virtual screening approaches gave good early enrichment in our retrospective virtual screening studies (Fig. 3, Table 1). SBVS using PLANTS scoring on the other hand resulted in significantly lower enrichments (Fig. 3, Table 1). Although 2D-LBVS gave high early enrichments, the global virtual screening accuracies (AUC values) of the ECFP-4 2D similarity searches were relatively low, indicating that this method is, as expected, rather dependent on the reference ligand. 3D-LBVS runs also gave high enrichments for the relatively larger reference ligands (Fig. 3, Table 1), and retrieved ligands that were not identified in 2D-LBVS simulations (Fig. 5). Enrichments obtained by 3D-similarity screens based on the relatively small histamine reference ligand (only 8 heavy atoms) are, however, significantly lower than 2D-similarity screens based on the same ligand (5-fold lower EF1%). This suggests that very small fragments are less distinguishable based on shape and electrostatic/pharmacophore similarity. Indeed,
histamine-based runs give relatively higher ROCS-EON scores (% of compounds within the database with a score ≥ 1.3 = 32%), than when using JNJ7777120 (26%) and VUF10497 (15%) as a reference. Another explanation could be that only disconnected groups are common between the reference and the target compound (maximum common edge (MCE) subgraph). This is supported by the fact that 41% of the actives and 21% of the inactives share an imidazole ring with histamine. It should be noted that in a 3D-LBVS campaign, using JNJ7777120 (2) as the reference compound, new H4R ligands were discovered that are similar to the experimentally confirmed hits 9a-c that were independently identified in our prospective SBVS study. These hit compounds from Cramp et al. were, however, not yet published when we performed our virtual screening and were therefore also not yet included in the ChEMBL database version (downloaded on August 19, 2010) used in our study for the novelty assessment.

Structure-based virtual screening with a molecular interaction fingerprint (IP) scoring method to rank PLANTS
Table 3 The biological activities and the prospective VS parameters of the H4R confirmed hits identified employing H2R-based H4R homology model

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Biological activities (pKi ± SEM) (^b)</th>
<th>Tc-IFP score (^d) (rank)</th>
<th>PLANTSchemPLP score (^e) (rank)</th>
<th>ECFP4 similarity (^f) (rank)</th>
<th>Reference ROCS-EON(^g) (rank)</th>
<th>ECFP4 similarity (^h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H2R(^b)</td>
<td>JNJ (2)</td>
<td>VUF (3)</td>
<td>JNJ (2)</td>
<td>VUF (3)</td>
<td>ChEMBL</td>
</tr>
<tr>
<td>VUF13848 (11)</td>
<td>5.16 ± 0.03</td>
<td>0.800</td>
<td>—</td>
<td>0.125</td>
<td>0.120</td>
<td>1.635</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4113)</td>
<td></td>
<td>(71 765)</td>
<td>(87 147)</td>
<td>(6966)</td>
</tr>
<tr>
<td>VUF13860 (12)</td>
<td>5.19 ± 0.07</td>
<td>0.727</td>
<td>—</td>
<td>0.215</td>
<td>0.300</td>
<td>1.624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3374)</td>
<td></td>
<td>(12 441)</td>
<td>(600)</td>
<td>(5066)</td>
</tr>
<tr>
<td>VUF13867 (13)</td>
<td>5.16 ± 0.04</td>
<td>0.739</td>
<td>—</td>
<td>0.213</td>
<td>0.323</td>
<td>1.643</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(626)</td>
<td></td>
<td>(13 059)</td>
<td>(277)</td>
<td>(6170)</td>
</tr>
</tbody>
</table>

\(^a\) pKi values are calculated from at least three independent measurements as the mean ± SEM. \(^b\) Measured by displacement of [3H]-histamine binding using membranes of HEK293T cells transiently expressing the human H2R. \(^c\) Measured by displacement of [3H]-mepyramine binding using membranes of HEK293T cells transiently expressing the human H2R. \(^d\) IFP Tanimoto similarity with the pose of either JNJ7777120 (SBVS-1) or VUF10497 (SBVS-2) in the H2R model. Tc-IFP ranking is given between brackets. \(^e\) PLANTSchemPLP docking score using H2R model bound to JNJ7777120 (SBVS-1) or VUF10497 (SBVS-2). The ranking is given between brackets. \(^f\) ECFP-4 2D Tanimoto similarity to JNJ7777120 (2), or VUF10497 (3). A similarity higher than 0.40 is considered as significant. \(^g\) ROCS/EON shape/electrostatic-based 3D similarity to JNJ7777120 (2), or VUF10497 (3) based on Comboscore. A similarity higher than 1.30 is considered as significant. \(^h\) Comboscore ranking is given between brackets. ECFP-4 circular fingerprint Tanimoto similarity to the closest known H2R active fragments used in the retrospective VS and the purchased hits based on β2R-based prospective VS. A similarity of higher than 0.40 is considered as significant. At 10 μM, the compounds showed [3H]-mepyramine displacement of less than 50%. At 10 μM, the compounds showed [3H]-mepyramine displacement of more than 50%.

Docking poses in JNJ7777120- and VUF10497-customized H2R homology models (based on β2R and H2R crystal structure templates) gave comparable high enrichments as 2D and 3D ligand-based virtual screening methods (Fig. 3, Table 1). In fact, SBVS against the β2R-based H2R model refined with VUF10497 (3) gave the best early enrichment of all methods used in the retrospective evaluation. For both β2R-based H2R models, higher retrospective virtual screening enrichments were obtained with VUF10497 (3) reference IFPs than with JNJ7777120 (2) or histamine (1) reference IFPs. A possible explanation for this result could be that the larger VUF10497 (3) ligand binds a larger part of the hydrophobic pocket between TM helices 3–6 (between W316 6.48, Y319 6.51, and L175 5.39) than JNJ777712 and histamine (Fig. 2). As a result the VUF10497 reference interaction fingerprint allows the retrieval of H2R ligand docking poses that target the subpocket between W316 6.48 and Y319 6.51 and/or the subpocket between Y319 6.51 and L175 5.39, which may lead to a better enrichment in the retrospective SBVS studies. It should further be noted that VUF10497 (3) has the highest affinity compared to histamine (1) and JNJ7777120 (2). Comparison of the overlap of ligands retrieved by the different methods furthermore shows that SBVS methods are capable of identifying of novel ligands that are chemically

![Fig. 6](image)

Fig. 6 [3H]-histamine binding displacement by reference compound 1 and the nine virtual screening hits (9a–c, 10a–c, 11, 12, 13). Data shown are representative binding curves of at least three experiments performed in triplicate. Error bars indicate SEM values.
dissimilar from the ligands used to define the reference IFP that are not retrieved by 2D or 3D LBVS methods (Fig. 4). This indicates that ligand- and structure-based virtual screening methods are complementary as previously shown by Krüger and Evers.\(^{29}\) Our results furthermore highlight the scaffold-hopping potential of SBVS in combination with IFP, as shown in previous studies.\(^{24}\)

Structure-based virtual screening is an efficient way to identify novel fragment-like H4R ligands

Based on the results of the retrospective VS studies (Table 1, Fig. 2–3), two \(\beta_2\)-R-based H4R models and their corresponding IFP references were used in prospective in silico screening runs to discover new active H4R fragments from a subset of fragment-like and commercially-available molecules extracted from the ZINC database (Fig. 5). Six out of 23 purchased in silico hits were experimentally confirmed as active H4R fragments with \(pK_a\) values of 5.2–6.8 (Table 2 and Fig. 7). By re-ranking the docking poses according to their IFP similarity the rank of the confirmed hits increased from \#1448–\#3550 for PLANTS to \#1–\#14 using IFP (Table 2). It should be noted that compounds 9a–c (Table 2 and Fig. 7) is similar to the H4R scaffold discovered by Cramp et al.\(^{80}\) in an independent ligand-based virtual screening campaign. It should be emphasized however that the compounds discovered in this ligand-based screening were not yet included in the ChEMBLdb database\(^ {77}\) version used in our study,\(^ {101}\) and therefore were identified after completion of our own prospective structure-based virtual screening study.

We subsequently performed the prospective SBVS campaigns against the H4R models that were built based on the H1R crystal structure\(^ {25}\) (Fig. 3 and 5). The SBVS runs against the H4R models identified three experimentally confirmed H4R ligands (11–13) (Table 3, Fig. 6 and 7). These three additional ligands combine a basic amine moiety with scaffolds (bezoimidazole 11, triazoloquinazoline 12, morpholinopyrimidine 13) that are different from the two isosteric H1R ligand scaffolds (benzofuropyrimidines 9a–c and pyrimido-indoles 10a–c) discovered in the prospective SBVS campaigns against \(\beta_2\)-R-based H4R models (Tables 2–3, ESI† Fig. S5). Although the TM fold of the \(\beta_2\)-R and H4R crystal structure templates are similar,\(^ {14,45}\) the different EL2 loop conformations (in particular the orientation of F168) results in different H4R ligands. As a result, the reference ligands (2–3) and the novel ligands identified in prospective virtual screening studies (9–13) have similar binding modes in \(\beta_2\)-R based and H4R models, including H-bond conserved H-bond interactions with D941.32 and E1825.46, but adopt slightly different orientations in the EL2 region (Fig. 2 and 7). These subtle differences in both binding pocket structure and reference ligand binding mode result in relatively small differences in retrospective VS accuracies between H4R homology models based on \(\beta_2\)-R and H4R crystal structure templates. Both modeling templates yield H4R models with good early enrichments, but the retrospective virtual screening accuracy of the \(\beta_2\)-R-based models is somewhat higher than the H4R-based H4R models (Table 1 and Fig. 2–3). Although the sequence identity between the H4R and H1R binding site is only slightly higher than between the H4R and \(\beta_2\)-R binding site,\(^ {23}\) H4R is expected be a better template to model the EL2 region downstream from the conserved C164EL2 that forms a disulphide bridge with C773.25 (including F168, ESI† Fig. S1). While H4R-based H4R models have previously been shown to better explain ligand SAR than \(\beta_2\)-R-based H4R homology models,\(^ {40}\) the current study indicates that the differences between H4R and \(\beta_2\)-R crystal structure templates does not significantly affect structure-based virtual screening accuracy of H4R homology models. Moreover, prospective virtual screening studies against \(\beta_2\)-R-based and H4R-based H4R models resulted both in the discovery of different new ligand chemotypes (Tables 2–3, Fig. 7–8). Our results are in line with recent comparative GPCR modeling studies which showed that comparable virtual screening results can be obtained with GPCR homology models and crystal structures.\(^ {25,27,29,40,104}\)

Notably, in contrast to the ligands found using \(\beta_2\)-R-based H4R models the confirmed hits discovered in the prospective SBVS campaigns against H4R-based H4R models were not the highest ranking compounds. Re-ranking the docking poses by their IFP similarity after the docking increased the rank of the confirmed hits from \#1051–\#26862 using PLANTS to \#413–\#3747 using IFP (Table 3). This indicates that the post SBVS campaign steps presented in Fig. 5 (dissimilarity filter and visual inspection) has led to diverse sets of selected and purchased hits. The Venn Diagram of Fig. 8 shows the overlap between the hit lists obtained for each of the homology

Fig. 7 Binding modes of the validated hits VUF13686 (9b, yellow, panel A) and VUF13694 (10b, purple, B) in the \(\beta_2\)-R-based H4R model, compared to the binding modes of VUF13848 (11, darkgreen, C), and VUF13860 (12, brown, D) in the H4R-based H4R model. Rendering is similar to Fig. 2.
models (after applying the retrospectively identified IFP score cutoffs, see Methods). The amount of unique ligands for each approach shows the complementarity of employing different modelling templates and different reference ligands to refine homology models. The purchased hits cover 12 out of 15 possible Venn-diagram regions, i.e. overlap combinations between homology-model hit lists (Fig. 8). Most of the confirmed active H4R fragments were present in the hit lists of the VUF10497 models (7 out of 9). The remaining 2 confirmed H4R fragments were identified in the SBVS using the H4R-based model with JNJ7777120. None of the confirmed hits were unique for β2R-based model with JNJ7777120, although one confirmed hit (VUF13848 (11)) was identified in both JNJ7777120 homology models.

Most of previous ligands designs for H4R were highly inspired from the structure of JNJ7777120 (2)4,29 since it was the first published non-imidazole antagonist for H4R. This might be the cause that the JNJ7777120 H4R models resulted in more diverse selected active hits compared to the SBVS campaigns using VUF10497 (3) as the reference (Fig. 8). The PLANTSChemPLP scores of the active H4R fragments were higher (≤ −90) in the SBVS with VUF10497 (3) as the reference compound (ESI† Fig. S6). The scoring distributions (Fig. S5) also show that with a lower PLANTS score the IFP score is increasing for only the VUF10497 models, which is in line with the finding that 7 out of the 9 confirmed hits were present in hit lists of these models. Hence, employing PLANTSChemPLP score and Tc-IFP as a combined scoring function in SBVS campaigns could increase the SBVS quality (as it did for the aforementioned H1R crystal structure-based VS).24 but it depends on the structure models and the IFP references. Cut-offs optimization is therefore required to build SBVS protocols with optimized quality.

Similar to the SBVS on the H1R crystal structure,24 the combined approaches can lead to a good hit rate (9 out of 36) of H4R small fragments. Although the hit rate is lower than the SBVS on the H1R crystal structure,24 these results of the prospective virtual screening exercise validate our structure-based virtual fragment screening method.

Conclusions

We have investigated the possibilities of structure-based virtual fragment screening against optimized homology models of the histamine H4R receptor. Structure- and ligand-based methods performed equally well in retrospective virtual screening studies, but structure-based virtual fragment screening using an interaction fingerprint scoring method enabled the identification of H4R ligands that were not identified in ligand-based VS runs. Surprisingly, retrospective virtual screening validation studies against H4R homology models based on the H4R crystal structure did not give higher VS enrichments than H4R models based on the crystal structure of the more distantly-related β2R. Optimized SBVS methods were successfully used to find two new series of fragment-like H4R ligands. Nine out of the 37 tested compounds (representing five different scaffolds) had binding affinities between 0.14 and 6.9 μM at the H4R. The results of our comparative study can be used to guide future structure-based virtual fragment screening campaigns.

Experimental section

Retention virtual screening

Residue numbering and nomenclature. The Ballesteros–Weinstein residue numbering scheme105 was used throughout this manuscript. For explicitly numbered residues in specific receptors, the UniProt106 residue number is given before the Ballesteros–Weinstein residue number in superscript (e.g., D943.32 in H4R).

Construction of retrospective validation database. Known H4R active fragments were compiled from in-house libraries (defined as fragments that show more than 50% displacement of radioligand [3H]histamine at 10 μM)16,17 and ChEMBL database77,101 (defined as fragment-like compounds with pKᵢ more than 7.0).14 The inactive H4R inactive fragments from in-house libraries (defined as fragments show less than 30% displacement of radioligand [3H]histamine at 10 μM).16,17 The tautomers and microspecies distributions at pH 7.4 of the ligands were generated by employing excal tool of ChemAxon 5.2.5.1.107 The species with abundance of more than 1% were selected. The 3D structures were generated using CORINA 3.46 subsequently.108

Construction and refinement H4R homology models. Starting from a previously published 3D model of H4R28,59,62 based on the β2R crystal structure (PDB-code 2RH1),44 new structural models of H4R were constructed and refined by docking and molecular dynamics simulations with three representative H4R ligands: Histamine (1), JNJ7777120 (2), and
VUF10497 (3). For each H4R-ligand complex optimal structures were selected based on their ability to discriminate between known fragment-like H4R ligands and true fragment-like H4R inactives (see subsection Construction of retrospective validation database) in retrospective virtual screening studies. A second set of H4R models was built based on the recently solved H4R crystal structure (PDB-code 3RZ2) using Modeller (using the same protocol as the previously published β2R-based H4R model) and subjected to the same optimization and validation protocols as the β2R-based H4R homology models. The reference compounds were docked using PLANTS version 1.1 into the H4R binding pocket, which was defined using PLANTS bind tool. The best pose of each reference was selected. The selected poses show interaction to D943 and E182 and have highest IFP similarity Tanimoto coefficient (Tc-IFP) to the previously described 3D model of JNJ777120 (2) in the H4R. The selected protein-ligand complex was then minimized using AMBER 10 to relax the structure. Force-field parameters for the ligands were derived using the Antechamber program and partial charges for the ligands were computed using the AM1-BCC procedure in Antechamber. Upper-bound distance restraint of 3.5 Å to maintain the interaction of the ligand to D3.32 was applied. The minimized model was subsequently embedded in a pre-equilibrated lipid bilayer consisting molecules of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and solvated with TIP3P water molecules (box dimensions: 82.3 Å × 74.8 Å × 80.4 Å) as described by Urizar et al. The complexes embedded in the hydrated lipid bilayer were minimized shortly using AMBER 10. The hydrogen bond to D3.32 constraint and a positional harmonic constraint of 50 kcal mol⁻¹ Å on Ca carbon atoms were applied. The entire system was then subjected to a 1.1 ns constant pressure molecular dynamics (MD) simulation. All bonds involving hydrogen atoms were frozen with the SHAKE algorithm. During the first 100 ps, the Ca carbon atoms were constrained and the hydrogen bond of the ligand to D3.32 was restrained as previously described and the temperature was linearly increased from 0 to 300 K. During the last 1000 ps, the temperature was kept constant at 300 K and the pressure at 1 bar, using a coupling constant of 0.2 ps and the Berendsen approach. Interactions were calculated according to the AMBER03 force field, using particle-mesh-Ewald (PME) summation to include the long range electrostatic forces. Van der Waals interactions were calculated using a cut-off of 8.0 Å. MD snapshots were clustered with the GROMACS g_cluster tool with respect to the Ca atoms of the defined binding residues and according to the Jarvis–Patrick method, using a cutoff of 3 Å for defining the nearest neighbours. This yielded 3 to 8 clusters per simulation run. The binding pocket regions of MD snapshots were then fitted to the corresponding binding pocket regions of the initial 3D model. The MD-snapshots of the complexes were finally energy minimized as described before. The minimized ligand-protein complexes from the MD-snapshots were subjected to perform SBVS campaigns retrospectively using PLANTS docking software. The IFP for each docked pose was calculated subsequently. Pose with hydrogen bond to D3.32 and highest Tc-IFP value for each ligand was selected. Early enrichment values (EF₁₀⁻⁰) values derived from receiver operating characteristic (ROC) curves were used as virtual screening criteria to evaluate the applicability of the MD snapshots to discriminate between known fragment-like H4R ligands and true fragment-like H4R inactives (see subsection Construction of retrospective validation database) in retrospective virtual screening studies. Two best snapshots performing SBVS were used further in prospective virtual screening.

Automated docking. All virtual screenings were performed by docking program PLANTS (version 1.1). PLANTS combines an ant colony optimization algorithm with an empirical scoring function for the prediction and scoring of binding poses in a protein structure. Force-field parameters for the ligands were derived using the Antechamber program and partial charges for the ligands were computed using the AM1-BCC procedure in Antechamber. Upper-bound distance restraint of 3.5 Å to maintain the interaction of the ligand to D3.32 was applied. The minimized model was subsequently embedded in a pre-equilibrated lipid bilayer consisting molecules of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and solvated with TIP3P water molecules (box dimensions: 82.3 Å × 74.8 Å × 80.4 Å) as described by Urizar et al. The complexes embedded in the hydrated lipid bilayer were minimized shortly using AMBER 10. The hydrogen bond to D3.32 constraint and a positional harmonic constraint of 50 kcal mol⁻¹ Å on Ca carbon atoms were applied. The entire system was then subjected to a 1.1 ns constant pressure molecular dynamics (MD) simulation. All bonds involving hydrogen atoms were frozen with the SHAKE algorithm. During the first 100 ps, the Ca carbon atoms were constrained and the hydrogen bond of the ligand to D3.32 was restrained as previously described and the temperature was linearly increased from 0 to 300 K. During the last 1000 ps, the temperature was kept constant at 300 K and the pressure at 1 bar, using a coupling constant of 0.2 ps and the Berendsen approach. Interactions were calculated according to the AMBER03 force field, using particle-mesh-Ewald (PME) summation to include the long range electrostatic forces. Van der Waals interactions were calculated using a cut-off of 8.0 Å. MD snapshots were clustered with the GROMACS g_cluster tool with respect to the Ca atoms of the defined binding residues and according to the Jarvis–Patrick method, using a cutoff of 3 Å for defining the nearest neighbours. This yielded 3 to 8 clusters per simulation run. The binding pocket regions of MD snapshots were then fitted to the corresponding binding pocket regions of the initial 3D model. The MD-snapshots of the complexes were finally energy minimized as described before. The minimized ligand-protein complexes from the MD-snapshots were subjected to perform SBVS campaigns retrospectively using PLANTS docking software. The IFP for each docked pose was calculated subsequently. Pose with hydrogen bond to D3.32 and highest Tc-IFP value for each ligand was selected. Early enrichment values (EF₁₀⁻⁰) values derived from receiver operating characteristic (ROC) curves were used as virtual screening criteria to evaluate the applicability of the MD snapshots to discriminate between known fragment-like H4R ligands and true fragment-like H4R inactives (see subsection Construction of retrospective validation database) in retrospective virtual screening studies. Two best snapshots performing SBVS were used further in prospective virtual screening.

Automated docking. All virtual screenings were performed by docking program PLANTS (version 1.1). PLANTS combines an ant colony optimization algorithm with an empirical scoring function for the prediction and scoring of binding poses in a protein structure. Force-field parameters for the ligands were derived using the Antechamber program and partial charges for the ligands were computed using the AM1-BCC procedure in Antechamber. Upper-bound distance restraint of 3.5 Å to maintain the interaction of the ligand to D3.32 was applied. The minimized model was subsequently embedded in a pre-equilibrated lipid bilayer consisting molecules of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and solvated with TIP3P water molecules (box dimensions: 82.3 Å × 74.8 Å × 80.4 Å) as described by Urizar et al. The complexes embedded in the hydrated lipid bilayer were minimized shortly using AMBER 10. The hydrogen bond to D3.32 constraint and a positional harmonic constraint of 50 kcal mol⁻¹ Å on Ca carbon atoms were applied. The entire system was then subjected to a 1.1 ns constant pressure molecular dynamics (MD) simulation. All bonds involving hydrogen atoms were frozen with the SHAKE algorithm. During the first 100 ps, the Ca carbon atoms were constrained and the hydrogen bond of the ligand to D3.32 was restrained as previously described and the temperature was linearly increased from 0 to 300 K. During the last 1000 ps, the temperature was kept constant at 300 K and the pressure at 1 bar, using a coupling constant of 0.2 ps and the Berendsen approach. Interactions were calculated according to the AMBER03 force field, using particle-mesh-Ewald (PME) summation to include the long range electrostatic forces. Van der Waals interactions were calculated using a cut-off of 8.0 Å. MD snapshots were clustered with the GROMACS g_cluster tool with respect to the Ca atoms of the defined binding residues and according to the Jarvis–Patrick method, using a cutoff of 3 Å for defining the nearest neighbours. This yielded 3 to 8 clusters per simulation run. The binding pocket regions of MD snapshots were then fitted to the corresponding binding pocket regions of the initial 3D model. The MD-snapshots of the complexes were finally energy minimized as described before. The minimized ligand-protein complexes from the MD-snapshots were subjected to perform SBVS campaigns retrospectively using
independent ROCS runs. Compounds were ranked by decreasing EON score25 (combination of the shape and the electrostatic potential Tanimoto similarity in this optimized overlay). Score higher than 1.30 is considered as significant.102

ECFP-4 2D similarity search. Two-dimensional similarity searches were carried out using ECFP-4 (extended connectivity fingerprints)98 descriptors available in Pipeline Pilot version 6.1.5111 and compared using the Tanimoto coefficient.

Retrospective virtual screening analysis. A hundred known fragment-like H\(_4\)R ligands17,101 and 959 fragment-like compounds that are inactive at H\(_4\)R17 were subjected to 2D-LBVS (ECFP-4)98,114 and 3D-LBVS (ROCS-EON)92 runs and docked into H\(_4\)R models and scored with PLANTS and IFP.24,36,93,112 Virtual screening accuracies were first determined in terms of area under the curve of receiver-operator characteristic (ROC) plots, and its 95% confidence interval was computed with R statistical computing software version 2.11.1.25,97 Enrichment in true positives (TP) is reported at a false positive rate (FP) of 1% (EF\(_{1\%}\)) as follows: EF\(_{1\%}\) = TP/FP\(_{1\%}\). Early enrichment at 1% rate was computed for each virtual screen.115

Prospective virtual screening

Preparation of prospective virtual screening database. Similar procedures to create fragment database to perform prospective crystal structure based virtual screening to discover H\(_4\)R fragments were employed.24 From 16 vendors we downloaded their commercial compound datasets in SMILES format from the ZINC website. With use of OpenEye’s filter (version 2.1.1),39,116 only fragment-like compounds were selected (43,326 compounds). Plausible tautomers and protonation states at pH 7.4 were computed for these compounds with excaltool of ChemAxon 5.2.5.1.107 The species with abundance of more than 20% were selected. The 3D structures were generated using CORINA subsequently.108,117 Second filter was applied to select only compounds with a formal charge of at least +1, this selection ensures that all selected compounds have the possibility for an ionic bond with key residue D943,32 in the pocket (42,620 compounds). Subsequently, third filter was applied to remaining compounds to select compounds which do not have plausible reactive groups.100 This selection decreases the probability to have hits which can lead to be toxic compounds.100

SBVS on \(\beta_3\)-R-based H\(_4\)R model. Prospective fragment virtual screenings were performed on compounds from ZINC database.39 Fragment-like compounds,10 which come from selected vendors in the database (ESI† Table S1) were selected. The tautomers and microspecies distributions at pH 7.4 of the ligands were generated as described in subsection Preparation of prospective virtual screening database. The species with abundance of more than 20% were selected. The 3D structures were then generated using CORINA as described in subsection Preparation of prospective virtual screening database.108 The structures were objected to the SBVS campaigns using two selected MD snapshots (SBVS-1 and 2). The Tc-IFP values of enrichment factor of 1% ranked false positives (EF\(_{1\%}\)) of the selected SBVS protocols were used as the cut-offs: 0.733 and 0.810 for SBVS-1 and SBVS-2, respectively. To avoid similar scaffolds to the known H\(_3\)R fragments, the hits with ECFP-4 similarity values of less than 0.40 against all known H\(_3\)R active fragments used in the retrospective VS were selected and the remaining hits were subjected to visual inspection.24 The compounds selected by virtual screening were purchased from available screening collections of 7 vendors (ESI† Tables S2 and S3). The purity of all compounds was verified by liquid chromatography-mass spectrometry (LC-MS). All experimentally validated hits had a purity of 96% or higher (see Table S4†).

SBVS on H\(_3\)R-based H\(_4\)R model. Subsequently, the similar protocol was used to virtually screen compounds against the models built based on H\(_3\)R crystal structures.35 The differences are: (i) The Tc-IFP values of enrichment factor of 1% ranked false positives (EF\(_{1\%}\)) of the selected SBVS protocols were used as the cut-offs: 0.727 and 0.714 for SBVS-1 and SBVS-2, respectively; and (ii) The selected and purchased H\(_3\)R hits resulted from the SBVS on \(\beta_3\)-R-based H\(_4\)R models were added in the dissimilarity filtering.

Pharmacological assays

HEK293T cells were cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum, 50 IU ml\(^{-1}\) penicillin and 50 \(\mu\)g ml\(^{-1}\) streptomycin at 37 °C and 5% CO\(_2\). Approximately \(4 \times 10^5\) cells in 10 cm dishes were transiently transfected with \(5 \mu\)g receptor DNA using 25 kDa linear polyethyleneimine (PEI; Polysciences, Warrington, USA) as transfection reagent (1:4 DNA/PEI ratio). The cells were harvested 2 days after transfection and homogenized in 50 mM Tris-HCl binding buffer (pH 7.4). Cell homogenates were co-incubated with indicated concentrations of compounds and ~3 nM \([\text{H}]\)-mepyramine (human H\(_4\)R), ~10 nM \([\text{H}]\)-histamine (human H\(_4\)R), or ~2 nM \([\text{H}]\)-dihydroalprenolol (human \(\beta_3\)R) in a total volume of 100 \(\mu\)l per well. All radioligands were purchased from PerkinElmer Life Sciences. The reaction mixtures were incubated for 1–1.5 h at 25 °C on a microtiter shaker (750 rpm). Incubations were terminated by rapid filtration through Unifilter glass fiber C plates (PerkinElmer Life Sciences) that were presoaked in 0.3% polyethyleneimine and subsequently washed three times with ice-cold binding buffer (pH 7.4 at 4 °C). Retained radioactivity was measured by liquid scintillation using a MicroBeta Trilux (PerkinElmer Life Sciences). Nonlinear curve fitting was performed using GraphPad Prism version 6.00 for Windows/Mac OSX, GraphPad Software, La Jolla California USA, www.graphpad.com. The \(K_i\) values were calculated using the Cheng–Prusoff equation:118 \(K_i = IC_{50}/(1 + [\text{radioligand}]/K_d)\).

Acknowledgements

We thank Mitchell K. L. Han for assistance with radioligand displacement and Antoni R. Blaazer for performing the
quality control of the compounds. This research was financially supported by The Netherlands Organization for Scientific Research (NWO VENI Grant 700.59.408 to C. d. G. and NWO TOP PUNT Grant to R. L.), Indonesian Directorate General of Higher Education (Fundamental Research Block Grant 1320/K5/KM/2014 to E. P. L.) and Institute for Research and Community Services, Sanata Dharma University (Research Grant 083/Panel/LPPM-USD/SP/X/2013 to E. P. L.). A. J. K., H. F. V., S. N., I. J. P. d. E., R. L., and C. d. G. participate in the European Cooperation in Science and Technology Action CM1207 [GPCR-Ligand Interactions, Structures, and Transmembrane Signalling: A European Research Network (GLISTEN)].

Notes and references

