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gy modelling using
proteochemometrics (PCM): recent
methodological developments, applications to
target families, and future prospects

Isidro Cortés-Ciriano,†a Qurrat Ul Ain,†b Vigneshwari Subramanian,c

Eelke B. Lenselink,d Oscar Méndez-Lucio,b Adriaan P. IJzerman,d Gerd Wohlfahrt,e

Peteris Prusis,e Thérèse E. Malliavin,*a Gerard J. P. vanWesten*f and Andreas Bender*b

Proteochemometric (PCM) modelling is a computational method to model the bioactivity of multiple

ligands against multiple related protein targets simultaneously. Hence it has been found to be particularly

useful when exploring the selectivity and promiscuity of ligands on different proteins. In this review, we

will firstly provide a brief introduction to the main concepts of PCM for readers new to the field. The

next part focuses on recent technical advances, including the application of support vector machines

(SVMs) using different kernel functions, random forests, Gaussian processes and collaborative filtering.

The subsequent section will then describe some novel practical applications of PCM in the medicinal

chemistry field, including studies on GPCRs, kinases, viral proteins (e.g. from HIV) and epigenetic targets

such as histone deacetylases. Finally, we will conclude by summarizing novel developments in PCM,

which we expect to gain further importance in the future. These developments include adding three-

dimensional protein target information, application of PCM to the prediction of binding energies, and

application of the concept in the fields of pharmacogenomics and toxicogenomics. This review is an

update to a related publication in 2011 and it mainly focuses on developments in the field since then.
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1 Introduction
1.1 Available bioactivity data is growing: but can we make
sense of it?

The cost of developing new drugs has been continuously
increasing in recent years and it is now estimated to be in the
order of $1.8 billion per drug. In addition, price pressure from
health care providers has been increasing and there is a growing
relevance of more targeted medicine. Hence, the ‘blockbuster
model’ of the pharmaceutical industry is being challenged.1,2

However, at the same time the amount of bioactivity data
available both inside companies as well as in the public domain
has signicantly increased, for example with introduction of
ChEMBL and PubChem Bioassay.3,4 This trend can be expected
Qurrat Ul Ain is an IDB-CCT (Islamic Development Bank-Cam-
bridge Commonwealth Trust) scholar for PhD in University of
Cambridge since 2012. Her research focuses on bioactivity
modelling approaches. She received her BS (HONS) in Bio-
informatics from International Islamic University Islamabad and
M.Phil in Bioinformatics from Quaid-i-Azam University Islamabad
Pakistan.
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to only pick up further speed in the future.3 The question now
arises how this growing amount of bioactivity data can be used
in real-world drug discovery and chemical biology projects, both
to make drug discovery in commercial settings more efficient,
Vigneshwari Subramanian studied Bioinformatics at the University
of Helsinki, Finland and is currently doing her PhD in Computa-
tional Drug Discovery in the same university. Her research focuses
on proteochemometric modelling involving 3D protein eld-based
descriptors.

Eelke B. Lenselink is currently pursuing his PhD at the LACDR in
Leiden were he focuses on ligand and structure based design for
GPCRs.

Oscar Méndez-Lucio received a BSc in pharmaceutical and biolog-
ical chemistry and a MSc in chemistry from the National Autono-
mous University of Mexico (UNAM). Since 2012 he is a PhD student
in the University of Cambridge working on the bioactivity and
selectivity of kinase inhibitors.

Ad IJzerman is a full professor of medicinal chemistry at the Leiden
Academic Centre for Drug Research of Leiden University, The
Netherlands. He has a keen interest in using computer science
methods for medicinal chemistry needs.

Gerd Wohlfahrt earned the PhD degree in chemistry, University of
Braunschweig, Germany. Currently, he serves as a Principal
Research Scientist, Computer-Aided Drug Design, Orion Pharma,
Espoo, Finland. His areas of expertise include bioinformatics,
chemoinformatics, drug discovery, and structural biology. His
research interests comprise comparison of protein families, inte-
gration of protein- and ligand-based data for drug discovery,
oncology target, and drug discovery.

Peteris Prusis defended his PhD thesis at Uppsala University,
Sweden, which included discovery of proteochemometrics modeling
approach. Aer many years of academic career at Uppsala
University he shied his focus to industry, starting as post-doc at
AstraZeneca, Sweden and now as Senior Research Scientist at
Orion, Finland.

Therese Malliavin defended her PhD at the Universite Paris-Sud
and is a CNRS research fellow, working at the Institut Pasteur in
Paris. Her main scientic interest concerns the relationship
between biomolecules internal mobility and structure, and their
interactions with other biomolecules and ligands.

Gerard JP van Westen nished a PhD in proteochemometrics at
Leiden University (Netherlands) aer an internship at Johnson and
Johnson (Belgium). Subsequently he spent three years at the
European Bioinformatics Institute in the ChEMBL Group (UK), and
is returning to Leiden University.
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but also to understand on amore fundamental level how we can
use data in order to design a ligand with desired properties in a
biological system.

Predictive bioactivity methods, such as Quantitative Struc-
ture–Activity Relationship (QSAR) models, are based upon the
compound similarity principle.5,6 However, it has been shown
that the activity of a compound against a single target is not
sufficient to understand its actions in a biological system. In
fact promiscuity is intrinsic to chemical compounds,7,8 bioac-
tivity against related targets frequently needs to be considered
for efficacy of e.g. CNS-active drugs and anti-cancer drugs,9,10

and promiscuity has been used to anticipate side-effects.11

Hence, only the simultaneous modelling of both the chemical
and the target domain, across a series of protein targets,
permits the meaningful mining of the compound–target inter-
action space.12

The term chemogenomics comprises techniques capable to
capitalize on this huge amount of bioactivity data by consid-
ering compound and target information, in order to nd
unknown interactions between (new) compounds and their
(new) targets.13,14 Proteochemometrics (PCM) modelling
describes methods where a computational description from the
ligand side of the system is combined with a description of the
biological side being studied and both are related to a particular
readout of interest.15,16

In this context, ligands are typically small molecules
although biologics also have been explored. Conversely, the
biological parameters in the model can comprise protein
binding sites, but also e.g. gene expression levels of particular
cell lines. The readout describes the biological effect of a
particular ligand on the protein or cell line of interest (such as
an IC50 value of this particular combination of compound and
biological system). Additionally, PCM relates to personalized
medicine as it can predict the effect of a ligand on a complex
biological system, e.g. cell line, from genotypic information.17
1.2 Synergy between ligand and target space

An analysis of the drug–target interaction network demon-
strated that a given ligand interacts with six protein targets on
average at therapeutic concentrations.7 Targets with correlated
bioactivity proles might be related or distant from a sequence
similarity standpoint. It has been recently shown that for class A
GPCRs protein classication based on ligand activity differs
considerably from the classic description of proteins based
Andreas Bender is a Lecturer for Molecular Informatics at the
Centre for Molecular Informatics of the University of Cambridge,
where he leads a research group comprising about ca. 20 members
performing research on various aspects of chemical and biological
data integration and analysis. He received his PhD from the
University of Cambridge in 2005, and returned aer a Presidential
Postdoctoral Fellowship with Novartis in Cambridge/MA and an
Assistant Professorship at the University of Leiden in The Nether-
lands to Cambridge.
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Fig. 1 Ligand–target interaction space. The interaction between
ligands (chemical compounds) and targets (biological macromole-
cules) can be envisioned as a matrix, where rows are indexed by target
ids and columns by compound ids. Each matrix cell contains the
binding affinity of a given compound on a given target, indicated by the
following colors: blue means low affinity and yellow means high
affinity. Traditional bioinformatics techniques have dealt with the
similarity between targets, normally based upon sequence similarity.
On the other hand, ligand based (QSAR) models have studied series of
compounds acting on a given target. By contrast to both of them, PCM
relates the chemical–target interaction space by describing targets
and compounds with numerical descriptors permitting to predict
activities of a given compound on a given target.
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upon sequence alignments.18,19 Hence, full sequence similarity
from multiple sequence alignments would not generally corre-
late with similar ligand affinity. Conversely, kinases exhibiting a
sequence identity higher than 60% tend to have similar ATP-
binding sites and hence they tend to be inhibited by similar
compounds.20 Similarly, compound binding is more conserved
between human and rat orthologous proteins with respect to
paralogues.21,22 Thus, to better understand intra-family and
inter-species selectivity both the target and the compound space
need to be considered simultaneously.

In ligand space, chemogenomic approaches relying only on
ligand data have shown that there is an unequal distribution of
ligand data. This is due to the fact that some target classes (e.g.
GPCRs or kinases) have been traditionally regarded as more
interesting from a medicinal chemistry standpoint, and are
thus overrepresented in bioactivity databases.23 Moreover, while
some chemogenomic methods implicitly consider target infor-
mation using bioactivity proles of groups of similar ligands,
i.e. the interaction between these compounds and a panel of
targets, they are outperformed by techniques that explicitly
consider target information.24,25 In addition, bioactivity proles
for related compounds are not always available.

In target space, techniques were employed which benet
from the structural or sequence information available and rely
on groups of related targets with the aim to identify possible off-
target effects and drug specicity for a particular target of
interest.25 Based on the inverse similarity principle, related
proteins are likely to interact with similar compounds. As in the
previous case, the unavailability of data also constitutes a
limitation for target-based chemogenomics.

The combination of ligand and target data allows the crea-
tion of predictive models that can rationalize e.g. viral or cancer
cell line selectivity, whereas models exclusively based on ligands
cannot explain the role of the target in selectivity.26 Merging
data from ligand and target sources into the frame of a single
machine learning model allows the prediction of the most
suitable pharmacological treatment for a given genotype
(personalized medicine), which ligand-only and protein-only
approaches are not able to perform. This is precisely the
underlying principle in proteochemometrics (PCM), which
employs both ligand and target features simultaneously, and
which therefore enables the deconvolution of both the target
and the chemical spaces in parallel.15,16

2 Proteochemometric modelling
2.1 PCM as a practical approach to use chemogenomics data

PCM modelling, is a computational technique which combines
both ligand and target information within a single predictive
model in order to predict an output variable of interest (usually
the activity of a molecule in a particular biological assay).15,16 It
is this combination of orthogonous information that sets PCM
apart from both QSAR and chemogenomics.25,27 Generally, the
term ‘target’ refers to proteins since themajority of PCMmodels
in the literature have been devoted to the study of the activity of
compounds on protein targets. Yet, target can also refer to a
certain protein binding pocket (to allow distinction between
26 | Med. Chem. Commun., 2015, 6, 24–50
binding modes, protein conformations, or allosteric/orthosteric
binding), to a protein complex, or even to a cell line.28,29 Each
binding site and each binding mode can be regarded (compu-
tationally) as a ‘different target’.

A PCM model is trained on a dataset composed of a series of
targets and compounds, where ideally compounds have been
measured on as many targets as possible (illustrated in Fig. 1). The
simultaneous modelling of the target and the ligand space
permits to better understand complex drug–target interactions (e.g.
selectivity)30–33 than would be possible with chemogenomics as the
effect of target and chemical variability can be evaluated (e.g.
protein mutations or the effect of chemical substructures on
bioactivity). Thus, the aim of PCM is the completemodelling of the
compound–target interaction space (Fig. 1), including also the
prediction of the bioactivity of novel compounds on yet untested targets.

Initial attempts to incorporate description of several
proteins and their ligands in a single QSAR model involved
modelling of the interaction between mutated glucocorticoid
receptors and DNA.34,35 The rst full scale PCM study involving
different proteins was devoted to the interaction of chimeric
melanocortin receptors with chimeric peptides at Uppsala
University.36 The name “proteochemometrics” was coined later
by the same research group.15 Since then PCM has been applied
on various diverse datasets (Table 1).37,38 While the current
review will focus on recent developments in the eld, a
comprehensive discussion of PCM-related work has been pre-
sented in a previous review by van Westen et al. from 2011 to
which we would like to refer the reader.16
2.2 Practical relevance of PCM

The novel way that PCM considers the unity of chemical and
target space permits to better understand and predict the
This journal is © The Royal Society of Chemistry 2015
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inuence of target variability on compound activity. For
instance, predicting compound activity on a cancer cell line
panel can identify selective compounds towards a particular cell
line.17 Similarly, the inuence of viral proteins mutations in
compound activity can be quantied.39 Therefore, PCM opens
new avenues: (i) to mine drug affinity databases with the goal to
create multi-target and multispecies models, (ii) to integrate
toxicogenomics and phenotypic data in predictive models, (iii)
to identify designed or natural ligands for orphan receptors
(receptor deorphanization), (iv) and to design personalized
medicine for viral infections or a dened cancer type based on
genotypic information. The ability of PCM to model these data
depends on the structure of the input matrix, as we will elabo-
rate on below, and concrete examples referring to the above
elds will be presented in the subsequent sections.
2.3 Input data for PCM

The ligand–target interaction space can be visualized as a
matrix containing the activities of all possible ligand–target
combinations (Fig. 1).40 PCM attempts to predict the activity of a
ligand on any target and vice versa, the activity of any ligand on a
given target. The integration of these independent compound–
Fig. 2 A systematic overview of proteochemometric modelling. (A) show
both types of information in PCM. (B) is the representation of different
profiles of ligands, binding pocket residues, gene expression in cell lines
depending on the type of output variable. The third block (C) shows the v
drug efficacy and susceptibility, effect of mutations on activity and com

This journal is © The Royal Society of Chemistry 2015
target interactions is however possible in PCM due to the
combination of chemical and target information in a single
machine learning model. Fig. 2 gives an overview of how
different sources of data can be integrated for modelling a
particular aspect of bioactivity of a given ligand in different
biological settings. Fig. 2A displays how compound and target
information relate and are combined in a predictive model
which permits the extrapolation in either (or both) the chemical
or target space (to the extent the training data allows). These two
input spaces are numerically described (Fig. 2B) by: compound
bioactivity proles or physicochemical descriptors (top panel,
ligand space), cross-term descriptors, such as interaction
ngerprints (middle panel, descriptors dependent on both
spaces),41,42 (lower panel, target space) binding pocket residues
or gene expression proles. Fig. 2C depicts some examples of
practical applications of unifying chemical and biological
sources of information. The top panel represents the observed
against the predicted bioactivities calculated with a PCMmodel,
illustrating how PCM can be used to predict compound potency.
The second panel displays deconvolution of the chemical space
by interpreting the inuence of each compound descriptor. This
approach can determine which chemical moieties are impor-
tant for either potency or selectivity. The third panel displays
s the similarity between ligands and drug targets and the utilization of
types of input features of ligand and target space (shared bioactivity
, mutational stability, etc.) which could be employed in a PCM model
arious possible applications of PCMmodels including measurement of
pound–target feature selection.
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4md00216d


MedChemComm Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
O

ct
ob

er
 2

01
4.

 D
ow

nl
oa

de
d 

on
 2

/8
/2

02
6 

1:
13

:5
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
interpretation of the target space, which can identify residues
that are implicated in e.g. drug resistance of a viral protein.
Thus, compounds can be developed by considering potency and
selectivity towards a given target or target family. The nal panel
shows how PCM models can help to determine the best drug
regime given a patients genotype (personalized medicine).
Here, the activity of all drugs would be predicted on that
genotype and the drug predicted to exhibit the highest activity
would be preferentially selected.
2.4 Target descriptors

As was touched upon above, PCM is rather exible and can deal
with a multitude of different target descriptors. Here, we will
summarize some of the more common descriptors and later on
in the review focus on novel descriptor types, for a full overview
of established descriptors please see vanWesten et al. 2011.16 By
far the most common descriptors are alignment dependent
sequence descriptors.43 The authors refer the reader to a pair of
benchmark studies recently published for more information on
this type of descriptor.44,45 This type of protein descriptor is
usually obtained from a concatenation of individual amino acid
descriptors and requires the individual sequences to be aligned.
This can be done using full sequence alignment by established
tools such as ClustalW and subsequently these alignments are
converted to position-dependent numerical descriptors, e.g. the
Z-scales by Sandberg.46–48

When no reliable alignment is possible, target descriptors
can be calculated using the whole protein sequence without
aligning them.49 The usage of only primary sequence descrip-
tors to predict protein–protein interactions was shown efficient
by Shen et al.50 who were able to train a SVM model based on
more than 16 000 protein–protein pairs described with conjoint
triad feature amino acid descriptors. Similarly, analyses of
sequence variability among targets exhibiting divergent bioac-
tivity proles, enabled the characterization of binding pocket
residues energetically important for ligand binding and selec-
tivity for GPCRs and kinases.51–53

If present, structural information from crystallographic
structures can be used by selecting residues near the ligand
binding site (e.g. 5 or 10 Å sphere around the co-crystallized
ligand).21,43,44,47 Subsequently, the corresponding residues for
other targets can be obtained from sequence alignment. This
semi-structural method is less reliable than a full structural
superposition and alignment gaps might appear. However, in
practice, the former appears to have better resolution, which
might be due to the fact that domains not involved in ligand
binding are not considered.22,54,55 To date, binding sites in PCM
models have been derived from single crystallographic struc-
tures,22,42,55,56 thus ignoring the intrinsically dynamic nature of
proteins. However, databases such as Pocketome57 might facil-
itate the introduction of dynamic properties of protein binding
sites in PCM models as they contain ensembles of conforma-
tions for druggable binding sites extracted from co-crystal
structures in the Protein Data Bank. To the knowledge of the
authors, descriptors accounting for the dynamic properties of
binding site amino acids have not been reported in the
32 | Med. Chem. Commun., 2015, 6, 24–50
literature. Including this dynamic information might lead to a
better description of protein targets in cases where small
molecule binding is dependent on the binding site conforma-
tion, e.g. kinases.

Beyond sequence similarity, targets have also been described
in different ways to model compound bioactivities on multiple
targets.58–62 Among others, targets have been characterized by:
(i) the incorporation of biological tests and inverse virtual
screening data; (ii) structural pocket similarity analyses; (iii)
topology analyses of both compound–target and protein–
protein interaction networks; (iv) the combination of pharma-
cophoric and interaction ngerprints; and (v) 3-dimensional
alignment-free methods of binding sequences.7,63–66 The avail-
ability of a plethora of target descriptors enables the application
of PCM to target families where, for instance, little structural
information is available. The advantages brought to the PCM
eld by each of these descriptor types will be reviewed in
Sections 4 and 5. In cases where targets are not proteins, but
more complex biological systems, such as cell lines, the target
space can be described with ‘omics’ data, namely: copy-number
variation (CNV) data, gene expression levels, exome sequencing
data, cell line ngerprints, protein abundance, and miRNA
expression levels.17,29

2.5 Ligand descriptors

Similarly, from the ligand side a large number of descriptors
have been employed in PCM in the last decade.67,68 Circular
ngerprints are the most commonly applied due to both their
consistent good performance and interpretability when using
the unhashed (keyed) version.69,70 Keyed circular ngerprints, in
both binary and counts format, where each bit in the descriptor
accounts for the number of occurrences of a substructure in a
given molecule, enable the interpretation of models and the
identication of chemical substructures implicated in
compound potency and selectivity. The performance of models
trained on hashed and unhashed circular Morgan ngerprints
do not vary signicantly.55 Therefore, we advocate for the
customary usage of unhashed ngerprints in order to enhance
the interpretability of PCM models.

Next to the circular ngerprint, physicochemical descriptors,
such as DRAGON or PaDEL,71,72 have been widely used in recent
years (Table 1). Other ligand descriptors, such as atom types,
topological indices, MACCs keys or ligand shape descriptors,
have been also applied in the context of PCM.

In the experience of the authors, the description of
compounds with circular Morgan ngerprints permits the
generation of statistically validated PCM models but on several
occasions the addition of physicochemical properties to
ngerprints has been demonstrated to improve performance.54

This was especially true on data sets with a large chemical
diversity, e.g. resulting from screening a diverse set or resulting
from covering a group of targets with diverse ligands.

2.6 Cross-term descriptors

Thirdly, some PCM studies have dened an additional class of
descriptors, called cross-terms, by multiplying ligand and target
This journal is © The Royal Society of Chemistry 2015
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descriptors. These descriptors serve as descriptors for the non-
linear components in the interaction between ligand and target
(e.g. a hydrogen bond that can be formed in one target but not
in another).43,73 Therefore, its application is advisable when
using linear modelling techniques (such as Partial Least
Squares (PLS)). In the case of non-linear techniques, cross-
terms are not essential as the models should be able to capture
this information.22,74 Nonetheless, the experience of the authors
indicates that they might be nevertheless useful to improve
model performance when using SVM or GP even though their
interpretability might not be straightforward. For further
reading on different types of descriptors applied in PCM we
refer the reader to van Westen et al.16
2.7 Validation of PCM models

Due to the previously mentioned bias in bioactivity data (both
from a chemical point of view and target point of view) the
ligand–target interaction matrix is virtually never complete.23–25

The authors have trained PCMmodels on sparse datasets with a
degree of matrix completeness in the 2–3% range that demon-
strated good performance on the test set.75 The statistical
metrics proposed by Golbraikh and Tropsha76 can be used
(similar to QSAR) to validate models using observed and pre-
dicted values on the test set. Recent studies recommend the
usage of nested cross-validation (NCV) to report model perfor-
mance.77–80 In NCV, two validation loops are nested: the inner
one serves to optimize the values of the hyperparameters
through traditional k-fold cross-validation, whereas the outer
loop serves to assess the predictive ability of the model trained
on the whole training set. This procedure is repeated k0 times,
each time changing the composition of the training and the test
sets. Thus, NCV does not provide the best parameter combi-
nation, as in each k0 round the best values of the hyper-
parameters might change due to the variance of the different
training sets. Still, it provides the best estimate of the CV error
as it provides an error interval, which can be wide depending on
the dataset modeled.80

However, the degree of completeness of the ligand–target
interaction matrix is only one parameter inuencing the
predictive ability of a model. The variability on the chemical and
the target side are the other two factors that need to be
considered both in model validation and to assess its applica-
bility domain.75 Hence, the authors strongly suggest validating
PCM models following a number of basic guidelines, which are
in line with the recommendations from Park and Marcotte.77

Firstly, external validation (e.g. 70–30 validation), a model is
trained on 70% percent of the data (training set) and the
bioactivity for the remaining 30% (test set) is predicted. In this
case, all targets and compounds are present in both the training
and the test set. This method corresponds to a Park and Mar-
cotte C1 validation and serves to determine if a reliable model
can be t on the data set.

Secondly, Leave-One-Target-Out (LOTO) validation: all the
bioactivity data annotated on a target is excluded from the
training set. Amodel is subsequently trained on the training set,
which is used to predict the bioactivities for the compounds
This journal is © The Royal Society of Chemistry 2015
annotated on the hold-out target. This process is repeated for
each target. This validation scheme corresponds to a Park and
Marcotte C2 validation and reects the common situation in
prospective validation where there is no information for a given
target for which we intend to nd hits.

Thirdly, Leave-One-Compound-Out (LOCO) validation: the
bioactivity data for a compound on all targets is excluded from
the training. Similarly to the LOTO validation, the PCM model
trained on the remaining data is used to predict the bioactivity
for the hold-out compound on each target. This data availability
scenario corresponds to a Park and Marcotte C2 validation and
resembles the situation where a PCM model is applied to novel
chemistry in a e.g. prospective validation screening campaign. If
the number of compounds in the training dataset is large,
compound clusters can be used instead of single compounds,
thus leading to the Leave-Once-Compound-Cluster-Out valida-
tion scenario (LOCCO).17

In addition to these scenarios, the authors suggest to
compare the performance of the PCMmodel trained on all data
to single-target QSAR models. The goal of this validation is
twofold. Firstly a direct comparison to QSAR can determine
whether it is wise to apply PCM to a data set. Secondly, as was
touched upon above, bias in the data can be the cause of some
targets being reliably modeled and some targets being poorly
modeled (see Section 6).23–25 When calculating validation
parameters (such as the correlation coefficient) on the full test
set, poorly modeled targets can be masked. In order to notice
discontinuities, the authors recommend to not only calculate
the validation parameters on the full test set. In addition, also
calculate validation parameters on test set data points that are
grouped per target and points that are grouped per ligand.45 The
values of the statistical metrics calculated per target can be
directly compared with those obtained with single QSARmodels
(comparing values calculated on the full test set would not be an
accurate comparison).

Ideally, the nal validation is one where a target and all
compounds that have been tested on this (and other targets) are
iteratively excluded from the training set. This approach
corresponds with a Park and Marcotte C3 validation. C3 vali-
dation is considered extrapolation rather than interpolation, as
both parts of the pair (the ligand and the target) have not been
seen in the training set by the model.

Taken together, these validation scenarios enable a thorough
and earnest validation of PCM models and a comparison to the
state of the art. Finally, the authors also suggest to calculate the
statistical metrics on, at least, the predictions calculated with
three models trained on different subsets of the complete
dataset, and to accompany them with the standard deviation
observed over the repetitions.75 Similarly, it is advisable to
carefully estimate the maximum achievable performance given
the uncertainty of the data.17,75
2.8 Review outline

Table 1 summarizes the main features of the PCM studies
published between 2010 and 2013. In addition to traditional
therapeutic targets (e.g. kinases or GPCRs), which continue to
Med. Chem. Commun., 2015, 6, 24–50 | 33
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be well represented in recent PCM studies, other applications
and techniques are gaining ground steadily, namely: (i) the
modelling of the selectivity of viral protein mutants, mainly
HIV; (ii) the inclusion of bioactivity information from mammal
orthologues; (iii) the usage of 3-dimensional target information;
and (iv) toxicogenomics and pharmacogenomics. In this review,
we will focus on: (Section 3): (novel) machine learning tech-
niques successfully applied in recent PCM studies (Table 2) and
other predictive modelling contexts such as chemoinformatics;
(Section 4): recent applications of PCM on established protein
target classes; (Section 5): novel applications; (Section 6) pitfalls
of PCM; (Section 7) future perspectives and concluding remarks
close the review.
3 Machine learning in PCM

Most of the currently used machine learning (PLS, rough set
modelling, neural net modelling, Näıve Bayesian classiers, and
decision tree algorithms) as well as data preprocessing tech-
niques in PCM have been described in recent reviews by
Andersson et al.81 and van Westen et al.16 Moreover, feature
selection methods and common algorithms have been recently
benchmarked, with the overall conclusion that kernel and tree
methods, such as SVM or RF, do not benet from feature
selection, and that no particular algorithm-feature selection
pair appears to be preferable.82–84 Therefore, only recent appli-
cations of novel techniques applied to PCM or chemoinformatic
modelling will be discussed here, namely: Support Vector
Machines (SVM), Random Forest (RF), Gaussian Processes (GP)
and Collective Filtering (CF). A detailed description of the
machine learning algorithms described in the following
subsections is given in Table 2.
3.1 Support Vector Machines (SVM)

Support Vector Machines (SVMs) are a group of non-linear
machine learning techniques commonly used in computational
biology, and in PCM in particular.16,22 SVMs became popular in
the last decade due to their performance and efficient capacity
to deal with large datasets also in high-dimensional variable
spaces, even though interpretability can be challenging.85–87

Furthermore SVMs require proper tuning of the so-called hyper
parameters, usually determined by an exponential grid search.

In a recent study from Lapins et al.88 Random Forest (RF), K-
Nearest Neighbors (KNN), and SVMs were applied to construct a
PCM model of Cytochrome P450 (CYP) inhibition. The models
were trained on 5 CYPs and 17 143 compounds. CYPs were
described with transition and composition description of
amino acids, while compounds were described with structural
signature descriptors. These PCM models were shown to
outperform single target models in terms of Area Under the
Curve (AUC: PCM: >0.90, QSAR: 0.79–0.89) that were con-
structed in parallel by Cheng et al.89 Of the methods used, RF
and SVMwere shown to be comparable in terms of accuracy and
AUC. The high performance of the SVM model in the external
validation (AUC: 0.940) evidences the suitability of this
34 | Med. Chem. Commun., 2015, 6, 24–50
approach to correctly extrapolate in both the target and
compound space.

SVMs can use different internal methods (kernels) to derive
bioactivity predictions, the most dominant being the Radial
Basis Function (RBF) kernel.90 Radial basis function kernels
have been shown to perform well on PCM data.16,22 Recently the
VII Pearson function-based Universal Kernel (PUK)91 was also
applied to PCM. Wu et al.92 showed that they were able to
improve the mapping power of their PCMmodels for 11 histone
deacetylases (HDAC's) by using a PUK kernel. Nonetheless, the
radial kernel still constitutes a common option when inducting
bioactivity models given the necessity to tune only one kernel
parameter, i.e. s, which in practice means shorter training
times. Based on those results, the experienced user should keep
in mind that although the radial kernel is a robust option with
reliable results (in the experience of the authors), a proper
kernel choice should be made on the basis of the data at hand.93

Dual Component SVMs (DC-SVM) are an extension of the
classical SVM and have been applied by Niijima et al.94 to a
kinase dataset spanning the whole kinome. They proposed a
dual component näıve Bayesian model in which kinase–inhib-
itor pairs are represented by protein residues and ligand frag-
ments that form dual components. Hence the probability of
being active is simply estimated as the ratio of bioactivity values
between active and inactive pairs. This method was further
extended to SVMs by modifying a Tanimoto kernel to include
compound fragments. PCM DC-SVMs outperformed ligand
based SVMs (QSAR) in internal validation, as accuracies of
90.9% and 86.2% were respectively obtained. However the same
level of accuracy was not achieved when using external datasets,
which produced accuracies of 73.9% and 81.3% for DC-SVM
and ligand based SVM. Therefore, these results do not permit to
conclude that DC-SVM outperform SVM although this might
happen with other datasets.

A second type of SVMs, Transductive SVMs (TSVMs), have
been applied to model 10 small (between �1000 and �3000
datapoints) and unbalanced QSAR datasets from the Directory
of Useful Decoys (DUD)95 repository displaying a balanced
accuracy higher than 30% on some datasets with respect to
SVM.96 The concept relies on transduction, allowing the
modelling of partially labeled data which cannot be included
using regular SVM. TSVMs could be potentially extended to
PCM and have been shown to outperform SVMs in some
cases.97,98

A third avor of SVMs are Relevance Vector Machines
(RVMs).99 The added value of RVM is the interpretability of the
models, which is a consequence of their Bayesian nature. Each
descriptor is associated to a coefficient, which determines its
relevance for themodel. Coefficients associated to low relevance
descriptors are close to zero, hence the model becomes sparse
and therefore permits shorter prediction times. Although the
predicted variance is not informative in regression studies, class
probabilities can be efficiently determined in classication.100

RVMs have been demonstrated by binary classiers trained on a
subset of the MDDR database.100 Therein, it was demonstrated
that RVMs performed on parwith ‘classic’ SVM, encouraging the
authors to conclude that RVM should be added to the current
This journal is © The Royal Society of Chemistry 2015
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chemoinformatic tools and as such potentially applied to future
PCM studies.

On the basis of the above, SVM constitutes a useful algo-
rithm in which initial drawbacks such as interpretability (e.g.
the determination of which chemical substructures most
contribute to compound bioactivity) can be overcome with new
developments (e.g. RVM).
3.2 Random Forests (RF)

Random Forest (RF) models are oen comparable in perfor-
mance to SVMs,16 and are also non-linear. However, contrary to
SVMs RFs tend to have relatively short training times and do not
require extensive parameter tuning.101 Furthermore, in addition
to their comparable performance, RFs permit an evaluation of
both feature contribution and feature importance in PCM
models, as shown by de Bruyn et al.54 An example of such
evaluation is given in the identication of organic anion-
transporting polypeptide (OATP) inhibitors, where continuous
descriptors, both Z-scales (proteins) and physiochemical
features (compounds), were binned into discrete classes. For
each feature (protein and ligand) the correlation to activity and
importance was calculated for each target class. In that way,
compound inactivity was correlated with the presence of
chemical substructures positively charged at pH 7.4, number of
atoms <20, and molecular weight <300. Conversely, chemical
substructures with a number of ring bonds between 18 and 32,
without atoms with positive charge, and with a log D value
between 3.4 and 7.5 were found to favour OATP inhibition.

Although RFs have a high interpretability it should be noted
that they do not output error estimates (as is also the case with
SVM), although recent papers suggest the usefulness of the
variance along the trees of a random forest model to determine
its applicability domain.102,103 Error estimates are of tremendous
Fig. 3 Illustrative example of GP theory in a two-dimensional problem
which can potentially model the dataset. A subset of six prototypical fun
(black dashed line). (B) The inclusion of bioactivity information (red dots)
the prior distribution into the posterior probability distribution. In the poste
experimental data are kept. The uncertainty (pink area) notably increases
of the posterior distribution (black dashed line) is considered the best fit t
For a new compound–target combination, the bioactivity is predicted as
variance the uncertainty. A radial-kernelled GP with s¼ 1 was employed t
plots.207

36 | Med. Chem. Commun., 2015, 6, 24–50
importance given the high levels of noise and error annotations
in public bioactivity databases. Thus, fully informative predic-
tions should be accompanied by individual uncertainties. This
issue can be remediated by applying Quantile Regression
Forests (QRF) which infer quantiles from the conditional
distribution of the response variable.104 To our knowledge QRFs
have not been applied to QSAR or PCM yet. A machine learning
technique that has been used in PCM with inherent error esti-
mation capabilities are Gaussian processes, as described below.
3.3 Gaussian Processes (GP)

The determination of the applicability domain (AD) of a model
(when are model predictions reliable or when can a model
extrapolate) is one of the major concerns in bioactivity model-
ling (see previous studies105–107 for comprehensive reviews).
Major obstacles to the AD determination are the errors and
uncertainties contained in bioactivity databases,108–111 which are
mainly due to data curation and experimental errors,110 as well
as the accurate quantication of distances in the descriptor and
the biological space, which would enable to anticipate predic-
tion errors. Gaussian processes (GP) aim to address these
concerns by permitting to handle data uncertainty as input into
a probabilistic model.

Fig. 3 illustrates the basic idea underlying GPmodelling. The
prior probability distribution (Fig. 3A) covers all possible func-
tions candidate to model the data, each of which has a different
weight determined by the kernel (covariance) parameters.
Subsequently, only those functions from the prior distribution
in agreement with the experimental data are kept (Fig. 3B). The
mean of this function is considered as the best t to the data.
Given that each prediction is a Gaussian distribution, different
condence intervals can be dened from its variance (Fig. 3B).
. (A) The prior probability distribution embraces all possible functions
ctions is depicted. Normally, the mean of the distribution is set to zero
accompanied by its experimental uncertainty (blue error bars) updates
rior probability distribution, only those functions in agreement with the
in those areas with little experimental information available. The mean
o the data. A prototypical function from the posterior is shown in blue.
a Gaussian distribution, in which the mean is the best prediction and its
o generate the figure. The python infpy package helped to produce the

This journal is © The Royal Society of Chemistry 2015
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Gao et al.112 showed that SVMs performed, in general, slightly
better than GPs when modelling a dataset composed of 128
ligand and 9 human amine GPCRs, although the models
trained on the best combination of descriptors exhibited Q2

values of 0.744 and 0.742 for GP and SVM respectively. Worth of
mention, the difference in performance between GP and SVM
was not assessed neither statistically nor by comparing the
results of a series models trained on different resamples of the
whole dataset. Moreover, the predicted error bars by the GP
PCM models were not considered. More recently, Cortes-Cir-
iano et al.75 showed the actual potential of GPs by applying both
SVMs and GPs implemented with a panel of diverse kernels to
multispecies PCM datasets, namely: human and rat adenosine
receptors, mammal GPCRs and Dengue virus proteases. GP and
SVM performed comparably as absolute differences were
statistically insignicant. However, GP provided notable added
values via: (i) the determination of the model AD, (ii) the
probabilistic nature of the predictions, and (iii) the inclusion of
the experimental uncertainty in the model.

In the experience of the authors regarding the application of
GP in PCM,75 and in agreement with Schwaighofer et al.,113 the
intervals of condence (IC) calculated by GP are in accordance
with the cumulative Gaussian distribution. Therefore, these
intervals of condence provide valuable information about
individual prediction errors. In practice, knowing the error for
each prediction can certainly guide decision-making about
which compounds should be tested in prospective experimental
validation of in silico PCM models. Overall, GP appear as an
appealing approach for PCM in spite of the longer CPU time
required for the training, as GP is an algorithm of O(N3) time
complexity (i.e., it scales with the third power of the size of the
dataset).114
3.4 Collaborative Filtering (CF)

One of the requirements for PCM is that target (protein)
features need to be dened explicitly (usually by physicochem-
ical characterization of amino acids). While this approach is
effective, it nevertheless requires a certain level of information
about target sequences and structures. An alternative approach
would be to infer target features from an unsupervised
approach and not use them as model input a priori. This was
done quite recently in multi-target QSAR study of multiple cell
lines for the hedgehog signalling pathway.115

Gao et al.115 incorporated a CF approach between 93
cyclopamine derivatives and four cell lines (BxPC-3, NCI-H446,
SW1990 and NCI-H157), and showed that collaborative ltering
multi-target QSAR outperforms normal QSAR for their dataset.
The mean Root-Mean Squared Error (RMSE) for four cell lines
was 0.65 log units for CF while it increased to 0.85 log units for
(single target) SVR. The collaborative QSAR framework,
combined with a feature selection methodology based on
collaborative ltering and the content-based recommender
systems (a system used by electronic retailers and content
providers such as Amazon.com),116 enabled the denition of
weights for the compound descriptors (drug-like index). When
interpreting their models the authors could determine that
This journal is © The Royal Society of Chemistry 2015
molecular volume, polarity, and the cyclic degree are the most
inuent compound features for multi-cell line inhibitors for
this particular pathway (which, from the chemical standpoint,
would however be sometimes difficult to interpret structurally).
Erhan et al.117 also used CF with a large library of compounds
against a family of 12 related targets screened in AstraZeneca's
HTS campaigns. The authors elegantly demonstrated how the
principles of CF ltering can be used to derive a predictive
model with the capability to extrapolate on the target side.
However, better results were obtained when using target
descriptors (binding pocket ngerprints of 14 bins in this case,
where each bin accounts for a type of interaction – ionic, polar,
or hydrophobic – in the binding site). Another novelty of this
work was the introduction of the kernel-based method Jrank (a
kernel perceptron algorithm), which was able to outperform the
multi-task neural network in most cases and it never produced
signicantly worse models. Indeed, in 6 out of 7 cases, this
kernel outperformed the random retrieval of compounds.
Moreover, the authors also noted that improvements are still
possible since Jrank not always outperformed the single-target
models.

The overview presented above shows that PCM heavily draws
on recent developments in the machine-learning eld.
However, given that the methods used are only the means to an
end, we will in the following also summarize PCM applications
in the medicinal chemistry and chemical biology elds, to
different target classes as well as different types of biological
readout.
4 PCM applied to protein target
families

As was touched upon above, PCM has been applied to a very
diverse selection of protein targets. Here we will focus on a
small selection of targets relevant for drug discovery, namely G
Protein-Coupled Receptors (GPCRs), kinases, epigenetic
markers, viral enzymes, and human cancer cell lines.
4.1 G protein-coupled receptors

Early PCM virtual screening studies by Bock and Gough to
identify ligands of orphan GPCRs (oGPCRs) used physi-
ochemical properties of the amino acids of the entire primary
sequence of GPCRs, such as accessible surface area or surface
tension, rather than binding site residues. The authors
screened 1.9 million ligand-oGPCRs combinations and were
able to identify 4357 highly active ligands of oGPCRs. The
method, based on SVM, outputs a ranked list of putative
oGPCRs ligands. In practice, the most relevant feature of their
predictive pipeline is the description of GPCRs with only
physicochemical descriptors, thus avoiding the usage of exact 3-
dimensional information of the receptors.38 Subsequently,
Jacob et al.118 demonstrated that the usage of bioactivity data
from 4051 GPCR-ligand combinations (80 human GPCRs from
classes A, B and C, and 2446 ligands) extracted from the GLIDA
GPCR ligand database119 in PCM models improves the perfor-
mance over single receptor models, leading to more reliable
Med. Chem. Commun., 2015, 6, 24–50 | 37
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predictions. The authors used Tanimoto 2D and pharmaco-
phore 3D kernels to describe the ligands, and 5 kernels to
describe the GPCRs, namely: Dirac, multitask, hierarchy,
binding pocket and poly binding pocket. The best combination
thereof was shown to be 2D Tanimoto on the compound side
and the binding pocket kernel for the GPCRs, as they reported
an accuracy of 78.1% when predicting ligands for orphan
receptors. These ndings were further capitalized upon in the
papers of Frimurer et al.,120 and Weill and Rognan.121 Both
papers devised features for the 7TM core ligand-binding site
and cavity ngerprints to improve the structure guided drug
discovery approaches and provide a general class A GPCR
similarity metric.120,121 The former approach introduced an in
silico pipeline to relate 7TM GPCRs based upon the physico-
chemical properties of the ligand binding site, taken from the
crystal structure of the bovine rhodopsin. The pipeline is
composed of ve steps, which are: (i) sequence alignment of the
TM domain of the GPCRs of interest, (ii) selection of the resi-
dues in the core binding site important for ligand binding, (iii)
denition of binding site signatures and generation of physi-
cochemical descriptors for them, and (iv) use these descriptors
to rank, cluster or compare 7TM GPCRs. The authors applied
this pipeline to identify ligands for the rhodopsin-like receptor,
CRTH2, which by that time only had one annotated ligand
besides prostaglandin D2, namely indomethacin. The screening
of a library of 1.2 million compounds yielded 600 candidate hit
compounds. 10% thereof were conrmed as ligands in a CRTH2
receptor-binding assay, with a IC50 cut-off value to consider a
compound as active of 10 mM. On the other hand, Weill and
Rognan121 introduced a new type of protein–ligand ngerprint
(PLFP), which encodes pharmacophoric properties of ligands
and their binding cavities. These ngerprints were applied to
two GPCRs datasets, namely: (i) 168 536 GPCR-ligand combi-
nations (160 286 inactive and 8250 active combinations), and
(ii) 234 137 GPCR-ligand combinations (202 019 inactive and
32 118 active combinations). The total number of GPCRs
considered was 160. The authors reported a cross-validated
classication accuracy higher than 0.9 when using SVM, though
the most predictive models on external datasets were not those
presenting the highest accuracy values in cross-validation.122

Overall, PCM models trained on GPCRs binding site amino
acid descriptors have proven to be a powerful approach to
identify the GPCRs targets for a given compound, and to predict
ligands for orphan GPCRs. The increasing availability of
bioactivity data on GPCRs of interest and orthologous
sequences,75 as well as the development of novel methodologies
to assess GPCRs similarity, is likely to increase the application
of PCM on this target family in drug discovery campaigns.
4.2 Kinases

Another important protein family in drug discovery subjected to
PCM studies is the kinase superfamily which comprises more
than 500 different human proteins.123 The role of kinases in cell
signalling and their involvement in more than 400 human
diseases have rendered this protein family an attractive
target.124,125 Kinases generally contain a conserved kinase
38 | Med. Chem. Commun., 2015, 6, 24–50
domain that binds ATP in their active site, though some contain
more than one kinase domain. Inhibitors targeting this
conserved binding site are known as Type I inhibitors. The
activation loop of kinases, necessary for the transfer of a
phosphate group, exhibits two different conformations, namely
DFG-in and DFG-out (where DFG stands for the catalytic triad,
Asp-Phe-Gly). Type II inhibitors bind to both the conserved ATP-
binding site and to an adjacent pocket present in the DFG-out
conformation. These compounds are more selective and thus
attractive as drug candidates. Given the ability of PCM to model
bioactivities against related targets, it is very well suited to
model the affinity of small molecule inhibitors to the kinase
family.16 Different PCM models have been reported to analyze
drug selectivity and predict bioactivity proles against
kinases.66,126

In a recent study by Cao et al.,126 the full kinase sequence
space was described by alignment-independent ‘Composition,
Transition and Distribution’ (CTD) features,127 along with
topological features of compounds. The dataset comprised a
total number of kinase–compound interactions of 54 012, with
data from 22 229 compounds and 372 kinases. The best RF
model exhibited a classication accuracy in ve-fold cross-
validation of 93.7%, and a sensitivity of 92.26%. Moreover, this
high predictive power was maintained in the four validation
levels suggested by Park and Marcotte,77 as the following accu-
racies and sensitivities (respectively and in percentage units)
were obtained: (i) L1: 93.15 and 91.23; (ii) L2: 89.53 and 88.24;
(iii) L3: 90.71 and 89.48; and (iv) 87.30 and 85.82. Hence the
statistically soundness of this PCM model enabled the classi-
cation of compound–kinase pairs as interacting, using a 100 nM
concentration as cut-off, or non-interacting. The high predictive
ability of the models should be considered nevertheless with
caution as the degree of completeness of the bioactivity matrix
used in the training was only 0.65%. Therefore, these PCM
models should be iteratively updated as more bioactivity values
become available. Interestingly, kinases similar in the sequence
space exhibited high dissimilarity when assessing their simi-
larity with the inhibitors bioactivities. This was assessed using
120 kinases with more than 15 bioactivity annotations, 14 400
datapoints in total. Thus, these data highlights the adequacy of
considering chemical and target space to optimize kinase
inhibitors.

While high affinity is generally desired for drugs (except
possibly in case of multicomponent therapeutics),128 selectivity
is equally important when targeting a protein family with highly
similar binding sites, such as in this case kinases. Subramanian
et al.66 applied PCM models to a kinase dataset comprising 50
different proteins in the DFG-in conformation to better under-
stand both the residue and compound features which deter-
mined whether the ATP-binding site of kinases are involved in
compound binding. The resulting PLS models, which included
cross-terms (see Section 2.3), demonstrated the added value of
PCM over ligand based approaches, as statistically satisfactory
QSAR models were reported for only 44% of the targets. More
importantly, the models could be visually interpreted, thus
enhancing the practical usefulness of PCM for the optimization
of compound selectivity. (Further details on the study are given
This journal is © The Royal Society of Chemistry 2015
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in Section 4.4, as models targets were encoded with 3-dimen-
sional information.)

The distinction between Type I and Type II inhibitors has
been proved to be amenable to PCM by Mendez-Lucio et al.129 In
order to distinguish between Type I and Type II inhibitors, the
authors trained a PCM model on a dataset consisting of 463
data points from the interaction matrix dened by 50 known
kinase Type I (ATP-competitive) inhibitors against 12 different
sequences of ABL1 (ve of them) in both the phosphorylated
and non-phosphorylated state.130 The model exhibited sound
predictive ability, assessed by cross-validation, with RMSE and
Q2 values of 0.420 and 0.887 respectively. In addition, the model
allowed the full interpretation of both compound (inhibitor)
and protein (kinase) features. Hence, along with the prediction
of pKd, a PCMmodel can provide information about the effect of
both compound structural features and protein amino acid
residues.131–133 The importance of a given compound substruc-
ture, or a given amino acid residue, can be evaluated by the
calculation of the difference in bioactivity between the pre-
dicted value for a compound with and without that substruc-
ture.75 Fig. 4 displays how this information can be presented in
practice and shows the average (over the whole data set) effect of
presence of a number of features on the pKd of inhibitor –

kinase pairs.
As shown by these recent PCM studies on the kinase super-

family, PCM can support new concepts for kinase inhibition
implicating the simultaneous interaction of kinase inhibitors
with several targets leading to multi-target kinase chemo-
therapy.129,134 Therefore, PCM constitutes a suitable technique
to help in the design of kinase inhibitors with respect to their
potency and selectivity (Fig. 4).129
4.3 Histone modication and DNA methylation

Epigenetic markers have been identied as emerging thera-
peutic targets in various malignancies and diseases by corre-
lating phenotypes and differential expression patterns.135 Key
protein families involved in these processes are readers (bro-
modomains), writers (DNA modifying enzymes, histone
Fig. 4 The effect of presence of compound and amino acid features on
and amino acids that affect the pKd value. For this model, the electronic
(shown as green bars), because of their relevance to enzyme–ligand in
features responsible for change in pKd value. The presence of ECFP4_7
ECFP4_24, ECFP4_41 and ECFP4_120 decrease it.130

This journal is © The Royal Society of Chemistry 2015
acetylases, methyltransferases) and erasers (histone deacety-
lases).136 Most of the bromodomain epigenetic targets have the
ability to selectively modulate the gene expression pattern and
contribute to post-translational modications, chromatin
binding, inammation, oncogenesis.137 Moreover there is a
clear linkage to some diseases, e.g. multiple myeloma.138–140

Vidler et al.141 studied the druggability of the different members
of the bromodomain family focusing on amino acid signatures
in the bromodomain acetyl-lysine binding site, which resulted
in a bromodomain family classication more correlated with
the binding of small molecules in comparison with a whole-
sequence similarity classication. Numerous successful chem-
ical probes like JQ1 have also been identied as bromodomain
inhibitors by the Structural Genomics Consortium (SGC).142

However, the bromodomain family still has unexplored thera-
peutic potential. To date there are no PCM studies performed
on this family.

Recently, Wu and co-workers utilized structural similarity
between three classes of HDACs and generated a predictive
model for a novel candidate anti-tumour drug.92 They imple-
mented various descriptors (physicochemical properties) and
similarity descriptors (sequence and structure) of compounds
and targets in the PCM model and successfully identied the
class-selective inhibitors for class-I and class-II HDACs. The
best model exhibited high predictive ability, as the authors
reported a Q2 value on the external set of 0.754. Overall, the
increasing importance of epigenetic targets in drug discovery as
well as the availability of large-scale resources of epigenetic
targets and its modulators,143,144 will facilitate the application of
PCM to this target family.
4.4 Viral mutants

Previous sections highlighted the ability of PCM to model
bioactivities of several human protein superfamilies, yet PCM
based approaches are not bound to human protein targets. PCM
has also been applied in a number of studies to predict activity
proles of ligands against different viral protein variants.26 In
the eld of HIV, van Westen et al.26 used 451 compounds tested
bioactivity. (A) Bar plot showing the features of kinase Type I inhibitors
properties related to amino acid 315 and 317 have large impact on pKd

teractions. (B) Kinase inhibitors containing the highlighted compound
, ECFP4_34, ECFP4_57 and ECFP4_124 increase the activity, whereas
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against 14 HIV reverse transcriptase sequences to train a model
that was able to predict the bioactivity of 317 new compound–
mutant pairs. Interestingly, when the prediction was validated
prospectively with ‘wet lab’ experiments it was found that the
prediction error (RMSE of 0.62 log units) was comparable to
experimental uncertainty of the assay (0.50 log units). In a
similar setting, Huang et al.41 showed that the inclusion of
Protein–Ligand Interaction Fingerprints (PLIFs) of viral resi-
dues and ligand structures as cross-terms improved model
predictive power over models lacking them. PCM models were
trained on 92 compounds and 47 HIV-1 protease variants with
about 160 Ki values. The best PCMmodel exhibited a Q2 value of
0.827 on the external set.

Next to these applications, PCM has been used to model the
sensitivity of viral mutants to antiretroviral drugs, which could
potentially guide HIV treatment.145 Resistance testing and
prediction using these models is achieved by incorporating
genotypic (protein) and drug (chemical) data and subsequently
linking them to phenotypic data (resistance). PCM then allows
the prediction of optimal treatment regimens. The advantage of
PCM over established sequence-based approaches is that
interpretation of a single model allows the combined elucida-
tion of residues responsible for the change in efficacy and the
complementary chemical features affected.146–149 For instance,
van Westen et al.145 trained PCM models based on a large clin-
ical dataset composed of circa 300 000 datapoints combining
both phenotypic and genotypic data. The application of PCM
enabled the integration of the similarity of marketed drugs
together with protein sequence similarity. The best model
exhibited a fold change error of 0.76 log units, which constitutes
an improvement of 0.15 log units with respect to previously
reported models trained on only protein sequence similarity
(0.91 log fold change error). In addition, the authors identied
novel mutations of both HIV reverse transcriptase and HIV
protease conferring drug resistance, underlining the ability of
PCM models not only to model bioactivity information, but to
also learn about features relevant for activity from both the
ligand and the protein target side.

Similarly, drug susceptibility proles were predicted based
on PCM. In that way, two models have been reported for
the prediction of: (i) the susceptibility (bioactivity prole) of a
given HIV protease genotype to seven commonly used
protease inhibitors;146 and (ii) the susceptibility of HIV reverse
transcriptase to eight nucleoside/nucleotide reverse transcrip-
tase inhibitors.149 PCM models were trained on 4792 HIV
protease–inhibitor combinations, being the Q2 value on the
external set for the best model 0.87. These models have
been made publically available via web-services available at
http://www.hivdrc.org/services, allowing free use of these
algorithms.150

While the ligands of most PCM studies discussed here were
small molecules, protease peptide substrates are also amenable
to PCM. This has been demonstrated recently by Prusis
et al.151,152 to study the enzyme kinetics parameters for designed
small peptide substrates on four dengue virus NS3 proteases
using PCMmodelling. It was found that the PCMmodels for Km

and Kcat were signicantly different. Therefore, by optimizing
40 | Med. Chem. Commun., 2015, 6, 24–50
peptide amino acid properties important for Km activity it was
possible to improve peptide affinity to protease, while losing
their catalytic activity, hence obtain peptides, which were
dengue protease inhibitors.

These studies by Prusis et al. and van Westen et al. are some
of the few reports in which predictions have been validated
prospectively, demonstrating the predictive power of PCM in
different scenarios.
5 Novel techniques and applications
in PCM
5.1 Novel target similarity measure

In the context of GPCRs studies, developing better similarity
metrics have helped to determine key binding residues within
the GPCR trans-membrane (TM) helical bundle,51,63,120 aided
intra family similarity determination using cavity nger-
prints,153 and boosted high-throughput homology models that
supported cavity detection programs.65,153–155 PCM approaches
including these features have also helped in off-target predic-
tions, retrieval of new lead compounds, and target prediction
for GPCR-focused combinatorial chemolibraries.156,157

The binding site focused techniques used in above described
studies allowed for the identication of orthosteric and allo-
steric sites on the same target for different ligand families. In
this line, Gao et al.93 showed the higher predictive ability of
models trained on trans-membrane identity descriptors (Q2 ¼
0.74) over Z-scales (Q2 ¼ 0.72) when modelling the inhibition
constant of 9 human aminergic GPCRs and 128 ligands, (310
ligand–target combinations). Similarly, Shiraishi et al.158

revealed specic chemical substructures binding to relevant TM
pocket residues, which is not only relevant to mutational anal-
ysis but also serves as a complementary approach to Structure-
Based Drug Discovery (SBDD).62,158 TM identity descriptors and
TM kernels behave more discriminatingly than Z-scales for
GPCRs and allow identication and interpretation of GPCR
residues associated with binding of ligands (of a particular
chemotype). Therefore, the identication of chemical moieties
and residues involved in ligand binding enables the develop-
ment and optimization of GPCRs inhibitors with respect to both
potency and selectivity.
5.2 Including 3D information of protein targets in PCM

The binding of a ligand to a protein is a complex process, gov-
erned on the structural level by the 3-dimensional (3-D)
composition of the protein binding site, the 3-D conformation
of the ligands approaching, and the complementarity of their
pharmacophoric features. Hence it is expected that inclusion of
spatial information from the protein binding sites would
improve the predictive power of PCM. Unfortunately, this
approach is frequently limited by the lack of high quality 3-D
structures, poor understanding of ligand-induced conforma-
tional changes, and inaccurate superimposition of protein
structures The latter can be (partly) overcome by the use of
alignment-free protein descriptors,65,81 but usually at the cost of
This journal is © The Royal Society of Chemistry 2015
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lower resolution, loss of target-related information and poor
interpretability.

Jacob et al.118 found no improvement through the use of 3-D
information. In this study an analysis of 2446 ligands interact-
ing with 80 human GPCRs was performed using a linear vector
representing conserved amino acids in the binding pockets.
While the binding pocket kernel implicitly encodes 3-D infor-
mation, the spatial arrangements were derived from the
comparison to only two template proteins. Overall, the 3-D
kernels (�77% prediction accuracy) did not show improve-
ments compared to lower dimensional protein descriptions
(�77% prediction accuracy with a protein similarity kernel).
Likewise Wassermann et al.159 found little improvement using
3-D information in their analysis of interactions of 12 proteases
with 1359 ligands using the TopMatch similarity score,160 which
used all amino acids within 8 Å around the catalytic residues to
describe the target proteins. This 3-D description did not
perform better (�61% recovery rate) than the sequence (�57%)
and protein class-based (�62%) kernels used in this
publication.

Conversely, early work by Strömbergsson et al.161 used local
protein substructures, encoded as motifs of 5 amino acid
stretches, which are closer than 6.5 Å to each other. This local
substructure method showed for a set of 104 enzymes an
improvement over the use of global SCOP (Structural Classi-
cation of Proteins) folds and the RMSE values on the external
validation set decreased from 2.06 to 1.44 pKi units. Addition-
ally, it was found that local substructures close to the ligand
binding sites were assigned more importance in the models
than more distant ones, which is intuitively understandable.
Similarly, Meslamani and Rognan did nd an improvement by
using 3-D information.60 581 diverse proteins were described by
the 3-D cavity descriptor FuzCav,65 which is a vector of 4834
integers reporting counts of pharmacophoric feature triplets
mapped to Ca-atoms of binding site-lining residues. The use of
cavity 3-D kernels showed a clear advantage (F-measure 0.66)
over sequence-based descriptions (F-measure 0.54) in predict-
ing target-ligand pairings for a large external test set (>14 000
ligands, 531 targets), especially in local models. This difference
seems to be even more pronounced for datasets with limited
ligand data (<50 ligands). Likewise, a recent study by Sub-
ramanian et al.66 described the superimposed binding sites of
50 (unique) kinases bymolecular interaction elds derived from
knowledge-based potentials and Schrödinger's Water-
Maps.162,163 Also in this example a signicant improvement for
3-D methods (r2 ¼ 0.66, q2 ¼ 0.44) compared to sequence-based
methods (r2 ¼ 0.50, q2 ¼ 0.34) was reported. Additionally, this
combination of methods allows interpretation and easy visual-
ization of PCM results within the context of ligands and binding
pockets.

Earlier studies have not clearly shown the advantages of 3D
PCM over solely sequence-based approaches, whereas more
recent studies show that including 3D information appears to
improve performance. The particular data set used (e.g. number
of ligands), and the quality of the data provided, likely deter-
mines if there is a possible gain in this type of description.
However, the constantly increasing number of protein
This journal is © The Royal Society of Chemistry 2015
structures, more robust alignment-freemethods (e.g.Nisius and
Gohlke164 or Andersson et al.81), and introduction of protein
descriptors with easier interpretability (e.g. Desaphy et al.165),
might help the interpretation and the visualization of PCM
models in the future.
5.3 PCM in predicting ligand binding free energy

The application of PCM to docking might not be directly
obvious. Yet, the concepts used in PCM, quantitatively relating
ligand- and protein-side descriptors to affinity/activity, very
much resemble empirical scoring functions. Molecular docking
has led to the discovery of active compounds,166 yet it suffers
from several well described limitations, among which is the
relatively low performance in prediction of interaction ener-
gies.167,168 In contrast, PCMmodels can predict the difference in
Gibbs free energy (DG ¼ �RT ln Kd) between the initial state,
where the protein and the compound do not interact, and the
nal ligand–target complex. Therefore, the principles of PCM
can be applied to develop PCM-based scoring functions.

Kramer et al.169 demonstrate this concept by building a
structure-based PCM scoring function. Their method inducts a
bagged stepwise multiple linear regression model with a subset
of 1387 protein–ligand complexes extracted from the
PDBbind09-CN database.170 Subsequently a new compound–
target interaction descriptor based upon distance-binned
Crippen-like atom type pairs was introduced. The best model
outperformed commercially available scoring functions
assessed on the PDBbind09 database and was able to explain
48% of the variance of the external set, providing a RMSE equal
to 1.44. Although similar methods had been previously
proposed,171–175 this was the rst study where a sufficiently large
validation was accomplished to ascertain model's predictive
power. Additionally, the implementation of bagged stepwise
multiple linear regression (MLR) and PLS enabled the evalua-
tion of the importance of ligand and target descriptors for the
PCM model.

Similarly, a subsequent study reported the development of a
scoring function based upon the CSAR-NRC HiQ benchmark
dataset (http://csardock.org).176 The best model exhibited
acceptable statistics with a cross-validated R2 ¼ 0.55 and RMSE
¼ 1.49.176 Finally, Koppisetty et al.177 were able to predict for the
rst time ligand binding free energies where the enthalpic and
entropic contributions for a given binding event were decon-
voluted. Therein, the authors demonstrated the importance of
including ligand descriptors (QIKPROP and LIGPARSE calcu-
lated in Schrödinger suite)178 to the models in addition to
3-dimensional ligand–protein interaction descriptors.

As demonstrated above, PCM overlaps with methods that are
originally coming from the structure-based eld due to PCM
describing in principle any method to relate ligand features and
protein/target features on a large scale to an output variable of
interest. Another source of complementary information is the
information from divergent and convergent homologous
sequences. This allows PCM models to extrapolate the bioac-
tivity of ligands to the same protein target in different species as
shown below.
Med. Chem. Commun., 2015, 6, 24–50 | 41
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5.4 PCM as an approach to extrapolate bioactivity data
between species

Given that PCM considers bioactivity data from related targets,
these related targets can also include similar targets from
different species. Given a group of related targets, a distinction
can be made from an evolutionary standpoint between gene
pairs originated from intra-species gene duplication events
(paralogy, within species) or from speciation events (orthology,
across species).179 Since orthologous genes will tend tomaintain
the original function, binding modes will also tend to be more
conserved than in paralogues, where the original protein func-
tion is less conserved.

This has also been shown to be true for affinities of ligands
binding to these orthologues by analyzing bioactivity data, such
as in a recent study by Kruger et al.21 the authors demonstrate
that the same small molecule exhibits similar binding affinities
when acting on orthologues (though some exceptions were
found, e.g. Histamine H3 receptor). Moreover, the authors
veried that larger differences in binding affinity are observed
for paralogues with respect to orthologues by analyzing the
differences in binding for a total number of 20 309 compounds
on 516 human targets, with 651 being the nal number of
orthologous pairs. These observations aid in optimizing ligands
for their interaction with conserved residues across a given
protein family, thus making them more desirable lead
compounds (thus avoiding their interaction with unrelated
targets).180

In the eld of PCM, Lapinsh et al.37 demonstrated for the rst
time the capability of PCM to successfully combine the pKi

values of 23 organic compounds on 17 human (paralogues) and
4 rat (orthologues) amine GPCRs. The authors were able to
deconvolute the binding site interactions into two types,
namely: those involved in specicity and those involved in
affinity. Therefore, compound design can be envisioned from
the viewpoint of affinity or specicity. Similarly, the contribu-
tion of TM regions involved in the interactions of amine GPCRs
and compounds to compound affinity was also quantied. For
example, TM regions 2, 3, 4, 6 and 7 are responsible for low
overall affinity in b2 receptors; however, the same regions are
positive contributors to overall high affinity in a1a receptors. van
Westen et al.22 built on this by including in a PCM model
bioactivity data from four human and rat adenosine receptors
(A1, A2A, A2B and A3). The authors screened a commercial che-
molibrary composed of 791 162 compounds with the most
predictive PCM model obtained, which exhibited Q2 and RMSE
values of 0.73 and 0.61 pKi units, respectively. Prospective
experimental validation led to the discovery of new high-affinity
inhibitors, among which a compound with a pKi value of 8.1 on
the A1 receptor. Finally, the authors have applied PCM to model
the pIC50 value of 3228 distinct compounds on 11 mammalian
cyclooxygenases (COX) using ensemble PCM.55 The nal
ensemble PCM model, trained on the cross-validation predic-
tions of a panel of 282 RF, SVM and Gradient Boosting Machine
(GBM) models, each trained with different values of the hyper-
parameters, led to predictions on the test set with RMSE and
R02 values of 0.71 and 0.65, respectively. Additionally, the
42 | Med. Chem. Commun., 2015, 6, 24–50
description of compounds with unhashed Morgan ngerprints
permitted a chemically meaningful model interpretation, which
highlighted chemical moieties responsible for selectivity
towards COX-2 in agreement with the literature.55

The ability of PCM to embrace multispecies information
using sequence descriptors allows the creation of models
capable to predict compound activity on targets with little
available data points on the human orthologue. The existing
large body of bioactivity data collected on organisms other than
human (e.g. rat and mouse) provides a good resource. This data
was derived from the traditional usage of rodent tissues as a
source of proteins for biochemical and pharmacological assays.
Moreover, the difference in bioactivity between a compound
acting on its human target with respect to its orthologue in
another species (e.g. the CCR1 antagonist BX471) hampers the
utilization of animal models to study human diseases at a
molecular level.181 Thus, PCM can help not only to reduce the
number of experiments required to complete the compound–
target interactionmatrix,29 but also appears as a practical tool to
understand complex diseases in scenarios where current
experimental settings are insufficient (e.g. undeveloped enzy-
matic assays for a given protein). Similarly, PCM might be
applied as a supporting tool in allometric scaling to predict the
behavior of clinical candidate drugs in humans.182,183 Nonethe-
less, the extrapolation capabilities of PCMmodels are subjected
to the completeness of the bioactivity matrix (Fig. 1). In practice,
even though high performance can be attained with a matrix
completeness level below 3%, the variability of the chemical
space plays a key role in determining the extrapolation capa-
bility of a PCM model on the chemical side.75 Therefore, a
balance has to be found between the coverage of chemical and
target space, and the degree of completeness of the bioactivity
matrix.
5.5 PCM applied to pharmacogenomics and toxicogenomics
data

The biological space in a PCM model can be further extended
from single proteins to whole cell lines. A step forward in this
regard is the inclusion of cell line descriptors in a PCMmodel in
order to model cell line sensitivity to cancer drugs or toxic
compounds. Given that individual cell lines have been shown to
demonstrate diverse proles with respect to drug sensitivity, the
variability on the cell line side, which constitutes now the target
side of PCM, can be exploited to concomitantly predict both
drug potency and cell line selectivity.17 Additionally, PCM can
also facilitate the interpretation of differential gene expression
or mechanism of toxicity of compounds,88 as will be shown
below.

The availability of pharmacogenomics and toxicogenomics
data has enabled predictive modelling of cancer cell line
sensitivity. These models consider as the dependent variable
the response of a whole cell to a given drug, such as in the form
of EC50 values, which determines the concentration at which a
chemical exerts half of its maximal effect. Therefore, the ‘target’
component in the PCM model is no longer a single protein,
described in terms of binding site properties, but by more
This journal is © The Royal Society of Chemistry 2015
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complex (usually genomic) features such as oncogene muta-
tions, cell karyotypes or gene expression levels.

In the context of human cell lines, the work on the NCI-60
cell line panel, which covers cells from 9 different cancer types,
has helped to nd novel molecular determinants of drugs
sensitivity, as well as to develop drugs targeting concrete tumor
types (disease-oriented); e.g. 9-Cl-2-methylellipticinium acetate
for central nervous system tumours.184 However, the number of
cancer cell lines with drug sensitivity data has vastly increased
with the release in 2012 of two major cancer cell line panels,
namely: the Cancer Cell Line Encyclopedia (CCLE) consisting of
947 cancer cell lines185 and the Genomics of Drug Sensitivity in
Cancer (GDSC) consisting of 727 cancer cell lines.186 The setup
of both cell line collections, sharing a total number of 471 cell
lines, enabled large scale pharmacological proling thereof. In
that way, Barretina et al.185 measured the chemotherapeutic
effect of 24 drugs on the CCLE panel, while Garnett et al.,186

tested 130 chemical compounds on the GDSC cell line collec-
tion. In both cases, the cell lines were further characterized
genomically, by measuring gene expression data, chromosomal
copy numbers, oncogene mutations, and microsatellite insta-
bility. Recently, Basu et al.187 measured the sensitivity of 242 cell
lines form the CCLE panel to an Informer Set composed of 354
diverse molecules, including 54 clinical candidates and 35 FDA-
approved drugs. The sensitivity data is publicly available at the
Cancer Therapeutics Response Portal (CTRP).188

The availability of public bioactivity proles for compounds
in combination with detailed genetic information of the cell
lines constitutes a scenario where ML can be applied for
predictive cell line sensitivity modelling. In this area, Menden
et al.29 exploited cell line drug sensitivity information from the
GDSC and incorporated genomic features in combination with
chemical descriptors in non parametric models, i.e. neural
networks and random forests. These models allowed the
authors to determine the missing drug response (IC50) values in
the original cell-line compound matrix. The best model pre-
dicted the sensitivity on the external (blind) test with a corre-
lation between observed and predicted of 0.64, while a value of
0.61 was obtained when predicting the response on a tissue
unseen by the model in the training phase. Recently, the
authors have integrated PCM random forest models with
conformal prediction for the large-scale prediction of cancer
cell line sensitivity with error bars.17,189 Compounds were
described with Morgan ngerprints, whereas a total of 16 cell
line proling datasets were benchmarked for their predictive
signal. Gene expression data constantly led to the highest
predictive power. Interestingly, the authors found statistically
signicant differences in predictive power between PCM
models trained on cell line identity ngerprints (inductive
transfer knowledge between cell lines)190 and cell line proling
data, suggesting that the explicit inclusion of cell line infor-
mation improves the prediction of cell line sensitivity. Of
practical relevance, the predicted bioactivities enabled the
prediction of growth inhibition patterns on the NCI60 panel
and the identication of genomic markers of drug sensitivity.

The cancer cell line collections described above still remain
to be fully exploited. While they constitute a great opportunity
This journal is © The Royal Society of Chemistry 2015
for PCM to integrate both drug sensitivity and genomics data in
single models, this data integration still remains challenging
due to the disagreement of drug sensitivity measurements
between the CCLE and the GDSC.191,192 Overall, the principles of
PCM, namely the combination of chemical and cell line (target)
information in single machine learning models, are suited to
integrate and exploit the increasing availability of drug sensi-
tivity measurements on cancer cell line panels. The application
of PCM in pharmacogenomics is a recent sub-eld of which the
authors are certain it will grow in the near future. Moreover, in
silico drug sensitivity prediction is a cost-efficient method
capable to relate large-scale pharmacogenomics data, which is
likely to foster the identication of chemotherapeutic lead
compounds in both the academic and pharmaceutical cancer
drug discovery pipeline.
5.6 Other potential PCM applications

As reviewed above PCMhas been applied in a wide range of drug
discovery settings, yet more applications remain unexplored.
The prediction of compound toxicity on cell lines (tox-
icogenomics),193–196 beyond the aforesaid cancer cell line
collections, is also amenable to PCM. Recently, Kaggle,197 a
crowd-sourcing platform, hosted two competitions in the eld
of chemoinformatic modelling. Two pharmaceutical compa-
nies, Boehringer Ingelheim and Merck, provided structure–
activity relationship datasets to the community in order to nd
the most predictive machine learning algorithms. The Merck
challenge consisted of 15 datasets, each of which containing the
bioactivities of a series of molecules on a different target. The
winners of the competition applied restricted Boltzmann
machines (deep learning).198 Interestingly, the winning team
noted that the similarity between the datasets (targets) could be
exploited by inducting a single neural network with all datasets,
which output a layer with een different units (neurons). On
the other hand, Boehringer Ingelheim provided a dataset with
1776 compound descriptors. The response variable was binary,
0 corresponded to a compound not eliciting the expected
activity whereas 1 corresponded to a compound showing
activity. In this case, the highest predictive ability was obtained
with model ensembles (random forests, gradient boosting
machines, and K-nearest neighbors). In a similar vein, the
modelling challenge DREAM8 was proposed to the scientic
community to model the toxicity of 106 compounds on 884
lymphoblastoid cell lines, which were characterized by SNP
genotypes and gene transcript levels quantied by RNA
sequencing.199–201

As described in this review, a large variety of protein targets
have been modelled using PCM. Beyond the modelling of the
activity of compounds on targets of diverse nature, the inter-
action between nucleic acids and proteins is also amenable to
PCM modelling. In this context, Bellucci et al. predicted
protein–RNA interaction based upon the physicochemical
properties of both the polypeptide and the nucleotide chains.202

However, to date few studies have been published in this
area.50,202
Med. Chem. Commun., 2015, 6, 24–50 | 43
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6 PCM limitations

The usefulness of PCM in computational drug design has been
extensively proven in silico (see Section 2.7) and in prospective
experimental validation. Nevertheless, there are a number of
limitations that should not be overlooked. Publicly available
bioactivity databases contain a non-negligible degree of exper-
imental uncertainty,108–111 which should be certainly included in
the modelling phase, as recently proposed by Cortes-Ciriano
et al.75 Similarly, intervals of condence for individual predic-
tions should be reported, which can be calculated with algo-
rithm-dependent approaches, e.g. Gaussian processes,75 or with
algorithm-independent techniques, such as conformal
prediction.17,189

In addition to being informative for biologists, these con-
dence intervals constitute a valuable source of information
about the applicability domain (AD) of a given model.75 The AD
is dened as the amount of ligand and target space to which a
given model can be reliably applied. Thus, in addition to the
model validation schemes presented above, an estimation of
model AD should accompany any reported model in order to be
of practical usefulness.

Another limitation which is oen inherently related to
bioactivity data is that of data skewness. Some datasets mostly
report active203 or inactive molecules,204 and thus compound–
target combinations untested experimentally are normally
considered as inactive or active interactions, respectively.
Moreover, public data in general tend to favor a relatively small
number of proteins classes that have been extensively explored
(e.g. GPCRs and kinases).23–25,205 As such, for some targets the
available data might not be sufficient for PCM projects given
that imbalanced datasets can lead to models with high negative
or false positive rates. Nevertheless, the modelling of cell line
sensitivity has shown that PCM displays high interpolation
power, as the accuracy of prediction reached a plateau when
20% of the whole compound-cell linematrix was included in the
training set.29

Beyond the quality of the data, the descriptor choice still
constitutes a eld of active research, specially with respect to
protein descriptors, which development will deeply inuence
the success of PCM in the coming years.45 A recent paper by
Brown et al.190 suggested that PCM mostly relies on inductive
transfer knowledge and that protein descriptors mostly act as
labels and do not account for structural differences among
them. However, we have recently shown that both amino acid
descriptors and cell line proling datasets account for struc-
tural information of eukaryotic, mammal and bacterial DHFR,
and cancer cell lines, where the difference in performance on
the test set between inductive transfer and PCM models was
statistically signicant.17,56

PCM requires the concatenation of ligand and target
descriptors, and sometimes also cross-terms, which substan-
tially increases the dimensionality of the input space with
respect to QSAR. Although this higher dimensionality might
lead to overtting in PCM,206 in practice, PCM has been shown
44 | Med. Chem. Commun., 2015, 6, 24–50
to exhibit higher predictive power on the test set than
QSAR.22,26,75

7 Conclusions

PCM is becoming a mature technique that allows the simulta-
neous use of both the chemical and the biological spaces in
predictive bioactivity modelling. Both retrospective validation
and prospective validation have underscored the advantages of
PCM over ligand-based methods. However, it is the extensive
expertise developed in the elds of QSAR and chemoinformatics
on which PCM can build. Nowadays, a wide choice of properly
benchmarked ligand and protein descriptors is available as well
as different linear and nonlinear modelling algorithms. None-
theless, conceptually diverse machine learning algorithms (e.g.
GP), the inclusion of three-dimensional information of both
ligands and targets, and the use of pharmacogenomics data are
still under exploration.

Overall, the ability of PCM to become a customary technique
in both the public and the private domain in the following years
will certainly rest on its capability to capitalize on biological
data of diverse nature, including personalized ‘omics’ data
(personalized medicine), in combination with structural data of
ligands, be those small molecules, antibodies or peptides.
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