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NMR-based investigation of the Drosophila
melanogaster metabolome under the influence
of daily cycles of light and temperature†

Navdeep Gogna,‡a Viveka Jagdish Singh,‡b Vasu Sheebab and Kavita Dorai*a

We utilized an NMR-based metabolomic approach to profile the metabolites in Drosophila melanogaster

that cycle with a daily rhythm. 1H 1D and 2D NMR experiments were performed on whole-body extracts

sampled from flies that experienced strong time cues in the form of both light and temperature

cycles. Multivariate and univariate statistical analysis was used to identify those metabolites whose

concentrations oscillate diurnally. We compared metabolite levels at two time points twelve hours apart,

one close to the end of the day and the other close to the end of the night, and identified metabolites

that differed significantly in their relative concentrations. We were able to identify 14 such metabolites

whose concentrations differed significantly between the two time points. The concentrations of

metabolites such as sterols, fatty acids, amino acids such as leucine, valine, isoleucine, alanine and lysine

as well as other metabolites such as creatine, glucose, AMP and NAD were higher close to the end of

the night, whereas the levels of lactic acid, and a few amino acids such as histidine and tryptophan were

higher close to the end of the day. We compared signal intensities across 12 equally spaced time points

for these 14 metabolites, in order to profile the changes in their levels across the day, since the NMR

metabolite peak intensity is directly proportional to its molar concentration. Through this report we

establish NMR-based metabolomics combined with multivariate statistical analysis as a useful method

for future studies on the interactions between circadian clocks and metabolic processes.

Introduction

It has become increasingly critical to reconcile with the fact that
metabolic processes are subject to cyclic influences not only
from the external environment but also from the internal
circadian clock. It can be argued that homeostatic processes
that involve metabolic pathways also feedback to the circadian
clock. Today’s lifestyle often places harsh demands on human
physiology that is not always in-sync with the evolutionary

forces that may have shaped circadian clocks and our metabolic
processes. This may in part, have a role to play in the rapid rise
in metabolic disorders in modern human populations across
the world.

Recently several studies point to the intricate connections
between circadian clocks and metabolic pathways involved in
fatty acid or glucose metabolism in the liver.1 It is likely that
intrinsic adaptive advantages are offered by circadian clock
mediation of metabolic processes, in being able to provide
organisms with an efficient way to deal with toxic metabolic
wastes and, most effectively utilise any unstable intermediate in
these pathways due to the anticipatory ability of time-keeping
machinery. Circadian clocks regulate the behavioural process
of feeding, which may in turn affect metabolic processes.2,3

Since feeding itself is rhythmic in many organisms, it also
directly causes oscillations in metabolic processes. The molecules
NAD+, SIRT1 and AMP Kinase (AMPK) are known to be sensors
of the nutritional or energy status of cells.4–6 SIRT1 deacetylates
several proteins involved in varied processes such as gluconeo-
genesis and cholesterol metabolism,4 thus converting the infor-
mation on cyclic nutritional status to activate appropriate
metabolic processes. AMPK also interacts with the circadian
clock by acting on NAD+ levels.6 Thus, a complex intertwining of
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processes in these apparently distinct entities namely circadian
clocks, feeding-related behaviours and the metabolic machinery
of organisms remains to be unraveled.

Studies on mammals have shown that animals with mutations
in circadian clock genes often develop obesity, metabolic
syndrome, hypoinsulinaemia and diabetes,7,8 all of which are
indicative of major disruptions in multiple metabolic pathways.
Furthermore, several studies of rhythmically expressed tran-
scripts in the whole genome have suggested that genes involved
in lipid, glucose and fatty acid metabolism are regulated in a
rhythmic manner by a few circadian clock genes.9–11 Such
relationships have also been shown to exist in fruit flies
Drosophila melanogaster,9,12 where the circadian clocks in the
fat body (tissue equivalent to the liver) control cyclic expression
of several genes. While genetic amenability of fruit flies offers
the possibility of highly targeted tissue specific manipulation,13

yet, there have been relatively fewer studies that address
the nature of the relationship between circadian clocks, meta-
bolic processes and feeding behaviours in flies. This may be
attributed to the fact that feeding cannot be as easily measured
or manipulated in flies. However, studies by Amita Sehgal and
colleagues have shown that ClockJrk mutation which disrupts
activity/rest rhythm also changes the peak of feeding.14 This
study revealed that tissue specific disruption of the clock was
limited to the fat body also causing several behavioural and
physiological defects. Such flies are unable to exhibit cyclic
feeding, and show overall higher feeding, especially at night,
yet such flies are more prone to starvation and have reduced
glycogen stores. On the other hand, when disruption of circadian
clocks is restricted to the central clock neurons, then flies show
increased starvation resistance and glycogen storage. The same
group also went on to show that similar to mammals, circadian
clocks in the fat body control cyclic expression of several
genes suggesting that metabolism is likely to be regulated via
transcriptional control by a few circadian genes.12 Thus the
study provides evidence for links between organs known to be
important for metabolic processes and circadian clocks in flies.
While the studies discussed above used cycling transcripts as
readouts for rhythmic metabolic processes, an alternate and
more recent approach has been used to estimate levels of
metabolites themselves. This is because even in the absence
of cycling transcripts it is possible to envisage oscillations in
metabolic processes based on post transcriptional/translational
modifications leading to rhythmicity in the activation state of
enzymes and their substrates.15–19 Such enzymes, when involved
in the production, activation, deactivation or quenching of
metabolites can also generate rhythmicity in metabolite levels.
An example of a study that examined metabolites includes one
in which excessive weight gain was prevented in mice under a
regime of night-restricted high-fat diet (which under ad libitum
conditions induces obesity). Metabolite analysis showed that
both fatty acid and glucose metabolism that were altered by ad
libitum high fat food could be restored to normal by appropriate
timing of feeding (mice being nocturnal feeders). Interestingly,
small molecules such as NAD+, FAD, cADPR are known to
oscillate in a circadian manner.1,18,20,21 Studies in mice have

shown that NAD+ feeds back to the circadian clock through the
activation of a histone deacetylase enzyme Sirtuin1 (SIRT1).16,21–23

These studies suggest that metabolites as readouts can be a
more direct approach to study the link between circadian clocks
and metabolism.

Metabolomics seeks to obtain the complete metabolic profile
of an organism. NMR spectroscopy and mass spectrometry
are two analytical techniques widely used for metabolomic
studies.24,25 Recently, in an attempt to develop a ‘metabolite
timetable’ from blood plasma which could potentially act as a
diagnostic tool, Minami and colleagues analysed the blood
metabolome of mice by LC/MS to differentiate between a large
number of metabolites.26 One study which assayed a large
number of liver metabolites of mice using GC/MS or LC/MS
clearly demonstrates the critical role of timing of feeding and
the underlying metabolic processes.27 A separate study by Eckel-
Mahan and colleagues analysed the liver metabolome of mice
under LD cycles by LC/MS and unravelled a large number of
cycling metabolites of which, those involved in lipid, carbo-
hydrate and nucleotide metabolism peaked during the day
which is the time when mice are resting, while those involved
in amino acid metabolism and processing of xenobiotics peaked
during night, which is their active phase.28 In addition to these,
three separate groups reported results from analysis of the
metabolome of humans from saliva and/or blood plasma by
LC/GC MS.29–31 However, due to limited molecular weight
distribution of the metabolites, mass spectrometry usually
requires chromatographic separation, which inevitably disturbs
the relative concentration of the metabolites and hence the
metabolome being characterized. Mass spectrometry is also
restricted to those metabolites that ionize readily; molecules
such as carbohydrates do not ionize well. In the wake of such
limitations, NMR is preferred over mass spectrometry for such
metabolites.

High-resolution NMR spectroscopy is a non-destructive,
quantitative technique to obtain metabolite concentrations
with the advantages of high-reproducibility, rapid data analysis
minimal sample preparation. Metabolites are identified by
their characteristic resonance peak positions and spectral
patterns and are usually validated by comparison with NMR
spectra of pure compounds deposited in standard databases.
Previously, low sensitivity and peak overlap problems of NMR
limited its use in metabolomics, however, recent advantages
in NMR instrumentation such as higher field magnets, isotope
labeling and cryoprobes have led to its widespread use as a
metabolomics tool. NMR metabolomics is able to simultaneously
measure the variation in relative concentrations of a large number
of metabolites and the peak intensity in an NMR spectrum is
directly proportional to the concentration of the metabolite.

Most NMR-based metabolomic investigations of Drosophila
melanogaster have focused on organismal response to different
environmental stresses.32–40 However, only a handful of studies
have tried to directly estimate the daily profile of metabolites
within tissues while most others have relied on the oscillation
in gene transcripts as indicators of rhythmicity in metabolic
function. While the fly has been a workhorse for circadian
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rhythm research for several decades, only recently has there
been a move towards using the fly to study links between clocks
and metabolism. Overall, these studies suggest interlinking of
circadian clocks and energy homeostatic processes although
the nature of such interactions is far from clear. In flies it has
been demonstrated that circadian clock in peripheral tissues
are sensitive to daily cycles of food availability12 and that
starvation can disrupt the circadian clock-modulated sleep/wake
behaviour.41 To our knowledge, all previous studies on flies have
relied on either gene transcripts or the analysis of a few well
studied metabolites to estimate metabolic function.12,14,42,43 The
work of the Panda, Ueda and Sassone Corsi labs on rodents have
shown that large scale analysis of metabolites can provide much
greater information regarding the interactions between meta-
bolic pathways and the clock.15,26–28 Hence our study is aimed to
perform the first step of rigorously cataloguing the profile of
rhythmic metabolites in the fly when subjected to a 12:12 h
day:night cycle with light and warm temperature during the day
and darkness and cool temperature at night. Since this study was
intended to establish that this method would indeed recognize
metabolite cycling, we used a regime that would ensure robust
cycling in physiological processes. Since both light and temperature
are known to be strong time cues and act synergistically on the
circadian clock we adopted the above protocol.44 This would allow
us to identify those metabolites that cycle with a daily rhythm,
although it would also include those that are rhythmic merely as a
response to cyclic light and/or temperature levels. We performed
untargeted metabolite profiling of D. melanogaster by 1D 1H and
2D NMR spectroscopy in conjunction with OPLS-DA pattern
recognition analysis. We were able to identify several metabo-
lites whose concentrations undergo diurnal changes in the
presence of cyclic time cues in the form of light and temperature.
Thus, we establish the validity of this approach in performing
quantitative measurements of cycling metabolites in the fly,
which is rapidly becoming a very useful model system in the
area of metabolomics.36,38

Results and discussion
Metabolite identification by 1D and 2D NMR

A detailed analysis of the metabolite profile of D. melanogaster was
performed using 1D 1H and 2D NMR experiments. The resonances
were assigned to specific metabolites based on their chemical shift
values matching with the values of the pure standard compounds
extracted from spectral databases such as MMCD and BMRB. A
variety of metabolites were identified on the basis of their chemical
shift values and scalar coupling patterns (ESI†). We also confirmed
the metabolite identification using unambiguous signal assign-
ments from two-dimensional NMR spectra, including homonuclear
experiments such as COSY and TOCSY, and heteronuclear
experiments such as HSQC and HMQC.

Multivariate statistical analysis

To identify metabolites that show cycling in concentrations
after exposure to a 12:12 hour, light:dark (LD) + warm

(28 1C):cold (18 1C) cycles, flies were sampled at 12 time points
across a 24 h period. We began by an initial comparison of
samples from all 12 time points using the unsupervised
method of PCA to look for possible outliers, groups, similarities
and other patterns in the data. Fig. 1(a) shows the PCA score
plots for all time points taken together with component 1
explaining 30.5% of the variation and component 2 explaining
24.6% of the variation. As can be seen, replicates of individual
time points cluster well however there are overlaps between
different time points resulting in no clear separation when all
the time points were taken together. As can be seen from the
PCA score plot, component 1 is able to separate ZT22, ZT20 and
ZT18 (0, 1 and 2 respectively) time points from the rest of the
time points. ZT8 (7) replicates did not show proper clustering
and had outliers and ZT6 (8) samples could also be separately
seen from rest of the time point samples. Fig. 1(b) shows
the loading plot corresponding to the scores plot, showing
the variables responsible for the cluster separation. We used
hierarchical cluster analysis (HCA) to identify natural groupings
in the data for all twelve time points. Fig. 1(c) shows the tree
dendrogram prepared using HCA, which summarizes all the
variation present in the dataset. No clear separation could be
seen, although replicates within individual time points cluster
fairly well both in the PCA score plot and in the twelve time
point dendrogram. With R2 = 0.883 and Q2 = 0.767, the PCA
model shows good predictability. Variables identified using PCA
were subjected to ANOVA and p o 0.01 was considered to
indicate a statistically significant difference. Table S2 (ESI†)
shows metabolites identified using ANOVA that contribute to
the separation and post hoc analysis to show which time points
are significantly different.

For better analysis and to obtain a clear picture for meta-
bolite cycling, instead of taking individual replicates per time
point, we considered the mean of all replicates per time point
(which left us with 12 data points instead of 60 (12 � 5 = 60)
corresponding to each time point sampled). In order to better
visualize the results of the cluster analysis, we used a polar
dendrogram, which maps the leaf nodes in a radial fashion
around the circumference of a circle. Fig. 2 shows the polar
dendrogram plotted for all twelve time points. As can be seen,
three main nodes resulting in three groups can be identified in
the dendrogram. Two groups have five time points each-one
group has time points corresponding to the light phase (ZT4 to
ZT12) whereas the other group has time points corresponding
to the dark phase (ZT14 to ZT22). This shows a clear separation
between metabolism during light and dark phases. A third
separation shows two time points ZT0 and ZT2 as being
different from both the other groups and falling in-between
both the other groups, indicating that both these time points
are different yet intermediate to both the groups. This might
be the region of change in metabolism from day to night
phases. Since the two groups separated have time points
mostly 10–12 hours apart hinting at a possible 10–12 hour
cycling in metabolism, we selected two time points ZT10 and
ZT22, which were twelve hours apart, to proceed further with
the analysis.
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OPLS-DA analysis

The PCA analysis showed some class differentiation, but there
were noticeable overlaps. To address this problem, we used
an OPLS-DA statistical approach. OPLS-DA can be used to
maximize covariance between the measured data (NMR peak
intensities) and the response variable (predictive classifications)
and the OPLS-DA color-coded coefficient loading plot can be
used to identify significant metabolites contributing to the
separation between the two time points. A quantitative com-
parative analysis of NMR metabolomic profiles has to account
for peak shifts across different spectra that could be caused
by pH or temperature fluctuations or magnetic field inhomo-
geneity.45 Prior to the OPLS-DA analysis, we used the icoshift
algorithm for alignment of all 1D NMR spectra, which is based
on correlation shifting of spectral intervals, uses the FFT
correlation for simultaneous spectral alignment, and avoids
down-sampling steps such as binning.46 Fig. 3(a) depicts the
OPLS-DA score plot for the comparison between time points
ZT10 and ZT22, obtained with one predictive component and
one orthogonal component, showing a clear separation between
the two time points. The loading plot shows the metabolites
responsible for separation between the two time points
(Fig. 3(b)). The VIP score parameter was used to confirm the

Fig. 2 Similarities between different time points (from ZT0 to ZT22)
represented as a polar dendrogram. All time points have five replicates
each.

Fig. 1 (a) Principal component analysis (PCA) score plot of 1H NMR spectra of all 12 time points namely, 0 = ZT22, 1 = ZT20, 2 = ZT18, 3 = ZT16, 4 = ZT14,
5 = ZT12, 6 = ZT10, 7 = ZT8, 8 = ZT6, 9 = ZT4, 10 = ZT2, 11 = ZT0, with component 1 showing 30.5% and component 2 showing 24.6% of the variation, (b)
loadings plot displaying variables responsible for separation in the score plot and (c) dendrogram showing similarities between replicates at 12 time
points. The length of the vertical axis is a measure of the dissimilarities between different sample clusters.
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variables identified to be responsible for time point separations.
The variance explained by the model R2X was 0.957 and the
variance predicted Q2 was 0.849. The model therefore was an
effective model, with a good predictive accuracy. The model was
also statistically significant after testing with CV-ANOVA with a
p-value o 0.01 and was validated by a permutation test (p-value
o 0.05) which proved the credibility and robust nature of this
model. In addition to multivariate analysis, univariate analysis
was also performed. The variables were tested for statistical
significance using a t-test. The metabolite peaks for sterols
including cortisol, fatty acid terminal methyl and fatty acid
(CH2)n, amino acids like leucine, isoleucine, valine, alanine,
lysine, other metabolites like AMP, NAD, creatine and cortisol
were present in higher concentrations at ZT22 whereas meta-
bolite peaks for histidine, tryptophan and lactic acid were
present in lower concentrations at ZT22. A multiple hypothesis
test correction method of Benjamini–Hochberg was also applied
to confirm the statistical significance of metabolites identified,
which further proved the statistical significance of the meta-
bolites identified.

As suggested by the polar dendrogram of twelve time points
(Fig. 2), the separation occurs mainly in day and night phases
which are 10–12 hours apart. We hence performed a further
comparative analysis of time points which were 10–12 hours
apart, in order to identify other metabolites with significant
concentration changes that occur at other time points relative
to ZT10 or ZT22. In addition to comparing the ZT10 and ZT22
time points (Fig. 3), we also compared ZT8 with ZT22, ZT6 with
ZT18 and ZT4 with ZT16 (ESI†). Since ZT0 and ZT2 occur at the
beginning of the day and ZT22 occurs towards the end of the
night, we also compared metabolites between ZT0, ZT2 with
ZT22 even though they are separated by only 5 hours, to detect
metabolites that actively undergo changes during the transition
from day to night. The comparison between ZT8 and ZT20 did

not lead to the emergence of hitherto undiscovered cycling
metabolites and the results matched with the results obtained
for the comparison between ZT10 and ZT22. The comparison
between ZT4 and ZT16 showed a lipid peak as identified by the
terminal methyl peak, sugars like sucrose and erythrose and
amino acids such as valine and leucine to be responsible for
separation. The comparison between ZT6 and ZT18 showed
peaks from amino acids valine, leucine and isoleucine and NAD
to be responsible for separation. Comparison between ZT0 and
ZT22 showed the same aliphatic amino acids and NAD to be
involved in group separation whereas comparison between ZT2
and ZT22 showed additional metabolites of lipids and lysine to
be contributing towards separation. Score plots for the above
five time point comparisons, along with metabolites identified
using the t-test (p o 0.01) to be responsible for group separa-
tions, are shown in the ESI.†

Variation in significant metabolites

Changes in metabolite concentrations over the 24 h LD warm:
cold cycles were analyzed by: first, finding the spectral regions
that changed significantly (p o 0.01) at two time points
compared; second, the intensities of individual metabolites
were assessed as integrals of the individual spectral peaks in
those bins. Table 1 shows relative integrals of metabolites (at
time points ZT10 and ZT22) that were found to be statistically
different in concentrations at both these time points. To further
confirm that these metabolites indeed show cycling with a
period close to 24 h, intensities of these metabolites, as obtained
from their NMR spectra after normalizing and scaling all the
spectra to make all 12 time points comparable, were plotted over
the 12 time points recorded. Fig. 4 depicts (for the significant
metabolites identified) the metabolite concentrations (as
obtained from relative integrals) across 24 h, at 2 h intervals.
As can be seen, all the metabolites show cycling with characteristic

Fig. 3 OPLS-DA (a) score and (b) coefficient loading plots derived from 1H NMR spectra of ZT10 and ZT22 time points. The upper section (above 0) of
the loadings plot represents metabolites higher at ZT10 whereas the lower section (below 0) of the loadings plot represents metabolites that are higher at
the ZT22 time point. The color bar corresponds to the absolute value of the correlation loading in the discrimination model.
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peaks and troughs during the 24 h. Time for peaks and troughs
vary for individual metabolites. Kruskal–Wallis rank ANOVA was
performed with time-point as the factor to confirm an effect of
time of day followed by multiple comparisons to determine
statistically significant peaks and troughs.

We find that the concentrations of amino acids leucine,
isoleucine, valine, lysine and alanine cycle in-phase, with
higher levels during the night compared to day. This result
provides confirmation of the method as one finds that mole-
cules such as leucine, isoleucine and valine and all products
of branched chain amino acid metabolism peak around
the same time at night, http://www.genome.jp/keggbin/show_
pathway?org_name=dme&mapno. While leucine, isoleucine
and valine peaked around ZT18, which corresponds to mid-
night, the other metabolites did not exhibit a sharp peak, but
instead remained at high levels across a 6 h period. Such a peak
near ZT18 was also detected for leucine, isoleucine and valine
(peaks at ZT18.9, 18.8 and 18.6) by Minami and colleagues in
mouse blood plasma26 while another study on human plasma
also detected peak in leucine and lysine levels at ZT21.5 and
ZT19 respectively29 suggesting a high degree of across-species
conservation in the nature of oscillations for these metabolites.
We also find that fatty acid levels build up gradually throughout
the night and peaks late at night (ZT20–22). This is in agree-
ment with a study which found that a large number of oscillating
metabolites in the blood plasma of humans are fatty acids.30

Both histidine and tryptophan levels are higher during the day
compared to night and in both cases no clear peak is seen.
However, a previous study on mouse blood plasma suggests that
tryptophan peaks around ZT19,26 differing quite dramatically
from our results. Moreover, in other studies done on human
plasma, concentrations of amino acids such as alanine and
valine did not show a significant 24 h variation29,30 and trypto-
phan was not found to oscillate.29

For some other cycling metabolites, troughs appeared to be
clearer than peaks. Around late evening (ZT10–14), glucose and
AMP were found to be lowest, while creatine and sterol were
lowest between ZT8–10 and ZT8–14 respectively. A recent study

by Dallman and colleagues report that creatine levels in human
saliva peaks at ZT16,30 while another study on mouse blood
plasma reports a peak around ZT1526 which is in overall
agreement with the profiles obtained from our samples, which
also show creatine levels rising rapidly by that time. The study
also indicates high levels of histidine in human saliva during
the early part of the day similar to our own findings.30 Although
many previous studies have suggested oscillations in glucose
metabolism in mammals,47,48 to our knowledge, no previous
study which used a metabolomics approach has reported
rhythms in glucose levels. Our analysis of fly whole-body
extracts suggests a clear trough in glucose levels at the end of
day, in contrast to mice which show a trough in blood glucose
levels late at night. However, since flies show crepuscular or
mostly diurnal locomotor activity compared to mice, which are
nocturnal, this difference in phase may be a reflection of
differences in timing of glycogenolysis and gluconeogenesis
pathways between these organisms. Our results show a steady
rise in lactic acid levels through the day culminating in a peak
shortly after lights-off (ZT14–16) with a trough beginning late at
night (ZT22) and lasting until early half of the day (ZT4).
Interestingly, our analysis picks up bimodality in the case of
only one metabolite, NAD, which peaks both at mid day
(ZT6) and also mid night (ZT18). NAD has previously been
shown to oscillate with a circadian rhythm in mammalian cells
(Nakahata et al. 2009, Science; Ramsey et al., 2009, Science) and
is thought to be directly affected by nutritional status. There-
fore, the peak at mid day may be attributed to feeding which is
known to occur maximally immediately after dawn. However,
the NAD peak at midnight is surprising and suggests that other
processes that generate NAD occur at dusk.

Minami and colleagues showed that several hundred meta-
bolites oscillate in the presence of LD cycles, of which a sizeable
fraction (B20%) continued to do so under constant dark
conditions (DD) where no external time cues are available.26

The study proposed that the development of such high
throughput methods to assay metabolite levels could, in future,
be effective in detecting the state of the internal circadian clock

Table 1 Relative amounts (as given by integrals) of metabolites present at ZT10 and ZT22 time points. Data are represented as mean � SD and statistical
significance was confirmed by a t-test (p o 0.01) and corrected p values by Benjamini Hochberg (FDR) method

Metabolite Peak (in ppm) used for quantification

Quantity present in

p-Value BH corrected valueZT10 ZT22

Sterol 0.73–0.75 0.5404 � 0.009 0.7706 � 0.019 0.0012868 0.009651
Fatty acid CH3 0.88–0.91 1.7923 � 0.011 3.0091 � 0.007 0.00066375 0.009651
Fatty acid (CH2)n 1.26–1.31 5.5942 � 0.022 9.3585 � 0.027 0.0021129 0.0105645
Leucine 0.94–0.96 5.7649 � 0.016 6.3884 � 0.027 0.017578 0.026367
Valine 0.97–0.99 4.2903 � 0.008 4.9875 � 0.110 0.036365 0.038824
Isoleucine 0.99–1.01 1.5361 � 0.014 1.9324 � 0.016 0.0071046 0.01522414
Lactic acid 1.32–1.34 8.5904 � 0.019 6.2492 � 0.025 0.0021129 0.01479325
Alanine 1.46–1.50 2.0623 � 0.007 2.3564 � 0.012 0.026435 0.03050192
Lysine 3.00–3.02 0.8342 � 0.009 1.0170 � 0.007 0.005627 0.01479325
Creatine 3.92–3.93 0.1574 � 0.015 0.2724 � 0.012 0.0097458 0.016243
Glucose 4.62–4.65 20.3064 � 0.750 27.0216 � 0.653 0.0059173 0.01479325
Histidine 7.09–7.11 0.7180 � 0.012 0.6372 � 0.021 0.024318 0.0303975
Tryptophan 7.30–7.32 0.4950 � 0.006 0.3670 � 0.012 0.021128 0.02881091
NAD 8.43–8.45 0.7381 � 0.014 0.9793 � 0.017 0.0094459 0.016243
AMP 8.59–8.60 1.3782 � 0.011 1.5894 � 0.009 0.038824 0.038824
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in humans, diagnose clock disorders and prescribe personalised
medication regimes. However, studies on humans and to a lesser
extent mice are limited by the number of individuals that can be
sampled and the kinds of experimental manipulations that can
be performed. Hence our study using fruit flies with a high
sample size (n = B40 per replicate per time point) and greater
resolution provides an outline for future studies aimed at
resolving the nature of the interaction between circadian clocks
and metabolism. Researchers interested in the quantification of
metabolite oscillations on a daily scale have relied on several
methods to estimate metabolite levels in blood, saliva or other
body tissues in humans24 and other model organisms or have
relied on indirect evidence such as the oscillation in genes
involved in metabolic processes.26,43 We propose that the use of
high resolution NMR as described by our study will provide a

much more accurate picture of oscillations of a large number of
critical metabolites. As a proof-of-principle we present results
from flies that have been subjected to a set of very strong time-
cues namely light:dark and warm:cold cycles, which are known
to synchronise not only behavioural rhythms such as loco-
motion and rest,49 eclosion50 and egg laying,51 but also rhythms
of gene transcription that forms the basis of the core-circadian
clock.52,53 Our results suggest that this method is robust and
can reliably pick up oscillating metabolites from whole-body
extracts of flies.

A previous study using the mass spectrometric approach has
pointed out that the metabolome of adult male flies respond
differentially when subjected to constant warmth (27 1C) as
opposed to constant coolness at 18 1C.54 Specifically they
identified purine nucleoside degradation pathway components

Fig. 4 Plots of relative concentration of oscillating metabolites sampled at 2 h intervals across 24 hours under 12:12 hour light:dark and warm
(28 1C):cold (18 1C) cycles extracted from the NMR spectra. Yellow bars indicate day and gray bars indicate night. Each data point is the average of 5
replicates. Errors bars are SEM. Statistically significant bins are indicated along with p values.
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adenosine, guanosine and adenine levels as being affected.
Repeated exposures to cold temperatures are also known to modify
energy reserves in flies,55 while in wasps Aphidius colemani,
fluctuating temperatures were demonstrated to up-regulate
metabolic pathways associated with glycolysis, Tricarboxylic
acid (TCA) cycle and ATP synthesis.56 Interestingly our analysis
did not reveal overlap with any of the above metabolites which
may be due to the fact that temperature cycles that we employed
are within the physiologically tolerable range as compared
to many of the previous studies which examined stressful
conditions of sustained warm or cold conditions or fluctuations
where temperatures could rise or fall to stressful levels.

Interestingly several of the metabolites identified by our
method overlap with those identified by previous studies which
analyzed metabolomes from human and mice samples by
mass spectrometry. Thus, it provides a starting point for future
studies using genetic methods to modify genes or neurons
important for the circadian clockwork or metabolic pathways or
environmental regimes to disrupt rhythms in activity, sleep or
feeding patterns and then apply this approach of NMR spectro-
scopy combined with multivariate statistical analysis to unravel
their effects on the metabolome.

It is widely accepted that flies become mature adults around
5 days post-emergence, based on several features such as leveling
off of sleep and activity counts at the age,5 sexual maturity of
males,57 wing neurogenesis58 and hence we chose this age for our
assays. Although age dependent changes have been reported in
the metabolomic profile of flies, those changes have been
documented over much larger ages spanning 3 days to 60 days.59

However, we cannot rule out the effect of small changes due to
the difference in age across a 24 hour sampling period in the
case of those metabolites that show a steady decline or increase
across the 12 time points that we sampled.

Experimental methods

Flies from an outbred population of D. melanogaster (Meigen,
1830) maintained at a density of about 1200–1400 individuals
per generation were used for this study. This population was
formed by pooling flies from four previously described replicate
laboratory populations maintained under 12:12 h LD cycles at
25 1C.60 The experimental population referred to as chrono
control merged (CCM) continued to be maintained on a 21 day
discrete generation cycle at 25 1C under 12:12 light:dark cycles.
For the current experiment, eggs were sampled at the 29th
generation since its creation. Eggs were collected on standard
cornmeal agar medium at densities of approximately 50–60 per
vial and development was completed in the same regime.
Freshly emerged adult male flies were subjected to a five day
regime where 12:12 h light:dark and warm (28 1C):cold (18 1C)
cycles were superimposed such that the light period coincided
with the high temperature duration and the dark period
coincided with the low temperature duration. Five replicate
vials containing 40 flies (6 day old) each were frozen at two h
intervals starting at lights-ON. Flies were frozen at 12 consecutive

time points during the course of 24 h. The frozen flies were
then processed (Acetonitrile extraction) and lyophilized as
described below.

NMR sample preparation

The frozen flies from each sample were funneled into pre-
labeled microfuge tubes containing 400 ml of ice-cold aceto-
nitrile (50%) and homogenized using a battery-run homogenizer.
Samples were then centrifuged at 12 000 rpm for 10 min at 4 1C. The
supernatant was transferred to another set of pre-labeled and pre-
weighed microfuge tubes, and stored at �80 1C until lyophilized.
The lyophilized samples were then used for NMR analysis. Prior to
NMR measurements, the samples were rehydrated in 500 ml of
50 mM phosphate buffer made up in D2O (pH 7.4), and 450 ml of the
sample was transferred to a 5 mm NMR tube. 1 mg ml�1 of
3-(trimethylsilyl)-propionic acid-D4, sodium salt (TMSP) was added
as a chemical shift reference.

1D and 2D NMR spectroscopy

NMR spectra were recorded at 298 K on a Bruker Biospin
600 MHz Avance-III spectrometer operating at a 1H NMR
frequency of 600.13 MHz, equipped with a 5 mm TXI probe.
Gradient shimming was performed prior to signal acquisition.
D2O was used to provide an internal lock. 1D 1H NMR spectra
were acquired using a water suppressed Car–Purcell–Meiboom–
Gill (CPMG) spin-echo pulse sequence optimized with a spin-
echo delay t of 300 ms and n = 400 and a total spin–spin
relaxation delay (2nt) time of 240 ms to achieve attenuation
of fast-relaxing broad signals from larger molecules. Water
suppression of the residual water signal was achieved with a
pre-saturation sequence with low-power selective irradiation at
4.7 ppm during the recycle delay. The proton spectra were
collected with a 901 pulse width of 7.4 ms, a recycle delay of 2 s,
16 scans, 16 K data points and a spectral width of 12 ppm. Data
were zero-filled by a factor of 2 and the FIDs were multiplied by
an exponential weighting function equivalent to a line broad-
ening of 1 Hz prior to Fourier transformation. The spectra were
phase and baseline corrected and referenced to the TMSP
resonance at 0.00 ppm.

For resonance assignment and metabolite identification,
two-dimensional NMR spectra were recorded, including 1H–1H
correlation spectroscopy (COSY), total correlation spectroscopy
(TOCSY), and 1H–13C heteronuclear coherence spectroscopy
(HSQC, HMQC). 2D 1H–13C heteronuclear spectra were obtained
with a spectral width of 12 ppm and 200 ppm in the proton and
carbon dimensions respectively, 1 K data points, 16 scans,
256t�1 increments and a recycle delay of 2 s. The COSY and
TOCSY spectra were acquired with a spectral width of 12 ppm
in both dimensions, 1 K data points, 16 scans and 256t�1

increments.

Statistical analysis

1D 1H NMR spectra were used for statistical analysis. The
variation and possible cycling in concentrations of metabolites
were observed by sampling the flies after every two hours over a
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24 hour LD warm:cold cycle so as to obtain fly samples at twelve
different time points (ZT0 to ZT22).

The full NMR spectra, without binning, were converted into
the ASCII format and imported into MATLAB for alignment
using the icoshift algorithm.46 Prior to alignment, spectral
regions between 4.66 and 4.8 ppm were excluded from the
analysis, to mitigate errors due to any residual peak from the
suppressed water signal. Regions between 0.6 ppm and 9.5 ppm
were used for analysis after removing high and low-field
regions where no signal (except the TMSP reference peak) was
present. Data were normalized to the total area to compensate
for possible differences in signal-to-noise ratios between spectra
and to prevent separation due to variations in the amounts of
sample.

Multivariate statistical analysis was performed on the resulting
data using the SIMCA 14.0 software (Umetrics, Umea, Sweden).
The data were first imported into SIMCA, Pareto scaled and
analyzed using the unsupervised pattern recognition method
of principal component analysis (PCA). The PCA was used to
compare the samples from all twelve time points and also
helped to remove outliers, defined in the data as observations
located outside the 95% confidence region of the Hotellings T2
ellipses in the PCA score plots. Such outliers were excluded from
further analysis. The output from PCA analysis consists
of scores plots and loadings plots, providing information
about grouping in the data due to metabolic similarities
and identifying variables which are responsible for patterns
obtained in the scores plots, respectively. The performance of
the PCA model was evaluated using the correlation coefficient R2

and using the method of 7-fold internal cross-validation of
SIMCA for obtaining the coefficient Q2. R2 defines the variance
explained, whereas Q2 defines the variance predicted by the
model. A good prediction model is expected when Q2 4 0.5, and
with Q2 4 0.9, the model is considered to have an excellent
predictive ability.

PCA was followed by the supervised pattern recognition method
of orthogonal projections to latent structure-discriminant analysis
(OPLS DA), which maximizes the class discrimination. OPLS-DA
analysis was performed to find out how different were the two
12 h apart time points (ZT10 and ZT22) and to identify meta-
bolites that were responsible for the separations. Such meta-
bolites can be considered to change their concentrations during
the 24 h when flies are exposed to a 12:12 h LD warm:cold cycle.
Similar to the PCA score plot, the OPLS-DA scores plot gives
Hotelling’s T2 regions, shown as an ellipse in the scores plot,
defining the 95% confidence interval of the modelled variation.
The loadings plot was used to identify variables (metabolites)
responsible for the maximum separation of time points.
Significant metabolites were ranked according to their variable
influence on the projection (VIP) score. VIP analysis displays
the metabolites ordered according to their influence on group
separation, with metabolites arranged according to their VIP
values, and the y-axis denoting their relative intensities. VIP
(variable importance projection) of the first principal component
in the OPLS-DA model (VIP 4 1.0) is used to screen significantly
different metabolites. The quality of the model was described by

R2X and Q2 values, defining the variance explained (indicating
goodness of fit) and variance predicted by the model (predict-
ability) respectively. The significance test of the model was
performed using CV-ANOVA (cross-validated ANOVA)61 in the
SIMCA software, where a p-value o0.05 was considered to
be statistically significant and clearly validates the OPLS-DA
model. Permutation analysis was further performed on the best
model using 1000 permutation tests with a threshold p value of
o0.05 indicating that none of the results are better than the
original one.62,63

Hierarchical cluster analysis (HCA) was performed to create
a dendrogram, using the complete linkage algorithm and the
Euclidean distance between OPLS-DA scores for each replicate
of the selected time points. For better visualization, a fan
(polar) dendrogram was also generated to compare all time
points and to identify metabolite cycling at different time
points using a MATLAB script (http://www.mathworks.com/
matlabcentral/fileexchange/21983-draw-a-polar-dendrogram).

Univariate analysis was performed to check for statistical
significance of the differences in the metabolite levels. For
comparison of all the time points together, ANOVA (p o 0.01)
was used, which can determine whether the comparison
between multi-group analysis is significant or not. This was
followed by post hoc analysis in order to perform all pairwise
comparisons between group means by a least significant
difference (LSD) t-test. For comparison involving two time
points in OPLS-DA, the t-test was performed on the identified
metabolites (from the integral area of 1H NMR peaks corres-
ponding to each metabolite). Metabolites having VIP 4 1 and
t-test p value o 0.05 were selected. Since the t-test is performed
separately on each metabolite independent of other meta-
bolites, the chance of false positives is proportional to the
number of tests performed. Multiple testing correction was
hence applied, which adjusts the individual p value for each
metabolite to keep the overall error rate (or false positive rate)
to be less than or equal to the user-specified p value cut-off.
Thus to cross-check that all the identified metabolites were
statistically significant, a multiple hypothesis test correction
using the method of Benjamini–Hochberg was also performed
with a value of 0.05 selected as the level of significance.64

Metabolite databases & software

Metabolite fingerprinting for the Drosophila NMR spectra was
done by checking identified metabolite peaks with standard
NMR metabolite data deposited in databases such as the
Biological Magnetic Resonance Data Bank (BMRB), http://
www.bmrb.wise.edu and the Madison Metabolomics Consortium
Database (MMCD), http://mmcd.nmrfam.wise.edu.

Conclusions

Our study demonstrates diurnal rhythms in concentrations of
several metabolites over a 24 h time period in D. melanogaster,
using NMR-based metabolomics in combination with multi-
variate analysis. This study paves the way for use of NMR-based
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metabolomics in examining questions related to the circadian
clock and metabolome level changes, which has previously
been studied using less accurate methods. While it would
not be appropriate at this juncture to compare across species
without proper validation using multiple approaches, it is
nevertheless heartening that several oscillating metabolites
identified using our method have also been identified by
LC-MS or GC-MS methods in mice and human tissues. This
study provides impetus to carry out future investigations where
circadian clock genes or circuits can be modified in a tissue or
a time dependent manner following which one can profile
changes in critical metabolites. Furthermore, we can target
specific metabolic pathways by genetic manipulation or intro-
duce specific feeding/fasting or exercise/stress regimens which
could be expected to modify the metabolic profile of organisms.
This experimental organism and approach could also be extended
to include pharmacological intervention and screen for small
molecules that can provide effective modulation of metabolic
pathways. Hence, we believe this to be the first step in the
direction of exciting future possibilities.
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