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Fuzzy modeling reveals a dynamic self-sustaining
network of the GLI transcription factors
controlling important metabolic regulators in
adult mouse hepatocytes†

Wolfgang Schmidt-Heck,‡*a Madlen Matz-Soja,‡b Susanne Aleithe,‡b

Eugenia Marbach,b Reinhard Guthkea and Rolf Gebhardt*b

The GLI transcription factors, GLI1, GLI2, and GLI3, transduce Hedgehog and non-hedgehog signals and

are involved in regulating development and tumorgenesis. Surprisingly, they were recently found to

modulate important functions of mature liver. However, less is known about their mutual interactions

and possible target genes in mature hepatocytes. To get a deeper insight into these interactions

cultured mouse hepatocytes were transfected with siRNAs against each GLI factor. RNA was extracted at

different times and the expression levels of the genes of interest were determined by quantitative real-

time PCR. The time-dependent data were analysed by a fuzzy logic-based modelling approach. The

results indicated that the GLI factors constitute an interconnected network. GLI2 inhibited GLI1

expression and was coupled with GLI3 by a positive feedback loop. The regulatory activity between GLI1

and GLI3 was more complex switching between a positive and a negative feedback loop depending on

whether the level of GLI2 is low or high, respectively. Generally, this network structure enables a

dynamic behaviour. When GLI2 is low, it may keep GLI1 and GLI3 activity balanced favouring the

appropriate modulation of transcription factors like the Ppars and Srebp1. When GLI2 is high, it may

prevent an uncontrolled amplification that may lead to cancer. In conclusion, the three GLI factors in

mature hepatocytes form an interactive transcriptional network that is involved in the control of target

genes associated with metabolic zonation as well as with lipid and drug metabolism. Its structure in

mature cells seems different from embryonic cells.

Introduction

The Hedgehog (Hh) signalling pathway is known to play an
important role in embryonic development, organogenesis and
tissue homeostasis.1 In the adult stage, its activity is down-
regulated in most organs, but can be reactivated in physiological
and pathological processes such as tissue regeneration and
cancer.2,3 Despite its low activity in mature organs and cells,
current investigation has revealed important functions of this
pathway in metabolic control.4 Most likely, these activities are
exerted via both, non-canonical and canonical Hh signalling. As
the canonical cascade of events initiated by the Hh ligands has

been extensively reviewed elsewhere,2,5,6 only a brief description
of the key regulators and their functions is described herein.
Secreted Hh ligands bind to Patched 1 (Ptch1) and Patched 2
(Ptch2) receptors at the plasma membrane of receiving cells and
alleviate Patched-mediated suppression of Smoothened (Smo).
Activated Smo induces a cascade of downstream reactions
resulting in the final stabilization of the GLI (glioma associated
oncogene) family of transcriptional factors, their translocation
into the nucleus and transcription of Hh target genes. Each of
the three vertebrate GLI proteins is endowed with a distinct
biochemical activity.3 GLI2 and GLI3 are bifunctional transcrip-
tion factors that act as full-length activators (GLI2A/GLI3A) only
in the presence of Hh ligands, and otherwise undergo proteolytic
cleavage to truncated repressors (GLI2R/GLI3R).7 In contrast,
GLI1 was identified as a direct transcriptional target of GLI2A/
GLI3A that functions only as an activator.8 The complexity of
the GLI factor network based on these distinct features has led
to the concept of the GLI code.9 Recently, we discovered that the
Hh signalling is active and of considerable functional impor-
tance in normal hepatocytes of mature liver.10 Using transgenic
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mice with hepatocyte-specific conditional deletion of Smoothened
(Smo) and RNAi experiments on cultured hepatocytes we could
demonstrate that Hh signalling participates in the transcriptional
regulation of various genes including IGF-I and IGFBP-1. Flanking
in vitro studies revealed that most effects are transmitted by GLI3
followed by GLI1, while GLI2 plays a less decisive role.10 In course
of these studies we realized that the three GLI factors showed a
dynamic expression pattern even in vitro in cultured hepatocytes,
i.e. in the absence of external stimuli. In part, these changes seem
to reflect a diurnal rhythm of the Hh signalling pathway
(Marbach, Matz-Soja, Gebhardt, unpublished observation).
The involvement of mutual interactions of the GLI factors,
however, cannot be excluded. So far, the interactions of the
three GLI factors have been investigated only in the develop-
mental context. In Xenopus neural plate differentiation evidence
was collected that GLI3 and Sonic Hedgehog (SHH) repress each
other leading to opposite gradients.11 Since GLI2, like GLI1, were
found to be targets of SHH signalling and both, GLI2 and GLI3,
antagonize GLI1 function, a regulatory feedback loop triggered
by SHH is established.11 Likewise, a positive regulation of GLI1
by SHH and a negative interaction between SHH and GLI3 was
found during limb development.12 During somite myogenesis in
the mouse embryo GLI2 and GLI3 were recognized as essential
for Gli1 expression in somites.13 These findings suggest complex
direct and indirect interactions among the GLI transcription
factors which, however, remain poorly understood. Whether they
can be applied to the adult stage and, particularly, to the adult
liver is doubtful for a number of reasons. In the present study we
aimed at elucidating the GLI factor network in adult hepatocytes.
Since robust readouts or antibodies that can discriminate
between the activating versus repressing form of GLI proteins
are currently unavailable, we focused exclusively on the tran-
scriptional level and used an RNAi experimental approach to
provoke network responses. In order to analyse the data in the
most efficient way and to improve its understanding mathe-
matical modeling was applied. Since the Hh signalling pathway
has been modelled mainly in a completely different context
(developmental aspects)14 and frequently does not distinguish
between the different GLI factors, we applied a fuzzy modelling
approach able to cope with the expected complexity and
uncertainties. The model obtained not only matched the mea-
sured expression levels of all three GLI factors, but also led to
the surprising result that the model structure switches between
two distinct modes of interactions between GLI1 and GLI3
depending upon the abundance of GLI2.

Results and discussion
Changes in GLI mRNA levels in cultured hepatocytes suggest an
interactive GLI factor network

Studying the GLI transcription factors in healthy mature mouse
hepatocytes is challenging as their mRNA levels are orders of
magnitude lower than those observed in embryogenesis.15

When primary mouse hepatocytes are cultured in Williams
medium E under standard conditions, the mRNA levels of

GLI1, GLI2, and GLI3 are not following a specific trend, but
apparently show mild fluctuations within the recorded period
of 72 h. Although it is rather challenging to precisely measure
these levels with qRT-PCR, it is unlikely that these fluctuations
result from imprecise measurements, but instead reflect some
hidden dynamic behaviour. This possibility prompted us to
approach the phenomenon by performing transfection experi-
ments with siRNA against each GLI factor combined with
extensive time-series measurements starting at 24 h or 48 h
of cultivation and lasting till 72 h. In order to exclude the
disturbance of these measurements by a possible circadian
rhythm of the Hh signalling pathway, samples were taken at
exactly the same time each day in the morning (ZT3 = 9 AM).
The time courses of the mRNA levels of the three GLI factors
under the influence of the three different siRNAs are depicted
relative to the respective nonsense oligo RNA in Fig. S1, ESI† for
up to 20 independent hepatocyte cultures. The efficiency of
each siRNA is illustrated by the almost complete knockdown of
Gli1 after 72 h, of Gli2 after 48 and 72 h, and of Gli3 after 72 h in
Fig. S1A, S1E, and S1I, respectively, ESI.† As shown in Fig. 1A,
the knockdown of Gli1 after 72 h resulted in the significant
increase of the mRNA values of Gli2 and Gli3. The siRNA-mediated
knockdown of Gli2 was accompanied by an up-regulation of Gli1
and Gli3 (Fig. 1B) and that of Gli3 by a significant down-regulation
of Gli1 (Fig. 1C).

Thus, each GLI factor seemed to be regulated to some extend
by the other two, but the precise way of how this happens
cannot easily be predicted intuitively from such diagrams.
Similar interactions among the GLI factors have not been
described before in such detail for mature cells. Although they
reflect some interactions described in embryonic systems,11–13

the GLI factor network characterized herein seems to be specific
for hepatocytes.

Fuzzy modeling of the GLI factor network

In order to obtain a better insight into the transcriptional
interactions of the three GLI factors, we applied a fuzzy logic-
based modelling approach to this gene regulatory network
(GRN) (see Methods). The nodes of this network model are
represented in a fuzzy inference system (FIS). FIS provides a
method to model complex, nonlinear input–output relation-
ships. A second advantage is that this modeling approach can
cope with uncertainties in experimental data sets and ‘‘missing
values’’ (irrespective whether these were not measured or were
below detection level). First, membership functions of fuzzy
interference systems (FIS) variables were generated as described
in Methods (Fig. S2, ESI†). Then, an ensemble of FISs with all
possible combinations of input variables and fuzzy values was
generated for each network node (Fig. 2) together with the mean
squared error calculated for each possible FIS based on one
hundred randomly selected learn and test data sets.

For each node, the FIS’s with the smallest test-error are high-
lighted (grey) (Fig. 2) and selected for the mining of the rule set of
the Fuzzy-GRN (Fig. S2, ESI†). It was found that the optimal
number of input variables (N) for GLI1 is 4 (time, Gli1-KD, GLI2,
GLI3) and for GLI2 or GLI3 equals 3 (Fig. 2). A maximum of 2N

Paper Molecular BioSystems

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
M

ay
 2

01
5.

 D
ow

nl
oa

de
d 

on
 5

/3
/2

02
4 

8:
14

:2
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5mb00129c


2192 | Mol. BioSyst., 2015, 11, 2190--2197 This journal is©The Royal Society of Chemistry 2015

rules related to the highest values of the coefficient lift was
selected for the respective rule sets provided that this value is
greater than 1 (Fig. S2, ESI†). Further analysis for determining and
visualizing the kind of regulatory activity between the components
of the network was performed as described in Methods. Fig. 1D
shows the resulting synopsis of all state-dependent Fuzzy-GRNs
depicted in Fig. S3, ESI.† This network reflects all the regulatory
results. Furthermore, a declining effect of the cultivation time on
GLI1 was found. More interesting regulatory activities were
detected between GLI2 and GLI3 on the one hand and between
GLI1 and GLI3 on the other hand. The regulatory activity between
GLI2 and GLI3 is described by a positive feedback loop. The
regulatory activity between GLI1 and GLI3 is more complex
and can be described by a positive or a negative feedback loop
depending on the level of GLI2. Of note, apparently there is no
unambiguous effect of GLI1 on the transcription of GLI2. The
validity of the model is depicted in Fig. 3 representing a scatter-
plot of the measured and predicted values by the Fuzzy-GRN. The
regression lines for Gli1 and Gli3 are nearly ideal, while that of
Gli2 with a slope of 0.8531 is slightly less accurate.

Applied to the measured data shown in Fig. 1A to C the
Fuzzy-GRN correctly predicts the results of each knockdown of
a GLI factor when GLI2 is considered ‘‘high’’ as in Fig. 1A and C
or ‘‘low’’ as in Fig. 1B.

From this point of view, the Fuzzy logic-based modelling
approach appears ideal in coping with the experimental situation
due to the low mRNA levels of the GLI factors in mature hepatocytes.

The Fuzzy-GRN presented herein, allows reasonable quantitative
predictions about the mRNA levels of the different GLI factors in
the absence of external stimuli. Relatively few known parameters
are sufficient to perform rough calculations predicting the status
of the whole network. Apparently, low numbers of GLI proteins
within the cells and, particularly, within the nuclei guarantee the
most specific interactions with respective high-affinity binding
sites on the DNA. This seems to be a general principle effective in
controlling hepatocyte functional zonation.16,17 Furthermore, a
network with so much feedback loops is prone to a dynamic
behaviour. This feature may explain the observed fluctuations in
non-stimulated hepatocytes in culture. A second surprising
feature of the GRN is the dependence of the structure of the
network on the level of GLI2. In normal mouse liver the level of
GLI2 is usually very low, even lower than that of GLI1 and GLI3
(unpublished observation). Sometimes, it may even be undetect-
able with commercially available antibodies.18 At such a low level
of GLI2 (which may also be reached in the presence of Gli2
siRNA), GLI1 activates the expression of GLI3 in accordance with
the activator functions of GLI1. The positive feedback loop
between the two ensures a certain balance between GLI1 and
GLI3 that may even hold when GLI3 levels are increased due to
enhanced canonical Hh signalling or non-canonical stimulation
(see below). In contrast, moderate to high levels of GLI2 in
mature hepatocytes may occur under nutritional challenge and
have been detected particularly under diseased conditions such
as alcoholic steatosis.19 Under such conditions, a switch from

Fig. 1 Response of GLI factor expression to factor-specific siRNA-mediated knockdown. Relative expression of GLI transcription factor (Gli1, Gli2, Gli3)
mRNA determined by qRT-PCR in hepatocytes 72 h post transfection with (A) Gli1 siRNA (black bars) (n = 10–12), (B) Gli2 siRNA (black bars) (n = 6–13) and
(C) Gli3 siRNA (black bars) (n = 11–20) compared to nonsense oligo transfection (white bars) (n = 6–20). Values are presented as means � SEM; *, p o
0.05. (D) Synopsis of all state-dependent fuzzy gene regulatory networks generated as described in Methods. The network shows that the GLI-specific
gene knockdown suppresses the expression of the respective Gli gene. GLI2 suppresses the expression of Gli1. Furthermore, Gli2 and Gli3 are coupled by
a positive feedback loop. The regulatory activity between GLI1 and GLI3 can be described by either a positive or a negative feedback loop depending on
the level of GLI2 (further explanations see text).
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the positive feedback loop to a negative one seems reasonable,
because otherwise the GLI factors could mutually amplify each
other in an almost uncontrolled manner. The unidirectional
inhibition of the GLI1 level by GLI2 may serve the same purpose.

Altogether, these inhibitory functions may prevent strongly
enhanced expression levels of all GLI factors, a condition that
seems frequently associated with cancer.5

The negative feedback loop between GLI1 and GLI3 occurring
in the latter case fits to the observation that GLI1 can antagonize
GLI3 in mouse development.20 However, it is problematic as the
GLI1 protein lacks a repressor function. Therefore, the direct
inhibition of Gli3 expression is impossible and has to be replaced
by an indirect one via the activation of a distinct repressor (Fig. 4).

So far, no factor is known that simultaneously inhibits GLI3
expression, is positively regulated by GLI1 and responds only, if
GLI2 level is high. Recently, however, an interesting cooperative
action of E2F2 and CREB1 was described in T-lymphocytes that
results in the enhanced repression of a subset of E2F2 target
genes.21 Why could this mechanism be a promising candidate
for GLI-mediated repression? First, according to the MotifMap
database,22 GLI3 is the only GLI-factor with E2F2 binding sites
in the promoter region. Thus, E2F2 might act as a repressor
of GLI3. Second, CREB1 is a transcriptional target of GLI1
and GLI2 (see MotifMap,22). Thus, CREB1 could be induced
to sufficiently high concentrations only when both transcrip-
tion factors are active. Third, according to Laresgoiti and
co-workers CREB1 reinforces the repressive function of E2F2.21

This reinforcement could be the final trigger for switching the
interaction mode between GLI1 and GLI3. Whether such a
cooperative repressive mechanism is active in hepatocytes and
could actually be both, target and regulator of GLI function
remains to be investigated.

The GLI factors control the expression of different sets of target
genes in hepatocytes

As we have reviewed before,16 several publications on GLI target
genes in other mature tissues indicate the involvement of these
transcription factors in the regulation of genes associated with
lipid metabolism. For instance, Suh and coworkers reported
the control of certain lipotrophic genes (e.g. Ppar-g) by the
hedgehog signalling pathway mediated by GATA factors.23

Moreover, Pospisilik et al. could show that at least 34 genes
of adipogenesis and lipid metabolism have more than one

Fig. 3 Scatterplot of the measured and predicted values by the Fuzzy-
GRN. The measured data are taken from Fig. S1, ESI.† The regression lines
for GLI1, GLI2, and GLI3 are depicted. The insert shows the parameters of
the respective regression lines.

Fig. 4 Scheme of possible molecular interactions between the three GLI
factors in the two states (GLI2 = low; dotted arrows) and (GLI2 = high; solid
arrows) according to Fig. 1D. The scheme on the right illustrates that a
hypothetical repressor (REP) which is stimulated by GLI1 and GLI2 has to
be inferred in order to explain how the activator GLI can exert a GLI2-
dependent repression of GLI3 (further details see text).

Fig. 2 Mean squared error (mse) of learn- and test data of fuzzy inference
systems (FIS) generated with all possible combinations of input variables as
described in Methods in detail. The FIS’s with the smallest test-error are
highlighted and selected for the fuzzy gene regulatory network.
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predicted binding site for one or more the three GLI factors of
the Hh signalling pathway within 2500 bp upstream of their
transcription starting point.24 Therefore, we performed further
qRT-PCR measurements of the mRNA levels of some of these
genes in the RNAi experiments (Fig. 5A), in order to find out
whether the three GLI factors of the hepatocellular network act
via separate sets or a common set of target genes. This question
does not seem trivial as embryological studies have suggested
that GLI1 can rescue all the SHH signaling defects of Gli2
mutant mice.20 Our measurements revealed that each GLI factor
regulates a (small) distinct subset of metabolic genes but also

joins one or both of the other GLI factors in regulating different
sets of genes (Fig. 5B).

For instance, GLI1 controls Gata4 (GATA binding protein 4)
and Gata6 (GATA binding protein 6), whereas GLI3 controls
only Gata4. Interestingly, the effect of GLI3 knockdown on Gata4
(suppression) is different from that of GLI1 (enhancement). Like-
wise, the transcription factor Srebp1 (sterol regulatory element-
binding protein 1) is controlled by both GLI1 and GLI3, while
none of them seems to regulate Srebp2 (sterol regulatory element-
binding protein 2). Ppar-a (peroxisome proliferator-activated
receptor a) and Ppar-g (peroxisome proliferator-activated receptor g)

Fig. 5 Response of the expression of selected genes to GLI factor-specific knockdown. (A) Relative gene expression was determined by qRT-PCR in
hepatocytes from male mice 72 h post transfection with siRNA (black bars; n = 3–10) to Gli1, Gli2 and Gli3 compared to nonsense oligo transfection
(white bars; n = 3–10). Values are presented as means � SEM; *, p o 0.05. (B) Venn diagram of GLI factor-specific regulated genes.
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are up-regulated approximately 5-fold and 3-fold, respectively,
by Gli3 knock-down only (Fig. 5A). In contrast, GLI2 may
participate in the regulation of proliferation indicated by its
stimulating effect on Ccnd1 (Cyclin D1) expression (Fig. 5A).
That these findings are not only restricted to the selective
knock-down of the GLI factors but reflect the hepatocyte
response to Hh signalling is indicated by the fact that these
effects can be reversed by activation of the pathway, e.g. through
siRNA-mediated knock-down of Ptch2 or Sufu (Fig. S5, ESI†).
Even these few results support our hypothesis about the role of
Hh signalling in hepatic lipid metabolism.15 Of course, however,
a detailed microarray study is needed in order to show how many
genes can be attributed to the different subsets.

In this regard the functional consequences of the GLI factor
network for the regulation of the IGF axis should be noted.
In our previous publication we have reported that Igf-I is a
transcriptional target of GLI3, while Igfbp-1 is repressed by this
transcription factor.10 In contrast, Gli2 knockdown in hepato-
cytes does affect none of the metabolic genes mentioned above,
but selectively up-regulates the Hh signalling genes Smo and
Cdo (cell adhesion associated oncogene regulated) (Fig. 5A).
These results are interesting because, on the one hand, they
partially exclude GLI2 from the metabolic regulation in hepato-
cytes, a view compatible with the findings mentioned above. On
the other hand, they support the idea that extremely low levels
of GLI2 (as after siRNA-mediated knockdown) indirectly stabilize
the function of hepatocellular Hh signalling by up-regulating the
two co-receptors Smo and Cdo, compatible with reported func-
tions of Cdo in other tissues.25

The expression of the transcription factors Stat1 (signal
transducer and activator of transcription 1) and Stat3 is not
affected by the GLI factor network in mature hepatocytes
(Fig. 5A). This finding is in line with the healthy phenotype of
the hepatocytes. In contrast, all three GLI factors positively
influence the transcription of Wnt5a (Wingless-type MMTV
integration site family, member 5a) and Dkk1 (Dickkopf1)
which are secreted regulators of Wnt signaling (Fig. 5A). These
results show that the GLI network participates in the regulation
of two signalling pathways, namely the Wnt/beta-catenin and
the Hh pathway, and therefore seems to be strongly involved
in the control of liver zonation.16

Finally, it should be noted that the self-sustaining GLI
network described here must be considered as kind of a
regulatory sub-module in the framework of regulatory signals
that influence GLI factor activity. In particular, it can be viewed
as part of the GLI code, the sum of all positive and negative
functions of all GLI proteins.26 Besides the canonical Hh
signalling pathway that is controlled by the different Hh
ligands, a bunch of non-Hh signals (as diverse as TGF-b, EGF,
and oncogenic load) acting via non-canonical signalling are
able to converge on GLI regulation.26 The GLI factor network
module integrates these signals and may combine them with
additional context-dependent inputs.27 To find out whether the
hepatocellular GLI network maintains its structure under the
influence of regulatory signals, whether it can be adapted by
adding further conditional switches, or whether it completely

loses its cooperative structure remains an interesting task for
the future.

Conclusions

Collectively, our findings illustrate that the fuzzy logic-based
modeling approach reveals novel features of the dynamic
behavior of the GLI transcriptions factor network in mature
hepatocytes that are distinct from the features observed in
embryonic cells. In particular, the network may provide more
robustness in case of external challenge. Apparently each GLI
factor of the hepatocellular network regulates a different set
of target genes with only few overlap. Since GLI1 and GLI3
dominate over GLI2 in mature hepatocytes, genes associated
with metabolic zonation as well as with lipid and drug meta-
bolism seem to be the primary targets.

Materials and methods
Maintenance of mice and feeding

C57BL/6-N mice or WT SAC mice10 were maintained according
to the German guidelines and local regulations for the care and
safe use of experimental animals in a pathogen-free facility as
described.10

Isolation and cultivation of primary hepatocytes

Primary hepatocytes were isolated, plated onto 12-well plates
pre-coated with collagen type 1, and cultured in serum-free
medium as described.10

RNA preparation and quantitative real-time PCR (qRT-PCR)

Total RNA from hepatocytes was extracted using TRIzol (peqlab,
Erlangen, Germany). Quantitative real-time PCR was performed
as described in detail.10 Primers are listed in additional file 1:
Table S1, ESI.† For normalization, b-actin was amplified from
each sample.

RNA-interference

GliI1-, Gli2- and Gli3-, Sufu- and Ptch2-specific siRNAs and respec-
tive nonsense control siRNAs were purchased from Invitrogen,
Darmstadt, Germany. Transfection of siRNAs (25 nmol for each
GLI-factor, 10 nmol for Sufu- and Ptch2-siRNA) was performed as
described.10 Sequences for siRNA primers are listed in additional
file 1: Table S2, ESI.† Changes in gene expression were analysed by
qRT-PCR at 24 h, 48 h and 72 h of cultivation.

Fuzzy logic gene regulatory network model

For the description of interactions in a gene regulatory network
(GRN), a fuzzy logic based network modeling approach is used.
The nodes of this network model are represented in a fuzzy
inference system (FIS). FIS provides a method to model complex,
nonlinear input–output relationships. The structure of a FIS is
composed of the input and output variables and the rule base,
which represent the input–output relationship. The input vari-
ables can be divided into two groups, experimental conditions
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(cultivation and information about siRNA-knockdown) and
current state of gene regulation, i.e. the current gene expression
levels. The output is the new state of gene expression.

Membership function of fuzzy variables

Before learning the FIS, missing data were imputed using the
nearest-neighbour method.28 The learning of the membership
function of the FIS is done in two steps. First, the measured
values for the input/output fuzzy variables (representing the
expression intensity of the genes) were clustered using the fuzzy
c-means algorithm.29 The number of clusters for each variable
is pre-set to two, labelled by the fuzzy values ‘low’ and ‘high’.
Finally, the obtained membership values of each cluster were
fitted by a sigmoidal function to get for each fuzzy variable the
membership function of the FIS (Fig. S1, ESI†).

Fuzzy rule base

To describe the input–output behavior of the FIS, a fuzzy rule
base (FRB) was created (Fig. S4, ESI†). The fuzzy rules of
the FRB were learned by the fuzzy a priori algorithm30 using
the measured gene expression values. The received rules have
the following form:

IF A1 is I1 THEN C1 is O1

where the antecedent A1 and consequent C1 are related to
measured fuzzy variables and I1 and O2 are called fuzzy sets
(of the above mentioned fuzzy values) that qualify A1 and C1,
respectively, in a semi-quantitative manner. Three evaluation
criteria of association rules, called ‘support’, ‘confidence’ and
‘lift’ are used to assess the performance of the rules (Fig. S4,
ESI†).31 For the knowledge base only rules with a ‘lift’ greater
than 1 are taken into account. A ‘lift’ greater than 1 indicates
that G1 and G2 appear more often together than randomly
expected and that G1 is positively correlated with G2. The ‘lift’
value of a rule is computed by dividing the ‘confidence’ by
the ‘support’ of a rule, where the ‘support’ of the rule is the
quotient of the sum of votes satisfying the respective rule
(G1 - G2) and the total number of measured data. The
‘confidence’ is the ratio of the sum of votes satisfying the rule
(G1 - G2) and the ‘support’ of the antecedent G1.

Fuzzy interference process

To get a computationally efficient solution, the Sugeno32

method for defuzzification was used. This method uses a linear
model of the fuzzy variables of the antecedent to calculate a
crisp result value for the consequent. The parameters of the
linear model were fitted minimizing the mean square error of
the model fit to the measured data of the consequent by using
unconstrained nonlinear optimization.33

Structure of gene regulatory network model

In order to identify the most robust network structure different
combinations of FIS were generated and analysed using the
following procedure. For each network node an ensemble of
FISs with all possible combination of input variables are
generated. Each system was learned with randomly selected

learn data 100 times. Thereby the whole data set was divided
into 95% learn data and 5% test data. After each learn process
the mean squared error (mse) of the learn and test data was
calculated. The system with the smallest average test error for a
given combination of input variables is used for the gene
regulatory network model. Next, to determine and visualize
the kind of regulatory activity between the components of the
network, the whole network with high complexity was segre-
gated in a set of state-dependent sub-networks with lower
complexity, i.e. for each fuzzy variable and fuzzy value one
specific sub-network was generated. Each sub-network com-
prises edges valid and relevant only for the respective condi-
tion. The total number of state-dependent sub-networks is two
times that of the number of genes, since it discriminates for
each gene between the fuzzy values ‘low’ and ‘high’ for the
expression level (Fig. S3, ESI†). The kind of the regulation was
derived from the rule set of the state-dependent sub-network.
The interactions without contradiction in the individual state-
dependent networks were included in the resulting synopsis of
the network.

Statistical analysis

Values are expressed as means � standard deviation of the
mean (SEM) and sample size (n) is given in each figure or table.
Statistical evaluation was performed using the Wilcoxon
matched pairs test for the siRNA experiments in cultured
hepatocytes. The null hypothesis was rejected at the p o 0.05
(*) and p o 0.01 (**) levels.
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W. Schmidt-Heck, J. Kratzsch and R. Gebhardt, Cell Com-
mun. Signaling, 2014, 12, 11.

11 A. Ruiz i Altaba, Development, 1998, 125, 2203–2212.
12 D. Buscher and U. Ruther, Dev. Dyn., 1998, 211, 88–96.
13 A. McDermott, M. Gustafsson, T. Elsam, C.-C. Hui, C. P.

Emerson, Jr and A.-G. Borycki, Development, 2005, 132,
345–357.

14 E. R. Boykin and W. O. Ogle, Mol. BioSyst., 2010, 6,
1993–2003.

15 M. Matz-Soja, A. Hovhannisyan and R. Gebhardt, Med.
Hypotheses, 2013, 80, 589–594.

16 R. Gebhardt and M. Matz-Soja, World J. Gastroenterol., 2014,
20, 8491–8504.

17 R. Gebhardt and A. Hovhannisyan, Dev. Dyn., 2010, 239, 45–55.
18 J. K. Sicklick, Y.-X. Li, S. S. Choi, Y. Qi, W. Chen,

M. Bustamante, J. Huang, M. Zdanowicz, T. Camp, M. S.
Torbenson, M. Rojkind and A. M. Diehl, Lab. Invest., 2005,
85, 1368–1380.

19 Y. Jung, K. D. Brown, R. P. Witek, A. Omenetti, L. Yang,
M. Vandongen, R. J. Milton, I. N. Hines, R. A. Rippe,
L. Spahr, L. Rubbia-Brandt and A. M. Diehl, Gastroenterology,
2008, 134, 1532–1543.

20 C. B. Bai and A. L. Joyner, Development, 2001, 128, 5161–5172.
21 U. Laresgoiti, A. Apraiz, M. Olea, J. Mitxelena, N. Osinalde,

J. A. Rodriguez, A. Fullaondo and A. M. Zubiaga, Nucleic
Acids Res., 2013, 41, 10185–10198.

22 K. Daily, V. R. Patel, P. Rigor, X. Xie and P. Baldi, BMC
Bioinf., 2011, 12, 495.

23 J. M. Suh, X. Gao, J. McKay, R. McKay, Z. Salo and
J. M. Graff, Cell Metab., 2006, 3, 25–34.

24 J. A. Pospisilik, D. Schramek, H. Schnidar, S. J. Cronin,
N. T. Nehme, X. Zhang, C. Knauf, P. D. Cani, K. Aumayr,
J. Todoric, M. Bayer, A. Haschemi, V. Puviindran, K. Tar,
M. Orthofer, G. G. Neely, G. Dietzl, A. Manoukian,
M. Funovics, G. Prager, O. Wagner, D. Ferrandon,
F. Aberger, C.-C. Hui, H. Esterbauer and J. M. Penninger,
Cell, 2010, 140, 148–160.

25 W. Zhang, J.-S. Kang, F. Cole, M.-J. Yi and R. S. Krauss, Dev.
Cell, 2006, 10, 657–665.

26 B. Stecca and A. Ruiz I Altaba, J. Mol. Cell Biol., 2010, 2,
84–95.

27 F. Aberger and A. Ruiz I Altaba, Semin. Cell Dev. Biol., 2014,
33, 93–104.

28 O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie,
R. Tibshirani, D. Botstein and R. B. Altman, Bioinformatics,
2001, 17, 520–525.

29 J. C. Bezdek, Pattern recognition with fuzzy objective function
algorithms, Plenum Press, New York, 1981.

30 C. M. Kuok, A. Fu and M. H. Wong, SIGMOD Rec., 1998, 27,
41–46.

31 A. L. Buczak and C. M. Gifford, in ACM SIGKDD Workshop,
ed. H. Chen and C. C. Yang, 2010, pp. 1–10.

32 T. Takagi and M. Sugeno, IEEE Trans. Syst., Man, Cybern.,
1985, SMC–15, 116–132.

33 J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright,
SIAM J. Optim., 1998, 9, 112–147.

Paper Molecular BioSystems

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
M

ay
 2

01
5.

 D
ow

nl
oa

de
d 

on
 5

/3
/2

02
4 

8:
14

:2
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5mb00129c



