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Classifying pairs with trees for supervised
biological network inference†

Marie Schrynemackers,*a Louis Wehenkel,a M. Madan Babub and Pierre Geurtsa

Networks are ubiquitous in biology, and computational approaches have been largely investigated for their

inference. In particular, supervised machine learning methods can be used to complete a partially known

network by integrating various measurements. Two main supervised frameworks have been proposed: the

local approach, which trains a separate model for each network node, and the global approach, which trains

a single model over pairs of nodes. Here, we systematically investigate, theoretically and empirically, the

exploitation of tree-based ensemble methods in the context of these two approaches for biological network

inference. We first formalize the problem of network inference as a classification of pairs, unifying in the

process homogeneous and bipartite graphs and discussing two main sampling schemes. We then

present the global and the local approaches, extending the latter for the prediction of interactions

between two unseen network nodes, and discuss their specializations to tree-based ensemble methods,

highlighting their interpretability and drawing links with clustering techniques. Extensive computational

experiments are carried out with these methods on various biological networks that clearly highlight that

these methods are competitive with existing methods.

1 Introduction

In biology, the relationship between biological entities (genes,
proteins, transcription factors, micro-RNA, diseases, etc.) is often
represented by graphs (or networks‡). In theory, most of these
networks can be identified from lab experiments but in practice,
because of the difficulties in setting up these experiments and
their costs, we often have only a very partial knowledge of them.
Because more and more experimental data become available
about biological entities of interest, several researchers took
an interest in using computational approaches to predict
interactions between nodes in order to complete experimental
predictions.

When formulated as a supervised learning problem, network
inference consists in learning a classifier on pairs of nodes. Mainly
two approaches have been investigated in the literature to adapt
existing classification methods for this problem.1 The first one, that
we call the global approach, considers this problem as a standard
classification problem on an input feature vector obtained by
concatenating the feature vectors of each node from the pair.1

The second approach, called local,2,3 trains a different classifier

for each node separately, aiming at predicting its direct neighbors
in the graph. These two approaches have been mainly exploited
with support vector machine (SVM) classifiers. In particular,
several kernels have been proposed for comparing pairs of nodes
in the global approach4,5 and the global and local approaches can
be related for specific choices of this kernel.6 A number of papers
applied the global approach with tree-based ensemble methods,
mainly Random Forests,7 for the prediction of protein–protein8–11

and drug–protein12 interactions, combining various feature
sets. Besides the local and global methods, other approaches
for the supervised graph inference includes, among others,
matrix completion methods,13 methods based on output kernel
regression,14,15 Random Forests-based similarity learning,16

and methods based on network properties.17

In this paper, we would like to systematically investigate,
theoretically and empirically, the exploitation of tree-based
ensemble methods in the context of the local and global
approaches for supervised biological network inference. We
first formalize biological network inference as the problem of
classification of pairs, considering in the same framework homo-
geneous graphs, defined on one kind of nodes, and bipartite
graphs, linking nodes of two families. We then define the general
local and global approaches in the context of this formalization,
extending in the process the local approach for the prediction
of interactions between two unseen network nodes. The paper
discusses in details the specialization of these approaches to tree-
based ensemble methods. In particular, we highlight their high
potential in terms of interpretability and draw connections
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between these methods and unsupervised (bi-)clustering methods.
Experiments on several biological networks show the good
predictive performance of the resulting family of methods.
Both the local and the global approaches are competitive with
however an advantage for the global approach in terms of
predictive performance and for the local approach in terms of
compactness of the inferred models.

The paper is structured as follows. Section 2 first defines the
general problem of supervised network inference and cast it as
a classification problem on pairs. Then, it presents two generic
approaches to address it and their particularization for tree
ensembles. Section 3 reports experiments with these methods on
several homogeneous and bipartite biological networks. Section 4
concludes and discusses future work directions. Additional
experimental results and implementation details can be found
in the ESI.†

2 Methods

We first formalize the problem of supervised network inference
and discuss the evaluation of these methods in Section 2.1. We
then present in Section 2.2 two generic approaches to address
it. Section 2.3 discusses the specialization of these two approaches
in the context of tree-based ensemble methods.

2.1 Supervised network inference as classification on pairs

For the sake of generality, we consider bipartite graphs that
connect two sets of nodes. The graph is thus defined by an
adjacency matrix Y, where each entry yij is equal to one if there
is an edge between the nodes ni

r and nj
c, and zero if not. The

subscripts r and c are used to differentiate the two sets of nodes
and stand, respectively, for row and column of the adjacency
matrix Y. Moreover, each node (or sometimes pair of nodes) is
described by a feature representation, i.e. typically a vector of
numerical values, denoted by x(n) (see Fig. 1 for an illustration).

Homogeneous graphs defined for only one family of nodes can
be obtained as special cases of this general framework by con-
sidering only one set of nodes and thus a square and symmetric
adjacency matrix.18

In this context, the problem of supervised network inference
can be formulated as follows (see Fig. 1):

Given a partial knowledge of the adjacency matrix Y of
the target network, find the best possible predictions of the
missing or unknown entries of this matrix by exploiting the
feature description of the network nodes.

In this paper, we address this problem as a supervised
classification problem on pairs.18 A learning sample, denoted
LSp, is constructed as the set of all pairs of nodes that are known
to interact or not (i.e., the known entries in the adjacency matrix).
The input variables used to describe these pairs are the feature
vectors of the two nodes in the pair. A classification model f (i.e. a
function associating a label in {0,1} to each combination of the
input variables) can then be trained from LSp and used to predict
the missing entries of the adjacency matrix.

The evaluation of the predictions of the supervised network
inference methods requires special care. Indeed, all pairs are
not as easy as the others to predict: it is typically much more
difficult to predict pairs that involve nodes for which no
examples of interactions are provided in the learning sample
LSp. As a consequence, to get a complete assessment of a given
method, one needs to partition the predictions into different
families, depending on whether the nodes in the tested pair are
represented or not in the learning set LSp, and then to perform
a separate evaluation within each family.18

To formalize this, let us denote by LSc and LSr the nodes
from the two sets that are present in LSp (i.e. which are involved
in some pairs in LSp) and by TSc and TSr (where TS stands for
the test set) the nodes that are unseen in LSp. The pairs of
nodes to predict (i.e., outside LSp) can be divided into the
following four families (where S1 � S2 denotes the cartesian
product between sets S1 and S2 and S1/S2 their difference):
� (LSr � LSc)/LSp: predictions of (unseen) pairs between two

nodes which are represented in the learning sample.
� LSr � TSc or TSr � LSc: predictions of pairs between one

node represented in the learning sample and one unseen node.
� TSr � TSc: predictions of pairs between two unseen nodes.
These families of pairs are represented in the adjacency

matrix in Fig. 2A. Thereafter, to simplify the notations,
we denote the four families as LS � LS, LS � TS, TS � LS and
TS � TS. In the case of an homogeneous undirected graph, only
three sets can be defined as the two sets LS � TS and TS � LS
are confounded.18

Prediction performances are expected to differ between
these four families. Typically, one expects that TS � TS pairs
will be the most difficult to predict since less information is
available at training about the corresponding nodes. These
predictions will then be evaluated separately in this work, as
suggested in several publications.18,19 They can be evaluated
by performing two kinds of cross-validation (CV): a first CV
procedure on pairs of nodes (denoted ‘‘CV on pairs’’) to evaluate
LS � LS predictions (see Fig. 2B) and a second CV procedure on

Fig. 1 A network can be represented by an adjacency matrix Y where
each row and each column correspond to a specific node, with potentially
different families of nodes associated with rows and columns. Each node is
furthermore described by a feature vector, with potentially different
features describing row and column nodes. For instance, row nodes ni

r

can be proteins and column nodes nj
c can be drugs, with the adjacency

matrix encoding drug–protein interactions. Proteins could be described by
their PFAM domains and drugs by features encoding their chemical
structure. Supervised network inference then consists of inferring missing
entries in the adjacency matrix (question marks in gray) from known entries
(in white) by exploiting node features.
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nodes (denoted ‘‘CV on nodes’’) to evaluate LS � TS, TS � LS
and TS � TS predictions (see Fig. 2C).18

2.2 Two different approaches

In this section, we present the two generic, local and global,
approaches we have adopted for dealing with classification on
pairs. We will discuss in Section 2.3 their practical implemen-
tation in the context of tree-based ensemble methods. In the
presentation of the approaches, we will assume that we have at
our disposal a classification method that derives its classification
model from a class conditional probability model. Denoting by f a
classification model, we will denote by f p (i.e., with superscript p)
the corresponding class conditional probability function. f (x) is
the predicted class (0 or 1) associated with some input x, while
f p(x) (resp. 1 � f p(x)) is the predicted probability (A[0,1]) of
the input x being of class 1 (resp. 0). Typically, f (x) is obtained
from f p(x) by computing f (x) = 1( f p(x) 4 pth) for some user-
defined threshold pth A [0,1], where pth can be adjusted to find
the best tradeoff between sensitivity and specificity according
to the application needs.

2.2.1 Global approach. The most straightforward approach
for dealing with the problem defined in Section 2.1 is to apply a
classification algorithm on the learning sample LSp of pairs to
learn a function fglob on the cartesian product of the two input
spaces (resulting in the concatenation of the two input vectors of
the nodes of the pair). Predictions can then be computed straight-
forwardly for any new unseen pair from the function (Fig. 3A).

In the case of a homogeneous graph, the adjacency matrix Y
is a symmetric square matrix. We will introduce two adapta-
tions of the approach to handle such graphs. First, for each pair
(nr,nc) in the learning sample, the pair (nc,nr) will also be
introduced in the learning sample. Without further constraint
on the classification method, this will not ensure however that
the learnt function fglob will be symmetric in its arguments. To
make it symmetric, we will compute a new class conditional
probability model f p

glob,sym from the learned one f p
glob as follows:

f pglob;sym x1; x2ð Þ ¼
f
p
glob x1; x2ð Þ þ f

p
glob x2; x1ð Þ

2
;

where x1 and x2 are the input feature vectors of the nodes in the
pair to be predicted.

2.2.2 Local approach. The idea of the local approach,2 is to
build a separate classification model for each node, trying to
predict its neighbors in the graph from the known graph around
this node. More precisely, for a given node nc A LSc, a new
learning sample LS(nc) is constructed from the learning sample
of pairs LSp, comprising all the pairs that involve the target node
nc and the feature vectors associated with the interacting nodes
nr. It can then be used to learn a classification model fnc

, which
can be exploited to make a prediction for any new pair involving
nc. By symmetry, the same strategy can be adopted to learn a
classification model fnr

for each node nr A LSr (Fig. 3B).
These two sets of classifiers can then be exploited to make

LS � TS and TS � LS types of predictions. For pairs (nr,nc) in
LS � LS, two predictions can be obtained: fnc

(nr) and fnr
(nc). We

propose to simply combine them by an arithmetic average of
the corresponding class conditional probability estimates.

As such, the local approach is in principle not able to make
direct predictions for pairs of nodes (nr,nc) A TS � TS (because
LS(nr) = LS(nc) = { for nr A TSr and nc A TSc). We nevertheless
propose to use the following two-step procedure to learn a
classifier for a node nr A TSr (see Fig. 4):
� First, learn all classifiers fnc

for nodes nc A LSc (equivalent
to the completion of the columns in Fig. 4),
� Then, learn a classifier f fnr from the predictions given by

the models fnc
trained in the first step (equivalent to the

completion of the rows in Fig. 4).

Fig. 2 (A) Schematic representation of known and unknown pairs in the
network adjacency matrix. Known pairs (that can be interacting or not) are
in white and unknown pairs, to be predicted, are in gray. Rows and
columns of the adjacency matrix have been rearranged to highlight the
four families of unknown pairs described in the text: LSr � LSc, LSr � TSc,
TSr � LSc, and TSr � TSc. (B) Schematic representation of CV on pairs: in
this procedure, we randomly divide the pairs of the learning sample into
two groups: we learn a model on the pairs from the white area, and test it
on the pairs from the blue area. The CV on pairs evaluates LS � LS
predictions. Pairs in gray represent unknown pairs that do not take part
to the CV. (C) Schematic representation of CV on nodes: in this procedure,
we randomly divide the nodes of each set (relative to the rows and the
columns) into two groups: we learn a model on the pairs from the white
area, and test it on the pairs from the blue area. The CV on pairs evaluates
LS � TS, TS � LS and TS � TS predictions.

Fig. 3 Schematic representation of the training data. In the global
approach (A) the features vectors are concatenated, in the local approach
with single output (B) one function is learnt for each node, and in the local
approach with multiple output (C) one function is learnt for one family of
nodes and one function for the other one.
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Again by symmetry, the same strategy can be applied to

obtain models f fnc for the nodes nc A TSc. A prediction is then

obtained for a pair (nr,nc) in TS � TS by averaging the class

conditional probability predictions of both models f f ;pnr
and f f ;pnc

.

A related two-step procedure has been proposed by Pahikkala
et al.20 for learning on pairs with kernel methods.

Note that to derive the learning samples needed to train models

f fnc and f fnr in the second step, one requires to choose a threshold

on the predicted class conditional probability estimates (to turn
these probabilities into binary classes). In our experiments,
we will set this threshold in such a way that the proportion of
edges versus non edges in the predicted subnetworks in LS � TS
and TS � LS is equal to the same proportion within the original
learning sample of pairs.

This strategy can be specialized to the case of a homogeneous
graph in a straightforward way. Only one class of classifiers fn

and f f
n are trained for nodes in LS and in TS respectively (using

the same two-step procedure as in the asymmetric case for the
second). LS � LS and TS � TS predictions are still obtained by
averaging two predictions, one for each node of the pair.

2.3 Tree-based ensemble methods

Any method could be used as a base classifier for the two
approaches. In this paper, we propose to evaluate the use of
tree-based ensemble methods in this context. We first briefly
describe these methods and then discuss several aspects
related to their use within the two generic approaches.

2.3.1 Description of the methods. A decision tree21 repre-
sents an input–output model by a tree whose interior nodes are
each labeled with a (typically binary) test based on one input
feature and each terminal node is labeled with a value of the
output. The predicted output for a new instance is determined
as the output associated with the leaf reached by the instance
when it is propagated through the tree starting at the root node.
A tree is built from a learning sample of input–output pairs, by
recursively identifying, at each node, the test that leads to a
split of the node sample into two subsamples that are as pure
as possible in terms of their output values.

Single decision trees typically suffer from high variance,
which makes them not competitive in terms of accuracy.

This problem is circumvented by using ensemble methods that
generate several trees and then aggregate their predictions. In
this paper, we exploit one particular ensemble method called
extremely randomized trees (extra-trees22). This method grows
each tree in the ensemble by selecting at each node the best
among K randomly generated splits. In our experiments, we use
the default setting of K, equal to the square root of the total
number of candidate attributes.

One interesting feature of tree-based methods (single and
ensemble) is that they can be extended to predict a vectorial
output instead of a single scalar output.23 We will exploit this
feature of the method in the context of the local approach below.

2.3.2 Global approach. The global approach consists of
building a tree from the learning sample of all pairs. Each split
of the resulting tree will be based on one of the input features
coming from either one of the two input feature vectors, x(nr) or
x(nc). The tree growing procedure can thus be interpreted as
interleaving the construction of two trees: one on the row nodes
and one on the column nodes. Each leaf of the resulting tree is
thus associated with a rectangular submatrix of the graph
adjacency matrix Y (reduced to the pairs in LSr � LSc) and the
construction of the tree is such that the pairs in this submatrix
should be, as far as possible, either all connected or all dis-
connected (see Fig. 5 for an illustration).

2.3.3 Local approach. The use of tree ensembles in the
context of the local approach is straightforward. We will never-
theless compare two variants. The first one builds a separate
model for each row and column nodes as presented in Section 2.2.
The second method exploits the ability of tree-based methods
to deal with multiple outputs (vector outputs) to build only
two models, one for the row nodes and one for the column
nodes (Fig. 3C). We assume that the learning sample has been
generated by sampling two subsets of nodes LSr and LSc and
that the full adjacency matrix is observed between these
two sets (as in Fig. 2C). The first model related to the column

Fig. 4 The local approach needs two steps to learn a classifier for an
unseen node: (1) first, we predict LS � TS and TS � LS interactions, and (2)
from these predictions, we predict TS � TS interactions.

Fig. 5 Both the global approach (A) and the local approach with multiple
output (B) can be interpreted as carrying out a biclustering of the adjacency
matrix. Each subregion is characterized by conjunctions of tests based on
the input features. In this graph, xc,i (resp. xr,i) denotes the ith feature of the
column (resp. row) node. Note that in the case of the global approach, the
representation is only illustrative. The adjacency submatrices corresponding
to the tree leaves can not be necessarily rearranged as contiguous rectangular
submatrices covering the initial adjacency matrix.
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nodes is built from a learning sample LS(nc) comprising all the
observed pairs, and the feature vectors associated with the row
nodes nr. It can then be used to learn a classification model,
which can be exploited to make the predictions of the interaction
profiles of all nodes nc present in the learning sample of LSp

pairs. By symmetry, the same strategy can be adopted to learn
classification model for the row nodes nr. The two-step procedure
can then be applied to build the two models required to make
TS � TS predictions.

This approach has the advantage of requiring only four tree
ensemble models in total instead of one model for each
potential node in the case of the single output approach. It
can however only be used when the complete submatrix is
observed for pairs in LS � LS, since the tree-based ensemble
method cannot cope with missing output values.

2.3.4 Interpretability. One main advantage of tree-based
methods is their interpretability, directly through the tree
structure in the case of single tree models and through feature
importance rankings in the case of ensembles.24 Let us com-
pare both approaches along this criterion.

In the case of the global approach, as illustrated in Fig. 5A, the
tree that is built partitions the adjacency matrix (more precisely,
its LSr � LSc part) into rectangular regions. These regions are
defined such that pairs in each region are either all connected or
all disconnected. The region is furthermore characterized by a
path in the tree (from the root to the leaf) corresponding to tests
on the input features of both nodes of the pair.

In the case of the local multiple output approach, one of the
two trees partitions the rows and the other tree partitions the
columns of the adjacency matrix. Each partitioning is carried
out in such a way that nodes in each subpartition have a similar
connectivity profile. The resulting partitioning of the adjacency
matrix will thus follow a checkerboard structure with also only
connected or disconnected pairs in the obtained submatrix, as
far as possible (Fig. 5B). Each submatrix will be furthermore
characterized by two conjunctions of tests, one based on row
inputs and one based on column inputs. These two methods
can thus be interpreted as carrying out a biclustering25 of the
adjacency matrix where the biclustering is however directed by
the choice of tests on the input features. A concrete illustration
can be found in Fig. 6 and in the ESI.†

In the case of the local single output approach, the partitioning
is more fine-grained as it can be different from one row or column
to another. However in this case, each tree gives an interpretable
characterization of the nodes which are connected to the node
from which the tree was built.

When using ensembles, the global approach provides a
global ranking of all features from the most to the less relevant.
The local multiple output approach provides two separate rankings,
one for the row features and one for the column features and
the local single output approach gives a separate ranking for
each node. All variants are therefore complementary from an
interpretability point of view.

3 Experiments

In this section, we carried out a large scale empirical evaluation of
the different methods described in Section 2.2 on six real biological
networks, three homogeneous graphs and three bipartite graphs.
Results on four additional (drug–protein) networks can be found in
the ESI.† Our goal with these experiments is to assess the relative
performances of the different approaches and to give an idea of the
performance one could expect from these methods on biological
networks of different nature. Section 3.4 provides a comparison
with the existing methods from the literature.

3.1 Datasets

The first three networks correspond to homogeneous undirected
graphs and the last three to bipartite graphs. The main character-
istics of the datasets are summarized in Table 1. The adjacency
matrices used in the experiments, the lists of nodes and lists of
features can be downloaded at http://www.montefiore.ulg.ac.be/
schrynemackers/datasets.html.

3.1.1 Protein–protein interaction network (PPI). This network26

has been compiled from 2438 high confidence interactions high-
lighted between 984 S. cerivisiae proteins. The input features used
for the predictions are a set of expression data, phylogenetic
profiles and localization data that totalizes 325 features. This
dataset has been used in several studies before.13,14,27

3.1.2 Genetic interaction network (EMAP). This network28

contains 353 S. cerivisiae genes connected with 1995 negative
epistatic interactions. Inputs29 consist of measures of growth

Fig. 6 Illustration of the interpretability of multiple-output decision-tree
on a drug–protein interaction network. We zoomed in the rectangular
subregion with the highest number of interactions, and presented a list of
drug and protein features associated with this region. See the ESI† for
more details about the procedures.
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fitness of yeast cells relative to deletion of each gene separately,
and in 418 different environments.

3.1.3 Metabolic network (MN). This network30 is composed
of 668 S. cerivisiae enzymes connected by 2782 edges. There is
an edge between two enzymes when these two enzymes catalyse
successive reactions. The input feature vectors are the same as
those used in the PPI network.

3.1.4 E. coli regulatory network (ERN). This bipartite network31

connects transcription factors (TF) and genes of E. coli. It is
composed of 1164 genes regulated by 154 TF. There is a total of
3293 interactions. The input features31 are 445 expression values.

3.1.5 S. cerevisiae regulatory network (SRN). This network32

connects TFs and their target genes from E. coli. It is composed of
1855 genes regulated by 113 TFs and totalizing 3737 interactions.
The input features are 1685 expression values.33–36 For genes,
we concatenated motifs features37 to the expression values.

3.1.6 Drug–protein interaction network (DPI). This network38

is related to humans and connects a drug with a protein when the
drug targets the protein. This network holds 4809 interactions
involving 1554 proteins and 1862 drugs. The input features are a
binary vectors coding for the presence or absence of 660 chemical
substructures for each drug, and the presence or absence of 876
PFAM domains for each protein.38

3.2 Protocol

In our experiments, LS � LS performances in each network
are measured by 10 fold cross-validation (CV) across the pairs
of nodes, as illustrated in Fig. 2B. For robustness, results are
averaged over 10 runs of 10 fold CV. LS � TS, TS � LS and
TS� TS predictions are assessed by performing 10 times 10 fold CV
across the nodes, as illustrated in Fig. 2C. The different algorithms
return class conditional probability estimates. To assess our
models independent of a particular choice of discretization
threshold Pth on these estimates, we vary this threshold and
output in each case for the resulting precision–recall curve and
the resulting ROC curve. Methods are then compared according
to the total area under these curves, denoted AUPR and AUROC
respectively (the higher the AUPR and the AUROC, the better),
averaged over the 10 folds and the 10 CV runs. For all our
experiments, we use ensembles of 100 extremely randomized
trees with default parameter setting.22

As highlighted by several studies,39 in biological networks,
nodes of high degrees have a higher chance to be connected to
any new node. In our context, this means that we can expect
that the degree of a node will be a good predictor to infer new

interactions involving this node. We want to assess the impor-
tance of this effect and provide a more realistic baseline than
the usual random guess performance. To reach this goal, we
evaluate the AUROC and AUPR scores when using the sum of
the degrees of each node in a pair to rank LS � LS pairs and
when using the degree of the nodes belonging to the LS to rank
TS � LS or LS � TS pairs. AUROC and AUPR scores will be
evaluated using the same protocol as hereabove. As there is no
information about the degrees of nodes in TS � TS pairs, we
will use random guessing as a baseline for the scores of these
predictions (corresponding to an AUROC of 0.5 and an AUPR
equal to the proportion of interactions among all nodes pairs).

3.3 Results

We discuss successively the results on the three homogeneous
networks and then on the three bipartite networks.

3.3.1 Homogeneous graphs. AUPR and AUROC values are
summarized in Table 2 for the three methods: global, local
single output, and local multiple output. The last row on each
dataset is the baseline result obtained as described in Section 3.2.
Fig. 7 shows the precision–recall curves obtained by the different
approaches on MN, for the three different protocols. Similar
curves for the two other networks can be found in the ESI.†

In terms of absolute AUPR and AUROC values, LS � LS pairs
are clearly the easiest to predict, followed by LS � TS pairs and
TS � TS pairs. This ranking was expected from previous
discussions. Baseline results in the case of LS � LS and LS � TS
predictions confirm that node degrees are very informative:
baseline AUROC values are much greater than 0.5 and baseline
AUPR values are also significantly higher than the proportion of
interactions among all pairs (0.005, 0.03, and 0.01 respectively
for PPI, EMAP, and MN), especially in the case of LS � LS
predictions. Nevertheless, our methods are better than these
baselines in all cases. On the EMAP network, the difference in
terms of AUROC is very slight but the difference in terms of
AUPR is important. This is typical of highly skewed classifica-
tion problems, where precision–recall curves are known to give
a more informative picture of the performance of an algorithm
than ROC curves.40

Table 1 Summary of the six datasets used in the experiments

Network
Network
size

Number
of edges

Number
of features

Homogen. networks PPI 984 � 984 2438 325
EMAP 353 � 353 1995 418
MN 668 � 668 2782 325

Bipartite networks ERN 154 � 1164 3293 445/445
SRN 113 � 1821 3663 9884/1685
DPI 1862 � 1554 4809 660/876

Table 2 Areas under curves for homogeneous networks

Precision–recall (AUPR) ROC (AUC)

LS � LS LS � TS TS � TS LS � LS LS � TS TS � TS

PPI Global 0.41 0.22 0.10 0.88 0.84 0.76
Local so 0.28 0.21 0.11 0.85 0.82 0.73
Local mo — 0.22 0.11 — 0.83 0.72
Baseline 0.13 0.02 0.00 0.73 0.74 0.50

EMAP Global 0.49 0.36 0.23 0.90 0.85 0.78
Local so 0.45 0.35 0.24 0.90 0.84 0.79
Local mo — 0.35 0.23 — 0.85 0.80
Baseline 0.30 0.13 0.03 0.87 0.80 0.50

MN Global 0.71 0.40 0.09 0.95 0.85 0.69
Local so 0.57 0.38 0.09 0.92 0.83 0.68
Local mo — 0.45 0.14 — 0.85 0.71
Baseline 0.05 0.04 0.01 0.75 0.70 0.50
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All tree-based approaches are very close on LS� TS and TS� TS
pairs but the global approach has an advantage over the local one
on LS � LS pairs. The difference is important on the PPI and MN
networks. For the local approach, the performance of single and
multiple output approaches are indistinguishable, except with the
metabolic network where the multiple output approach gives better
results. This is in line with the better performance of the global
versus the local approach on this problem, as indeed both the global
and the local multiple output approaches grow a single model
that can potentially exploit correlations between the outputs.
Notice that the multiple output approach is not feasible when
we want to predict LS � LS pairs, as we are not able to deal with
missing output values in multiple output decision trees.

3.3.2 Bipartite graphs. AUPR and AUROC values are sum-
marized in Table 3 (see the ESI† for additional results on four

DPI subnetworks). Fig. 8 shows the precision–recall curves
obtained by the different approaches on ERN for the four different
protocols. Curves for the 6 other networks can be found in the
ESI.† 10 times 10-fold CV was used as explained in Section 3.2.
Nevertheless, two difficulties appeared in the experiments
performed on the DPI network. First, the dataset is larger than
the others, and the 10-fold CV was replaced by 5-fold CV to
reduce the computational space and time burden. Second, the
feature vectors are binary and the randomization of the thresh-
old (in Extra-tree algorithm) cannot lead to diversity between
the different trees of the ensemble. So we used bootstrapping to
generate the training set of each tree.

Like for the homogeneous networks, higher the number of
nodes of a pair present in the learning set, better are the predic-
tions, i.e., AUPR and AUROC values are significantly decreasing

Fig. 7 Precision–recall curves for the metabolic network: higher the
number of nodes of a pair present in the learning set, better will be the
prediction for this pair.

Table 3 Areas under curves for bipartite networks

Precision–recall (AUPR) ROC (AUC)

LS � LS LS � TS TS � LS TS � TS LS � LS LS � TS TS � LS TS � TS

ERN (TF–gene) Global 0.78 0.76 0.12 0.08 0.97 0.97 0.61 0.64
Local so 0.76 0.76 0.11 0.10 0.96 0.97 0.61 0.66
Local mo — 0.75 0.09 0.09 — 0.97 0.61 0.65
Baseline 0.31 0.30 0.02 0.02 0.86 0.87 0.52 0.50

SRN (TF–gene) Global 0.23 0.27 0.03 0.03 0.84 0.84 0.54 0.57
Local so 0.20 0.25 0.02 0.03 0.80 0.83 0.53 0.57
Local mo — 0.24 0.02 0.03 — 0.83 0.53 0.57
Baseline 0.06 0.06 0.03 0.02 0.79 0.78 0.51 0.50

DPI (drug–protein) Global 0.14 0.05 0.11 0.01 0.76 0.71 0.76 0.67
Local so 0.21 0.11 0.08 0.01 0.85 0.72 0.72 0.57
Local mo — 0.10 0.08 0.01 — 0.72 0.71 0.60
Baseline 0.02 0.01 0.01 0.01 0.82 0.63 0.68 0.50

Fig. 8 Precision–recall curves for the E. coli regulatory network (TF vs.
genes): a prediction is easier to do if the TF belongs to the learning set than
if the gene belongs to.
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from LS � LS to TS � TS predictions. On the ERN and SRN
networks, performances are very different for the two kinds of
LS � TS predictions that can be defined, with much better
results when generalizing over genes (i.e., when the TF of the
pair is in the learning sample). On the other hand, on the DPI
network, both kinds of LS � TS predictions are equally well
predicted. These differences are probably due in part to the
relative numbers of nodes of both kinds in the learning sample,
as there are much more genes than TFs on ERN and SRN and a
similar number of drugs and proteins in the DPI network.
Differences are however probably also related to the intrinsic
difficulty of generalizing over each node family, as on the four
additional DPI networks (see the ESI†), generalization over drugs
is most of the time better than generalization over proteins,
irrespective of the relative numbers of drugs and proteins in the
training network. Results are most of the time better than the
baselines (based on nodes degrees for LS � LS and LS � TS
predictions and on random guessing for TS � TS predictions).
The only exceptions are observed when generalizing over TFs on
SRN and when predicting TS � TS pairs on SRN and DPI.

The three approaches are very close to each other. Unlike on
homogeneous graphs, there is no strong difference between the
global and the local approach on LS � LS predictions: it is
slightly better in terms of AUPR on ERN and SRN but worse on
DPI. The single and multiple output approaches are also very
close, both in terms of AUPR and AUROC. Similar results are
observed on the four additional DPI networks.

3.4 Comparison with related works

In this section, we compare our methods with several other
network inference methods from the literature. To ensure a fair
comparison and avoid errors related to the reimplementation
and tuning of each of these methods, we choose to rerun our
algorithms in similar settings as in related papers. All compar-
ison results are summarized in Table 4 and discussed below.

3.4.1 Homogeneous graphs. A local approach with support
vector machines was developed to predict the PPI and MN
networks2 and was showed to be superior to several previous
works13,27 in terms of performance. The authors only consider
LS � TS predictions and used 5-fold CV. Although they exploited
yeast-two-hybrid data as additional features for the prediction of
the PPI network, we obtain very similar performances with the
local multiple output approach (see Table 4). Another method14

that uses ensembles of output kernel trees also infers the MN
and PPI networks with the same input data. With the global
approach, we obtain similar or inferior results in terms of
AUROC but much better results in terms of AUPR, especially
on the MN data.

3.4.2 Bipartite graphs. SVM have been used to predict ERN
with the local approach,3 focusing on the prediction of inter-
actions between known TFs and new genes (LS � TS). Authors
evaluated their performances by the precision at 60% and 80%
recall, respectively, estimated by 3-fold CV (ensuring that all
genes belonging to the same operon are always in the same
fold). Our results with the same protocol (and the local multiple
output variant) are very close although slightly less good. The
DPI network was predicted using sparse canonical correspon-
dence analyze (SCCA)38 and with the global approach and L1

regularized linear classifiers41 using as input features all pos-
sible products of one drug feature and one protein feature. Only
LS � LS predictions are considered in the first paper, while the
second one differentiates ‘‘pair-wise CV’’ (our LS� LS predictions)
and ‘‘block-wise CV’’ (our LS � TS and TS � LS predictions).
As shown in Table 4, we obtain better results than SCCA and
similar results as in L1 SVM. Additional comparisons are pre-
sented in the ESI† on the four DPI subnetworks.

Globally, these comparisons show that tree-based methods
are competitive on all six networks. Moreover, it has to be
noticed that (1) no other method has been tested over all these
problems, and (2) we have not tuned any parameters of the
Extra-trees method. Better performances could be achieved by
changing, for example, the randomization scheme,7 the feature
selection parameter K, or the number of trees.

4 Discussion

We explored tree-based ensemble methods for biological network
inference, both with the local approach, which trains a separate
model for each network node (single output) or each node family
(multiple output), and with the global approach, which trains a
single model over pairs of nodes. We carried out experiments on
ten biological networks and compared our results with those from
the literature. These experiments show that the resulting methods
are competitive with the state of the art in terms of predictive
performance. Other intrinsic advantages of tree-based approaches
include their interpretability, through single tree structure and
ensemble-derived feature importance scores, as well as their
almost parameter free nature and their reasonable computational
complexity and storage requirement.

The global and local approaches are close in terms of accuracy,
except when we predict LS � LS interactions where the global
approach gives almost always better predictions. The local
multiple output method has the advantage to provide less
complex models and requires less memory and training time.
All approaches remain however interesting because of their
complementarity in terms of interpretability.

As two side contributions, we extended the local approach
for the prediction of edges between two unseen nodes and

Table 4 Comparison with related works on the different networks

Publication DB Protocol Measures
Their
results

Our
results

Ref. 2 PPI LS � TS, 5CV AUPR 0.25 0.21
MN 0.41 0.43

Ref. 14 PPI LS � TS, 10CV AUPR/ROC 0.18/0.91 0.22/0.84
TS � TS 0.09/0.86 0.10/0.76

MN LS � TS 0.18/0.85 0.45/0.85
TS � TS 0.07/0.72 0.14/0.71

Ref. 3 ERN LS � TS, 3CV Recall 60/80 0.44/0.18 0.38/0.15
Ref. 38 DPI LS � LS, 5CV AUROC 0.75 0.88
Ref. 41 DPI LS � LS, 5CV AUROC 0.87 0.88

LS � TS & TS � LS 0.74 0.74
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proposed the use of multiple output models in this context. The
two-step procedure used to obtain this kind of predictions
provides similar results as the global approach, although it
trains the second model on the first model’s predictions. It
would be interesting to investigate other prediction schemes and
evaluate this approach in combination with other supervised
learning methods such as SVMs.20 The main benefits of using
multiple output models is to reduce model sizes and potentially
computing times, as well as to reduce variance, and therefore
improving accuracy, by exploiting potential correlations between
the outputs. It would be interesting to apply other multiple
output or multi-label SL methods42 within the local approach.

We focused on the evaluation and comparison of our methods
on various biological networks. To the best of our knowledge,
no other study has considered simultaneously as many of these
networks. Our protocol defines an experimental testbed to
evaluate new supervised network inference methods. Given
our methodological focus, we have not tried to obtain the best
possible predictions on each and every one of these networks.
Obviously, better performances could be obtained in each case
by using up-to-date training networks, by incorporating other
feature sets, and by (cautiously) tuning the main parameters of
tree-based ensemble methods. Such adaptation and tuning
would not change however our main conclusions about relative
comparisons between methods.

A limitation of our protocol is that it assumes the presence
of known positive and negative interactions. Most often in
biological networks, only positive interactions are recorded, while
all unlabeled interactions are not necessarily true negatives
(a notable exception in our experiments is the EMAP dataset).
In this work, we considered that all unlabeled examples are
negative examples. It was shown empirically and theoretically
that this approach is reasonable.43 It would be interesting never-
theless to design tree-based ensemble methods that explicitly
takes into account the absence of true negative examples.44
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B. André and J. van Helden, Nucleic Acids Res., 2011, 39,
6340–6358.

38 Y. Yamanishi, E. Pauwels, H. Saigo and V. Stoven, J. Chem.
Inf. Model., 2011, 51, 1183–1194.

39 J. Gillis and P. Pavlidis, PLoS One, 2011, 6, e17258.
40 J. Davis and M. Goadrich, Proceedings of the 23rd International

Conference on Machine Learning, 2006, pp. 223–240.
41 Y. Tabei, E. Pauwels, V. Stoven, K. Takemoto and Y. Yamanishi,

Bioinformatics, 2012, 28, i487–i494.
42 G. Tsoumakas and I. Katakis, International Journal of Data

Warehousing and Mining (IJDWM), 2007, vol. 3, pp. 1–13.
43 C. Elkan and K. Noto, KDD ‘08 Proceeding of the 14th ACM

SIGKDD international conference on Knowledge discovery
and data mining, 2008, pp. 213–220.

44 F. Denis, R. Gilleron and F. Letouzey, Theor. Comput. Sci.,
2005, 348, 70–83.

Method Molecular BioSystems

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
M

ay
 2

01
5.

 D
ow

nl
oa

de
d 

on
 1

1/
8/

20
25

 1
1:

59
:1

3 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5mb00174a



