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Naı̈ve Bayes classifier predicts functional
microRNA target interactions in colorectal
cancer†

Raheleh Amirkhah,a Ali Farazmand,‡*a Shailendra K. Gupta,bc Hamed Ahmadi,d

Olaf Wolkenhauerbe and Ulf Schmitz§*b

Alterations in the expression of miRNAs have been extensively characterized in several cancers, including human

colorectal cancer (CRC). Recent publications provide evidence for tissue-specific miRNA target recognition.

Several computational methods have been developed to predict miRNA targets; however, all of these methods

assume a general pattern underlying these interactions and therefore tolerate reduced prediction accuracy and a

significant number of false predictions. The motivation underlying the presented work was to unravel the

relationship between miRNAs and their target mRNAs in CRC. We developed a novel computational algorithm

for miRNA–target prediction in CRC using a Naı̈ve Bayes classifier. The algorithm, which is referred to as

CRCmiRTar, was trained with data from validated miRNA target interactions in CRC and other cancer entities.

Furthermore, we identified a set of position-based, sequence, structural, and thermodynamic features that

identify CRC-specific miRNA target interactions. Evaluation of the algorithm showed a significant improvement

of performance with respect to AUC, and sensitivity, compared to other widely used algorithms based on

machine learning. Based on miRNA and gene expression profiles in CRC tissues with similar clinical and

pathological features, our classifier predicted 204 functional interactions, which involve 11 miRNAs and

41 mRNAs in this cancer entity. While the approach is here validated for CRC, the implementation of disease-

specific miRNA target prediction algorithms can be easily adopted for other applications too. The identification

of disease-specific miRNA target interactions may also facilitate the identification of potential drug targets.

Introduction

In recent years, many publications have highlighted the functional
role of microRNAs (miRNA) in CRC.1 MiRNAs are small non-coding
RNA molecules of about B22 nucleotides in length which have
critical functions across various biological processes.2 They act

by binding to complementary sites in the 30 untranslated region
(UTR) of their target genes to either induce degradation of the
target transcript, or to repress its translation into a protein.3

MiRNAomics studies have detected dysregulation of miRNAs in
the broad spectrum of haematological malignancies and solid
tumours, including CRC.4 Experimental detection of miRNA targets
is a costly and time-consuming process and likewise the experi-
mental investigation of miRNA-induced consequences for signalling
pathways and cellular function.5 An efficient detection of novel
miRNA target interactions benefits from reliable computational
predictions. However, there is still room for improvement with
respect to specificity in the established generic algorithms. The
identification of tissue and disease-specific miRNA target genes
would ultimately contribute to the understanding of their biological
functions.

Hence, the development of computational methods for
miRNA target prediction is fundamental for understanding
the role of miRNAs in gene regulation. To date various packages
available that can predict miRNA targets in mammals. Most of these
algorithms are based on similar principles for the identification of
putative target sites in mRNA 30 UTR sequences, which include:
(i) sequence complementarity between miRNA and target site
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(with focus on the seed region), (ii) target site conservation in
related species, (iii) thermodynamic stability of a miRNA–mRNA
duplex, and (iv) site accessibility.6 Computational approaches for
miRNA target prediction can be classified in two main categories:
ab initio methods and machine learning (ML)-based approaches.
While ab initio target prediction is based on empirical evidence
with respect to binding patterns, ML-based approaches benefit
from statistically derived patterns in sequence, structure and loci.
Therefore, ML-based approaches where established at the time
when a statistically significant number of miRNA–target pairs were
known. These algorithms are able to reduce the high number of
false positive predictions of ab initio methods.7 Though a couple of
studies have applied ML methods, the rate of false positive predic-
tions is still an issue of concern, which may be due to the tissue and
disease specificity in miRNA regulation.

Since no gold standard training dataset exists, the developers
of ML-based algorithms have tested their methods on different
data. Most of these algorithms use data from miRTarbase8 and
TarBase,9 two databases of experimentally confirmed miRNA
target interactions, for training. However, details on the miRNA
binding sites in their respective targets are often missing in
these databases. Therefore, different miRNA target prediction
algorithms generate differing results, and often researchers tend
to consider only those predictions that are common among
multiple algorithms in order to have an additional layer of
confidence on predicted targets.10 Thereby they may however
loose valid interactions that are not part of the intersection set.

Recently, Clark et al. demonstrated miRNA targetome diversity
across tissue types by analysing Argonaute CLIP-Seq data.11 They
analyzed 34 Argonaute HITS-CLIP datasets from several human
and mouse cell types and discovered that many miRNA–target
heteroduplexes are non-canonical, i.e. their seed region comprises
G:U wobble pairs and bulges, while most of the current algorithms
consider perfect 6mer, 7mer and 8mer seed matches only.11 Hence,
the reliable prediction of a functional miRNA target in a tissue-
specific manner is still a challenging task. Based on the highly
tissue-specific expression signatures of miRNAs and target
transcripts, tissue-specific miRNA function has to be considered
to improve the analysis of miRNA regulation under specific
pathological conditions. In a recent publication, Bandyopadhyay
et al. reported that all predicted miRNA targets using current
computational approach are not functional in all tissues or
diseases.12 In fact some binding sites of previously validated
targets were not accessible for miRNA binding in another tissue
because they are occluded by the mRNA secondary structure or
masked by RNA binding proteins.13,14

Fortunately, with a sufficient amount of data on miRNAs and
their targets available, it is now possible to develop computational
methods that can effectively predict disease-specific miRNA targets.

In this work, we present a reliable model for the prediction
of miRNA–target interactions specific to CRC. For this purpose
we trained a ML-based classifier with data from experimentally
validated miRNA target sites in CRC cells. ML-based algorithms
are data-driven, i.e. the dataset used for training has a high
impact on the classification performance. Therefore, we applied
two strict filters in the data selection step to ensure the reliability

of our dataset: (i) the data should be experimentally validated for
CRC; and (ii) the exact binding site should have been identified
by luciferase reporter or mutagenesis assays. The data consists
of sequence, structure, thermodynamic and position-based
features extracted from the experimental results. These features
represent a collection of features used in other generic target
prediction algorithms including TargetSpy15 and MultimiTar16

with an emphasis on sequence-related features.
In addition, we applied two feature selection methods to

identify a subset of most relevant features. We compared the
classification performance of several ML methods (Naı̈ve Bayes
(NB), Random forest (RF), Artificial Neural Network (ANN),
Support Vector Machine (SVM)) based on which we decided
to establish a NB classifier to unravel the interactions between
miRNAs and target mRNAs in CRC. This classifier we refer to as
CRCmiRTar. Fig. 1 shows the workflow implemented here.
Evaluation of the classifier showed a significant improvement
of performance with respect to AUC, and sensitivity, compared
to other widely used machine learning-based algorithms. Based
on miRNA and gene expression profiles in patient-derived CRC
tissue samples with similar clinical and pathological features
our classifier predicted 204 functional interactions which
involve 11 miRNAs and 41 mRNAs in this cancer entity. These
results can be accessed in Table S1 (ESI†).

Results and discussion
Structural features determine CRC-specificity

A key step in the identification of miRNA targets is the selection
of features that have strong predictive power. We applied CFS
and ReliefF to identify optimal features for our machine learn-
ing classifier. The best performing subset that was identified by
CFS on the training dataset contains the 14 features listed in
Table 1. The presence of nine structural features among the
selected features suggests that the structural layout of a puta-
tive miRNA–mRNA hybrid is a predominant determinant of
whether this hybrid is functional in CRC or not. These nine
structural features are: (i–iv) frequency of base pairs between
miRNA and mRNA (A:U, U:A, G:C, and C:G); (v) the number of
matches in the seed site; (vi) number of matches in the miRNA
tail (last eight nucleotides of the miRNA); (vii) consecutive base
pairings in the miRNA 30 end (with two non-pairing positions
allowed); (viii) binding asymmetry (ratio between the number of
paired bases in the 30 vs. the 50 region of the miRNA); and (ix)
number of bulges of size 6 nt or more in the target site.

The features (vi–vii) indicate the importance of the 30 part of
the miRNA for the stability of the miRNA–mRNA duplex. The
frequencies of the (di-) nucleotides UU and CG in the seed and
frequency of G and C in the target site are some of the sequence-
based features that appear in the optimal feature set identified
by CFS. The two remaining features are position-based features
that focus on the matching type in the positions 3, and 7 of the
seed region. Compared to the 14 CFS-selected features, the top
14 ranking features from ReliefF have nine features in common
with those selected by CFS (see Table S2, the common features
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are in red, ESI†), the others are: the GC dinucleotide frequency in
the seed, matching type in positions 2, 4 and 5. Interestingly, the
minimum free energy (MFE) of the duplex was not identified as
important in the feature selection process although the energy was
previously shown to have an impact target repression efficacy.17

The reason for this observation is that both the positive and the
negative training data contain cases of functional miRNA–target
interaction, however, some are specific to CRC and others are
associated with different cancers. Therefore, we conclude that
instead of the energy, CRC specificity in miRNA–target regulation
is mainly based on structural features.

Naı̈ve Bayes classifier performs best on independent test set

Before we decided to use a particular approach we compared six
machine learning methods: NB, RF, ANN, and SVM with linear
kernel function and non-linear kernel function. All methods

have gone through 10-fold cross-validation using (i) the selected
features from CFS, and (ii) the 16 top ranked features from
ReliefF. Grid-based search tools provided by the LibSVM library
were used to select the optimal values for parameters C and g for
SVM from the training datasets.

Fig. 2 shows the performance of the six methods after 10
fold cross validation by computing two different performance
metrics: (i) area under the receiver operating characteristic
curve (AUC) which is used to illustrate the specificity–sensitivity
trade-off, and (ii) sensitivity. As it can be seen in Fig. 2a,
regarding AUC, for both features sets Naı̈ve Bayes shows the
best result (AUC = 0.957), while in Fig. 2b, in terms of sensitiv-
ity, the Naı̈ve Bayes classifier trained with the CFS selected
features achieves the highest value (AUC = 0.93). Therefore, we
decided to use the Naı̈ve Bayes algorithm trained with the CFS
selected features as classifier for the prediction of CRC-specific

Fig. 1 Implementation of the CRCmiRTar workflow. The positive dataset (miRNA–mRNA interactions in CRC) contains literature-based experimentally
validated interactions. The negative dataset consists of the tissue-specific negative data which was previously used in training the TargetMiner
algorithm21 and validated miRNA–target interactions from other cancers based on the miR2Disease database. In the negative dataset, for unchar-
acterised binding sites, we used the Smith–Waterman algorithm to localize the binding sites. In the next step, those interactions which were common
between CRC and other cancers were deliminated from the negative training data. In order to establish a classifier, first, 70 features which are used in
previous studies were extracted from all positive and negative interactions. Next, two different feature selection methods were used to select the most
informative features. We assessed the performance of the different classifiers based on 10-fold cross-validation and an independent test dataset.
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miRNA–target interactions. We name this novel classifier as
CRCmiRTar.

Structural features are important in determining
CRC-specificity

We analysed the contribution of each type of feature, i.e.
position-based, sequence and structural features, among the
selected features from CFS to the performance of CRCmiRTar.

The performance of the classifier was evaluated based on the
10-fold cross validation using ROC curves (see Fig. 3). The plot
illustrates the specificity–sensitivity trade-off, i.e. the true positive
rate against the false positive rate. Using all CFS selected features
(rectangular) resulted in an AUC of 95.7%. For structural features
we observed a slight AUC reduction to 93.6% without any
significant effect in sensitivity of the classifier (circle). In case of
using only sequence features the AUC drops to 67.5% (plus).
Finally, when considering only position-based features the AUC
further decreases to 68.4% (triangle). In addition, we evaluated
the performance by combining any two types of features, i.e.
structural and sequence features, structural and position-based
features as well as sequence and position-based features. We
found that the combination of structural and position-based
features results in the highest value for the area under the ROC
curve (AUC = 0.954). These results indicate that structural features
are important in determining CRC-specificity, however the combi-
nation of all, the structural, sequence, and position-based features
is necessary to achieve an optimal performance in the classifica-
tion of CRC-specific miRNA–target interactions. Table 2 shows the
sensitivity and specificity of the model for each type of feature and
combination of them. As can be seen the structural features
ensure a high sensitivity of the model, while the sequence features
contribute towards the high specificity of CRCmiRTar.

Additionally, to test if the same features would be selected
in another cancer; we tested our methodology for breast cancer

Table 1 Selected features by correlation-based feature selection

Features Description Feature type

UU_seed UU’s frequency in seed matching site Sequence
CG_seed CG’s frequency in seed matching site Sequence
AU_match Frequency of AU base pair in seed region Structural
UA_match Frequency of UA base pair in seed region Structural
GC_target GC’s frequency in target site Sequence
GC_match Frequency of GC base pair in seed region Structural
CG_match Frequency of CG base pair in seed region Structural
Seed Number of base pairings to the miRNA 8-mer seed Structural
Tail Number of base parings to the first 8 nucleotides of the miRNA 30 end Structural
Cons_bp_mir_5p Number of consecutive base-pairings to the miRNA 5 0 end

with two allowed non-pairing positions
Structural

Binding asymmetry The ratio between the number of paired bases in the 3p versus the
5p region of the microRNA (considering 8 nucleotides on each side)

Structural

B_tagt_s6 Bulges in target sequences of size 6 nt and more Structural
Pos_3 Position 3 Position
Pos_7 Position 7 Position

Fig. 2 Evaluation of different classifiers on two categories of selected
features using CFS and ReliefF. These plots illustrate the performances of
the different classifiers in the 10-fold cross validation: (a) AUC; (b) sensi-
tivity values. Results of the re-evaluation step with a separate test dataset
can be found in Fig. S1 (ESI†). RBF: radial basis function kernel.

Fig. 3 ROC curves for CRCmiRTar based on different types of features.
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(66 positive samples) and lung cancer (70 positive samples) specific
miRNA target interactions. The CFS-based feature selection resulted
in largely different sets of features (in number as well as in type)
that seem to be relevant for these cancer types. This emphasizes
the necessity to re-perform the whole analysis for each disease
individually in order to obtain a customized disease-specific set
of features that are able to reliably predict miRNA–target inter-
actions functional in this disease. We included the comparison
in Table S3 (ESI†).

CRCmiRTar more sensitive than other related tools

We compared the performance of CRCmiRTar, with MultiMiTar16

and RFMirTarget18 which are both recent and well performing
algorithms and with miTarget which was the first miRNA target
prediction method based on a ML approach. MultiMiTar is a SVM
based classifier integrated with a novel feature selection technique,
AMOSA-SVM. In their publication the authors were showing that
MultiMiTar outperforms many other well-known target prediction
methods. RFMirTarget is a recent algorithm based on a random
forest approach that could outperform MultiMiTar and several
other well-known classifiers.

To make a comparison, we re-implemented these algorithms
and trained them with the same data as was used to train our
model. Results of the comparison regarding sensitivity, speci-
ficity, and Matthew’s correlation coefficient (MCC), which is the
quality measure of a binary classification, are shown in Table 3.
In terms of MCC, CRCmiRTar (MCC = 0.726) shows a B14%
and B6% increase compared to miTarget and RFMirTarget,
respectively. CRCmiRTar provides the highest sensitivity
among the four predictors (0.93), which is a B16% increase
to the second best performing classifier, MultiMiTar (0.77). The
specificity of our model is a little lower than that of the others
(0.86). Even though the specificity is marginally better for the
other tools, their sensitivity is remarkably reduced and as a
result there is disequilibrium in their performance. Instead,
CRCmiRTar provides the most balanced result in terms of
sensitivity and specificity as compared to the others which is
underlined by its high AUC value (0.957) compared to Multi-
MiTar (0.943), RFMirTarget (0.92) and miTarget (0.884). In
addition, the ROC curves plotted in Fig. 4 confirm the effec-
tiveness of CRCmiRTar in discriminating between functional
and non-functional miRNA–mRNA interactions in CRC. Inter-
estingly, the common features between our model and Multi-
MiTar as the second best performing model show again that
sequence and structural features are very important in CRC.

About half of the features in miTarget and RFMirTarget are
related to thermodynamic and position-based features. As we
have already shown before, these types of features are less
suitable for a reliable prediction of CRC-specific miRNA targets.
This may explain why miTarget and RFMirTarget perform
worse in terms of sensitivity and the AUC.

CRCmiRTar outperformes established algorithms on
independent test data

We investigated the power of our model in predicting experimentally
validated CRC-specific miRNA–mRNA interactions in comparison
with previous algorithms. To this end, we collected 47 wet lab
validated miRNA–target pairs for CRC from recently published
papers and OncomiRDB which are not included in our training
dataset and used the data to evaluate our method along with six
other commonly employed miRNA target-prediction methods,
including MirTarget2,19 TargetMiner,20 PicTar,21 TargetSpy,15

SVMicro,22 and TargetScan.23 As shown in Table 4, TargetScan and
SVMicro correctly identified 32 and 27 miRNA–target pairs respec-
tively and thus performed better than any of the other previous
methods. However, CRCmiRTar could identify 41 miRNA–target
pairs, which comprises more than 87% of all cases. A reason for
this improvement can be the combination of features and CRC
specific training dataset that we used in CRCmiRTar. An important
advantage in our model training procedure compared to the
strategies in other algorithms is that we consider only reliably
validated miRNA–target interactions from luciferase reporter
assay and site-directed mutagenesis experiments.

CRCmiRTar predicts 220 novel CRC-specific miRNA–target
interactions

Using miRNA and mRNA expression profiles from eight CRC
tissues and their corresponding adjacent normal tissues we

Table 2 Performance evaluation of the CRCmiRTar based on different
types of features

Sensitivity Specificity F-measure AUC

All selected Features 0.93 0.861 0.883 0.956
Structural features 0.94 0.813 0.853 0.936
Sequence features 0.27 0.912 0.68 0.675
Position-based features 0.50 0.70 0.67 0.684
Structural + sequence 0.92 0.84 0.86 0.938
Structural + position 0.94 0.83 0.872 0.954
Sequence + position 0.58 0.81 0.756 0.803

Table 3 Performance of CRCmiRTar and existing target prediction meth-
ods on the same training data set

Sensitivity Specificity MCC AUC

CRCmiRTar 0.93 0.86 0.726 0.957
MultiMiTar 0.77 0.965 0.77 0.943
miTarget 0.63 0.922 0.581 0.884
RFMirTarget 0.69 0.942 0.666 0.92

Fig. 4 ROC curves for CRCmiRTar and existing methods on the same
dataset.
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used CRCmiRTar to classify miRNA–mRNA pairs with inver-
sely correlating expression profiles. In total, CRCmiRTar
classified 223 miRNA–mRNA pairs as functional interactions
which are comprised of 12 miRNAs and 43 mRNAs. The
maximum number of predicted targets was 30 for miR-7,
and the minimum number was four for miR-224-5p. These
predictions can be found in Table S1 (ESI†). We compared our
prediction results with the miR2Disease24 and OncomiRDB25

databases and found three of them were already experi-
mentally validated (with other methods than luciferase assays
or site directed mutagenesis). All others are novel yet unchar-
acterised miRNA–target interactions. We also searched for the
presence of our predicted interactions in AGO-CLIP data
using the starBase database. In the collective AGO-CLIP
data we found read counts for B26.5% of the predicted target
sites. However, it has to be noted that none of these

experiments has been performed in CRC tissue or corres-
ponding cell lines.

MiRNA targets are associated with cancer pathways

To obtain further insight into the biological functions of
dysregulated miRNAs and their predicted targets in CRC, we
used the Database for Annotation, Visualization and Integrated
Discovery (DAVID, v6.726) for the identification of overrepre-
sentations in gene ontology (GO) terms and pathways asso-
ciated with the miRNA targets. GO and pathway enrichment
analysis based on the 43 differentially expressed mRNAs
revealed Wnt signaling as a pathway that is significantly over-
represented in this set of genes ( p o 0.005) (Table S4, ESI†). In
this pathway, four genes CAMK2D, CHP2, SFRP1, and SFRP2
are downregulated in CRC.36 Interestingly, SFRP1 and SFRP2
are secreted proteins that act to inhibit Wnt activation via the

Table 4 Predicted results of seven methods by employing validated samples published recently for CRC

miRNA Target PMID TargetMiner MirTarget2 TargetSpy SVMicro TargetScan PicTar CRCmiRTar

miR-17-5p PTEN 24912422 | — — | | | |
miR-139-5p NOTCH1 25149074 — | | — | | |
miR-455-5p RAF1 25355599 — — — — | — |
miR-18a-5p CDC42 25379703 | — — — — | |
miR-29c-3p GNA13 25193986 — — — — | | |
miR-133b TBPL1 24870791 — | | | | | |
miR-182-5p SATB2 24884732 | | — | — | |
miR-185 STIM1 25531324 — — — — — — |
miR-301a SOCS6 25591765 | — | | | | |
miR-150 MYB 25230975 — | | | | — |
miR-143-3p TLR2 23866094 — | — — | — |
miR-150-5p MUC4 25124610 — — — — | — |
miR-133a FSCN1 25621061 — — | | | — |
miR-16-5p BIRC5 23380758 — — — | — — |
miR-21-5p TGFBR2 22072622 | — — | | — —
miR-145-5p PAK4 22766504 — — — — — | |
miR-137 PXN 23275153 — — — — | | |
miR-126-3p IRS1 24312276 — — — — | | |
miR-135b-5p MTSS1 24343340 — — — | | | —
miR-154-5p TLR2 24242044 — — — | | — |
miR-137 FMNL2 20473940 | | — | | | |
miR-137 CDC42 20473940 — — — | | | |
miR-139-5p RAP1B 22642900 | — — — | | |
miR-146a-5p MMP16 22348245 | | — | | — |
miR-148b-3p CCKBR 22020560 | — — | | | |
miR-149-5p SP1 22821729 | — — — | — |
miR-185-5p RHOA 21186079 | | — | — | |
miR-185-5p CDC42 21186079 | | — | | | |
miR-186-5p CSNK2A1 23137536 — — — | — | |
miR-20a-5p BNIP2 21242194 | | — | | | |
miR-21-5p RHOB 21872591 — — — | | | |
miR-216b-5p CSNK2A1 23137536 — — — | | — |
miR-30e-3p HELZ 21963845 | | — | | — |
miR-30e-3p PIK3C2A 21963845 | — — — — — |
miR-31-5p RASA1 23322774 | | — — | | |
miR-320a NRP1 22134529 — | — | | | |
miR-320a NRP1 22134529 — | — | — | |
miR-337-3p CSNK2A1 23137536 — — — | | — —
miR-342-3p DNMT1 21565830 — — — — — — |
miR-345-5p BAG3 21665895 — — — — — — |
miR-491-5p BCL2L1 20039318 — | — | — — |
miR-502-5p RAB1B 22580605 — | — | | — |
miR-650 NDRG2 21352815 — — — — | — |
miR-7-5p YY1 23208495 — — — | — — —
miR-760 CSNK2A1 23137536 — — — — | — |
miR-93-5p CCNB1 22581829 — — — — — — —
miR-93-5p ERBB2 22581829 — — — — — — —
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Frizzled receptor. Our predictions indicate that nine and three
miRNAs regulate the expression of SFRP1 and SFRP2, respectively
and are thus responsible for their downregulation in CRC.

Expression studies have revealed the downregulation of
CAMK2D in human tumor cells. Cheng et al. deciphered that
growth, migration, and proliferation of human endothelial cells
were regulated by WNT5A in a CAMK2D-dependent way.27

Based on our predictions eight miRNAs are involved in the
regulation of CAMK2D. Furthermore, GO enrichment analysis
detected two angiogenesis related terms (vasculature develop-
ment and blood vessel development) to be overrepresented in
dysregulated miRNA target genes (RECK, ZFPM2, STAB2, and
ARHGAP24). One of these genes, RECK, is known as a metastasis/
angiogenesis suppressor gene. Our algorithm found that this gene
can be regulated by four miRNAs. One of these interactions, the
regulation of RECK by miR-21-5p, has been experimentally
validated in CRC.28

Methods
Training data

For the purpose of building a positive dataset to train our
classifier, we reviewed miRNA target identification studies
related to CRC with an emphasis on experimental data from
Luciferase reporter assays which is one of the most reliable
methods for target identification.29 More specifically, just those
miRNA–mRNA interactions for which the exact binding sites
were characterized by site-directed mutagenesis were consid-
ered in the positive dataset. In this step 100 positive interac-
tions could be retrieved, which are described in Table S5 (ESI†).
Since our approach requires information on the exact target
sites and this information is not always available for the
interactions described in miR2Disease and the OncomiRDB
we mainly relied on an in-depth literature search. In this way we
also made sure that the most recent miRNA–mRNA interaction
data from CRC is included in our dataset.

We also searched for the presence of our selected miRNA–
target interactions in AGO-CLIP data using the starBase data-
base.30 In the collective AGO-CLIP data we found read counts
for B70% of the target sites in our training set (in B30% of the
cases even more than 1.000 reads). However, it has to be noted
that none of these experiments has been performed in CRC
tissue or corresponding cell lines.

Two kinds of negative data were collected, one set is
composed of validated miRNA–mRNA interactions reported in
other cancers (non CRC interactions; n = 136) and another set
integrates tissue-specific negative examples that were also used as
training data by TargetMiner.20 For the former set we exploited
validated miRNA–mRNA interactions from other cancers such as
breast and lung cancer as reported in the miR2Disease database.24

For the uncharacterised binding sites, the miRNA sequences were
extracted from the miRBase database,31 and the target 30 UTR
sequences were downloaded from the Ensembl database (www.
ensembl.org). To search for all possible alignments in each
miRNA–mRNA pair, we used a Smith–Waterman local alignment

algorithm and considered only those alignments with the highest
score for further analysis. In the algorithm, a scoring scheme in
which each G:C pair and A:U earn a score of 5 and 7 respectively,
each G:U pair, a score of 1 and mismatches a score of -3, was
employed. Each gap opening amounts to -8 and a gap extension is
penalized with a score of -2. From the negative training data we
removed those interactions which are common between CRC and
other cancers in order to obtain an unambiguous dataset.
We finally gathered 340 samples for the negative training dataset
(see Table S6, ESI†). The dataset was split into (i) 85% for training
and cross-validation, and (ii) 15% as a test set for independent
evaluation.

Feature extraction from miRNA–mRNA interactions

We started our analysis with a set of 70 features which were
subsequently subjected to further selection steps. In general, these
features can be classified into four categories: (i) sequence features,
(ii) position-based features, (iii) structural as well as (iv) thermo-
dynamic features. In order to estimate the thermodynamic stability
of a miRNA:mRNA hybrid we computed their minimum free energy
(MFE) structure using RNAcofold which is part of the Vienna
package.32 Structural features account for the number of matches,
mismatches, G:U wobble pairs, bulges, and the stem in a
miRNA:mRNA hybrid. Regarding position-based features, we
assigned nominal values of 1 to 4 for each G:C match, A:U
match, G:U wobble pair and mismatch in each position of seed
region. Sequence features refer to the base composition of the
miRNA as well as target site. Additionally we considered as a
feature the miRNA–mRNAs paired expression profiles. To this
end, we extracted tumor-specific miRNA and mRNA expression
profiles from the NCI60 panel via the CellMinert database
(http://discover.nci.nih.gov/cellminer/). All features are listed in
Table S2 (ESI†).

In order to find the features that have a dominant role in
discriminating positive and negative samples, two feature
selection methods were considered: (i) correlation-based fea-
ture selection (CFS)33 and (ii) ReliefF.34 While CFS is evaluating
subsets of features for the correlation of individual features
with the class attribute and the redundancy among the features
in one set, ReliefF evaluates the goodness of a feature by
repeatedly choosing a random instance and considering the
value of the same feature in the nearest instance of the same
and different class. The key difference between CFS and ReliefF
is that CFS selects an approximately optimal subset of features,
whereas ReliefF only provides a ranked list of features. The list
of ranked features in CRC-specific miRNA–target interactions
can be found in Table S2 (ESI†). We used the Weka 3 data
mining software35 for implementation of CFS and ReliefF.

Patient derived miRNA–mRNA expression data for CRC

We retrieved a list of differentially expressed miRNAs and
mRNAs from a transcriptomics and miRNAomics study in
patient-derived CRC tissue samples with similar clinical and
pathological features.36 Microarray expression profiles from
eight CRC tissues and their corresponding adjacent normal
tissues revealed 14 upregulated miRNAs and 43 downregulated
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mRNAs in CRC. In order to predict potential miRNA binding
sites, we extracted the 3 0 UTR of the upregulated mRNAs
from the Ensembl database and miRNA sequences from the
miRBase database31 and aligned the sequences using again
the Smith–Waterman algorithm. We kept putative target
sites with an alignment score S Z 60 for classification with
CRCmiRTar.

Conclusion

Many reports describe the association of miRNAs with diseases.
Today, with the use of computational methods one can perform
miRNA target analyses in a high-throughput manner. However,
these methods often result in a large number of false positive
predictions, which may not represent functional miRNA–mRNA
interactions, especially in a specific disease. In fact, due to the
multi-faceted nature of miRNA targeting the existing prediction
algorithms cannot make perfectly reliable predictions for every
pathological condition.12 Thus, it makes sense to develop a
disease-specific algorithm to minimize false predictions.

Although a number of studies have shown that miRNA
function is tissue specific (see for example12,37) so far no study
has offered an algorithm to predict miRNA targets for a specific
disease.

In this study, we proposed a novel miRNA target-prediction
approach specific for CRC which is based on a NB classifier and
uses cancer-specific training data. In the proposed model, the
use of high-quality training data in which exact binding sites
are experimentally verified ensures the executing efficiency of
this model, because data driven algorithms can uncover the
important and real targeting characteristics from this data.
Most of the existing target prediction algorithms try to provide
high sensitivity with respect to the identification of true posi-
tive interactions, however, these algorithms are not designed to
make out disease-specific interactions and therefore result in a
high false-positive prediction rate and a low overall specificity.
They are thus unreliable for the purpose of identifying disease-
specific miRNA–target interactions. ML-based algorithms are
data-driven, i.e. the dataset has straight impact on their per-
formance. A careful selection of relevant features for the
purpose of training is a very important determinant the per-
formance of a machine learning algorithm. It has been shown
previously that by including or discarding certain groups of
features the performance of an algorithm can change drasti-
cally. For example, in Kim et al. (2005) according to the authors
the sensitivity of the miTarget algorithm decreased when position-
specific features where excluded. Therefore, we applied two
filters in the step of preparing the training dataset: (i) we chose
CRC-specific miRNA–target interactions for the positive training
set, and (ii) these interaction had to be validated with luciferase
assays and site-directed mutagenesis experiments. Thereby we
ensured an increased specificity of our classifier. However,
regarding the negative dataset we were lacking a gold standard
set of negative samples. For reasons of comparability we chose a
negative dataset, presented in Mitra and Bandyopadhyay (2009)

that was already used in other studies.16,18 We are aware that
although these data are tissue specific they may be functional
in CRC as well. Therefore, as another part of our negative
dataset, we used the functional data for the other cancers
which are not reported to be functional in CRC.

According to the results in ref. 11, most tissue specific
miRNA–mRNA interactions carry a non-canonical seed region.
Therefore, in order to be able of predicting tissue specific and
30-compensatory target sites, our model does not filter out miRNA–
target site pairs with non-perfect seed matches. Additionally, some
studies showed the advantage of integrating gene expression data
with miRNA–target predictions. For example, Wang et al. developed
a network propagation based method to infer the perturbed
miRNAs and their key target genes by integrating gene expressions
and global gene regulatory network information.38 Therefore, we
also used miRNA–mRNAs paired expression profiles to improve the
accuracy of sequence-based miRNA–target predictions. However, in
the feature selection step the expression profiles were not select as
part of the best performing subset of features (both using CFS and
ReliefF methods).

The aim of this study was to investigate whether using CRC
specific training data can help to outperform previous non
tissue-specific algorithms and if so, which features are most
relevant for CRC.

For the first part, our results demonstrate that compared
with previous methods, CRCmiRTar could predict experimen-
tally validated miRNA target genes with higher accuracy.
Regarding the features, our results show that the sequence/
base composition features have the highest contribution to the
specificity of the model. Previous studies have shown that the
binding sites of miRNAs have specific nucleotide and dinucleo-
tide compositions which are significantly different between
targets that are downregulated upon miRNA transfection and
those that are stably expressed.19,39

Another issue regarding tissue-specific miRNA target pre-
dictions is the impact of alternative 30 UTR isoforms, because of
alternative cleavage and polyadenylation (APA). APA can lead to
the potential loss of miRNA binding sites by shortening the 30

UTR sequence of target genes.40 However, for our study no
suitable data was available for deriving CRC-specific 30 UTR
isoforms. Therefore, we always considered the longest 30 UTR
annotated for each gene.

Although, the present study and some other studies demon-
strate that tissue-specific miRNAs are often implicated in
diseases related to a specific tissue, it remains largely unknown
whether there are tissue-specific features for miRNA function.
We have developed this model to serve as a useful method to
obtain higher-confidence predictions for targets of miRNAs
involved in CRC.
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