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S100A4 and its role in metastasis – computational
integration of data on biological networks†

Antoine Buetti-Dinh,*abc Igor V. Pivkinbd and Ran Friedman*ac

Characterising signal transduction networks is fundamental to our understanding of biology. However,

redundancy and different types of feedback mechanisms make it difficult to understand how variations

of the network components contribute to a biological process. In silico modelling of signalling interactions

therefore becomes increasingly useful for the development of successful therapeutic approaches.

Unfortunately, quantitative information cannot be obtained for all of the proteins or complexes that

comprise the network, which limits the usability of computational models. We developed a flexible

computational framework for the analysis of biological signalling networks. We demonstrate our

approach by studying the mechanism of metastasis promotion by the S100A4 protein, and suggest

therapeutic strategies. The advantage of the proposed method is that only limited information

(interaction type between species) is required to set up a steady-state network model. This permits a

straightforward integration of experimental information where the lack of details are compensated by

efficient sampling of the parameter space. We investigated regulatory properties of the S100A4 network

and the role of different key components. The results show that S100A4 enhances the activity of matrix

metalloproteinases (MMPs), causing higher cell dissociation. Moreover, it leads to an increased stability

of the pathological state. Thus, avoiding metastasis in S100A4-expressing tumours requires multiple

target inhibition. Moreover, the analysis could explain the previous failure of MMP inhibitors in clinical

trials. Finally, our method is applicable to a wide range of biological questions that can be represented

as directional networks.

1 Introduction
1.1 Modelling biological networks

Being able to predict the behaviour of signalling networks by
simulation is fundamental for studying complex diseases as it
enables the prediction of the consequences of defective gene
functions,1,2 as well as the effect of drugs in different cell types.3

While the mathematical formalism for integrating kinetic data in
quantitative models is well established (e.g., Michaelis–Menten
formalism), the probabilistic nature of biological signalling can
make models of highly intricate and redundant networks ineffi-
cient. In fact, due to the large number of microscopic parameters
necessary to set up network models, assumptions and simplifica-
tions are necessary to make models tractable.

The information required for setting up large-scale models
is available through current experimental technologies (e.g.,
high-throughput sequencing). Various methods based on Bayesian
probability or information theory, such as Bayesian network
inference, can be used to infer on gene regulatory networks by
utilising data from diverse data sources.4–7 Such methods are
used to integrate datasets from omic technologies into networks
representing the main biological features of a system.8–11 Recon-
structed networks can subsequently be analysed for the devel-
opment of therapeutic strategies.12,13

Numerous different approaches exist to simulate biological
signalling networks, from very specific models integrating high
level of details (e.g., mass-action kinetics) to more approximate
ones (e.g., Boolean networks, Petri nets) based on more general
principles that allow broader applicability to diverse biological
systems.14 In highly accurate models, details on microscopic
reaction rates have to be provided by kinetic experiments. This
is challenging to achieve when working with biological com-
ponents in vitro, and substantially more difficult when trying to
obtain the same information in vivo. Partially missing information
can however be extrapolated computationally through optimiza-
tion based on the available parameters and using incomplete
experimental data.12,13,15 Importantly, biomolecular interaction is
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strongly determined by its in vivo context, whereas in vitro experi-
ments sometimes fail to determine quantitative information about
regulatory processes.16–19 In the absence of detailed description of
the system, approximate models can provide qualitative or semi-
quantitative information. Such models rely on simple and quite
general principles, and thus require a smaller number of para-
meters. They also can be implemented into computer programs
that automatically build a simulation system from the network
configuration in a flexible manner according to few control para-
meters.20–22 These approaches are very well suited to investigate
the effect of network components at the qualitative level, with the
drawback of poorly describing the system quantitatively.

The computational method we developed combines flexibility
and broad applicability to diverse networks, together with
quantitative predictive power. The method quantifies the effect
of variable network parameters through an automated multi-
dimensional sensitivity analysis with respect to each network
component. Every network component (or network node) is
represented through a reduced set of parameters. Model para-
meters assume value ranges reflecting the information available
for a given node or interaction and provide a corresponding
sensitivity map that takes into consideration the effects associated
to experimental uncertainties and heterogeneity in cellular
populations. Signalling in cellular populations is modelled
through a steady-state interaction network, where continuous
functions express activation and inhibition that involves the
network’s components. Interacting components are treated
phenomenologically through a system of ordinary differential
equations (ODEs) that are generated per system and condition,
thereby setting the basis for flexibility and applicability of the
approach to various biological systems. At the same time, our
approach facilitates the processing, comparison and modifica-
tion of different simulated systems making it particularly
suited to study partially described signalling networks. We
demonstrate its usability by studying a protein network invol-
ving the metastasis promoter S100A4.

1.2 S100A4 and its role in metastasis

S100A4 is involved in multiple signalling pathways bridging
metastasis and angiogenesis, two cooperating processes that
are crucially important for tumour malignancy.23 The protein is
used as a prognostic marker in a number of human cancers and
correlates to metastatic tumours.24–26 Animal and cellular
studies suggest that S100A4 is not only a marker but an active
mediator of cancer progression27 and that tumour growth is
reduced when extracellular S100A4 is targeted with monoclonal
antibodies.28 Metastasizing S100A4-expressing tumour cells
can induce cells of the invaded tissues to express S100A4.29

Despite a wealth of experimental data, the molecular
mechanisms underlying metastasis formation are largely
unknown. The involvement of S100A4 in different pathways
of cancer-related processes makes it an interesting target for
therapeutic strategies and underscores the importance of
studying metastasis from a system perspective. This is effi-
ciently achieved here by representing S100A4 in the context of

its signalling interactions using a network model to explore the
role of S100A4 in view of potential therapeutic strategies.

Current cancer therapies apply evolutionary pressure that
dynamically shapes the genomic landscapes of tumours.30,31

Tumour heterogeneity plays a crucial role in such processes32–36

where resistant cells are selected for their capacity to sustain
tumour growth utilizing alternative pathways, that eventually
lead to treatment resistance. Our method provides means
to quantitatively investigate such effects by considering para-
meters of the signalling interactions over defined ranges,
thereby accounting for the tumour’s heterogeneous character
that leads to resistance to therapy.

2 Methods
2.1 Network representation

We prepared a signalling network model of S100A4 based on the
experimental evidence found in the literature (see text ESI 1,†) and
illustrated in Fig. 1 using cytoscape.37 Different biological systems
can be simulated and investigated by control analysis through a
network representation, where the components and type of inter-
action (activation or inhibition) constitute the only required infor-
mation. The general principles underlying the presented method
enable the application of our modelling framework to diverse
biological systems that can be represented by an activation/inhibi-
tion network and at the same time facilitate the integration of
experimentally accessible information.

2.2 Computational workflow

Here we present a quantitative phenomenological modelling
framework applied to the case of the S100A4 network. The
program performs efficient sensitivity analysis of biological
networks at the steady-state and at the same time permits the
integration of the available experimental data, to test hypo-
theses on network regulation as well as to understand the
influence of specific components on the dynamics of the
system. The program can therefore be used to derive from
and integrate in the model new information in an iterative way.

A network model is initially built from an input file and read by
the main program module. Input files contain node names and the
types of interactions between them. A simulation is performed
according to a program-defined set of parameters corresponding
to the processed network. Interactions between nodes are assumed
to occur through continuous, regulatory functions. The dynamical
properties of the system are determined by a set of parameters. In
practice, this is achieved by setting up a specific value or a range of
values for each component, that represents its biological activity.
Parameters of interest and their variation ranges are user-defined
and determine the subsequent simulation and analysis procedures.
The first part of the program workflow consists of generating steady-
state values corresponding to the node’s activity. Accordingly, a set
of ODEs describing the dynamics of the signalling network is
automatically built using Hill-type transfer functions as interaction
links between nodes.38,39 The different conditions corresponding to
the user-defined parameter space are simulated by numerically
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solving the system of ODEs. In the second part, analysis of the
simulated conditions is carried out based on sensitivity and
principal component analysis (PCA). The numerical procedure
that is coded in C++ relies on the GNU Scientific Library (GSL,
version 1.15)40 and is optimized for fast execution. Moreover, the
parameter space is automatically split using MPI-based proces-
sing in order to make use of parallel architectures thereby
enabling the screening of a large number of conditions (see
Fig. ESI 3 and ESI 4,† for details on the workflow, and text ESI 2,†
for details on computational performance and model scalability).

2.3 Model details

The system is described as a network of interacting com-
ponents evolving in time according to the ODEs. Every component
in the network is represented by a node. The nodes are connected
by links, where each link is a regulatory function that represents
either activation or inhibition. Every node in the model is para-
metrized by the parameters b and d and every link by a, g and Z
(see Table 1).

2.3.1 Nodes. The parameters b and d are associated to each
node to account for the basal activity and the decay of biological
species, respectively: a first order decay term is subtracted (decay
constant d) and a basal activity constant b added to each equation
that describe the node’s time-evolution. We refer to the activity of
a protein in analogy to the activity of a chemical solute, i.e., it is
the effective concentration of a protein in its biologically active
conformation. The biological activity cannot be compared directly
with the experiment and is given in arbitrary units.

2.3.2 Links. Hill-type regulatory functions are used to link the
nodes to each other. Activation and inhibition are defined accord-
ing to eqn (1) and (2) in Fig. ESI 1,† respectively. The Hill-exponent
Z accounts for nonlinear signalling interaction (e.g., positive/
negative binding cooperativity).41 This empirical parameter is
widely used to quantify nonlinearity in different contexts and is
kept equal to one in the present work. The parameter g establishes
a threshold of activation along the abscissa and a is a multi-
plicative scaling factor. Both of the latter parameters have been set
to one throughout the current work. When multiple links point to
a single node, activation functions are added to each other while
inhibition functions are multiplied by the current level of activity
(see ref. 38 and 39). This gives a set of ODEs for nodes {X, Y,. . .}:

dX=dt ¼ �dXX þ bX þ
P
i

Acti

� �
�PjInhj

dY=dt ¼ �dYY þ bY þ
P
i

Acti

� �
�PjInhj

. . .

8>>><
>>>:

(1)

where X, Y,. . . denote the node’s activity, Act and Inh
are activating and inhibitory regulatory function, respectively

Table 1 Model parameters used to define model’s nodes and links (see
also Fig. ESI 1)

Parameter
name Description

b Basal level of a node’s activity
d Decay constant of a node
g Interaction strength between two nodes (affinity)
Z Nonlinearity in signalling interaction (Hill coefficient)
a Multiplicative scaling factor applied to the regulatory

function

Fig. 1 The interaction network of S100A4. S100A4 is coloured yellow and can be present in the interior and exterior cellular space. Blue nodes represent
cytoskeletal proteins. Purple nodes represent the direct players for regulation and degradation of extracellular matrix proteins. Red nodes summarize
converging effects from the different pathways according to biological knowledge for cellular dissociation from the extracellular matrix (CellDiss) and
capillary growth (CapGrowth). These are the endpoints involved in the pathological metastatic process. Activation and inhibition between nodes is
denoted with - and B, respectively.
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(see Fig. ESI 1,†), and i and j are the indexes denoting activating
and inhibiting incoming links, respectively. The steady-state of
the ODEs system is calculated numerically using the GSL
function gsl_odeiv2_step_rk440 employing the explicit 4th order
Runge–Kutta algorithm. With this procedure the steady-state
values of each node is obtained for a given parameter set.

2.4 Control analysis

Sensitivity analysis is used to identify parameter combinations
responsible for the relevant dynamical properties of the system.
Each parameter change in the combinatorial parameter space
is processed according to

eYf ¼
@ lnðYÞ½ �
@ lnðfÞ½ � ¼

f
Y
� @Y
@f

(2)

� D lnðYÞ½ �
D lnðfÞ½ � ¼

ln Yi=Yj

� �
ln fi=fj

� � (3)

where f is an input parameter or variable and Y an output
variable. Eqn (2) expresses the relative change of activity in the
nodes as a function of a variation in the parameter set. In the
computational procedure, two conditions (i and j) are evaluated
at each step of the sensitivity analysis according to eqn (3). The
conditions are defined by vectors of steady-state values (Yi and Yj)
corresponding to the nodes’ activities and are determined by the
parameter sets (fi and fj). Parameter sets processed by eqn (3)
differ in a single parameter by a finite factor determined in the
parameter interval sampling. The infinitesimal interval in the
denominator of eqn (2) is therefore approximated to a finite
multiplicative factor and the numerator computed by the loga-
rithm of the ratio between the corresponding simulated steady-
state values.

Multivariate analysis is included as the final step of the
procedure providing graphical and quantitative information on
the controllability of the system. The prcomp function of R is used
to carry out PCA. It is applied to both steady-state and sensitivity
datasets in order to reveal co-activity and co-regulatory patterns
between the nodes, respectively (see Fig. ESI 4,† for details).

3 Results
3.1 Determination of parameter space regions of interest

Sensitivity analysis can be used to quantify the contribution of
certain nodes (components) to the phenomenological output of
the system. Here we use two parameters, namely cell dissocia-
tion and capillary growth, to characterize pathological pheno-
types. Moreover, the sensitivity calculated with respect to
specific nodes enables the assessment of their controllability
by other components of the network.

3.1.1 Sensitivity of cell dissociation with respect to MMPs and
TIMPs Activity. S100A4 has been suggested to influence unbalanced
expression of MMPs and TIMPs in different cancers.10,42–44 We
therefore systematically modified MMPs and TIMPs steady-state
activities using the interaction model depicted in Fig. 1 as input
for our simulation program (see Table 2).

By simulating the model we obtained surfaces representing
the sensitivities of cell dissociation with respect to the biological
activities of MMPs (convex surfaces) and TIMPs (concave sur-
faces), (see Fig. 2). Interestingly, we could identify regions with
pronounced sensitivity values (positive for eCellDiss

MMPs and negative
for eCellDiss

TIMPs ). The overlap of these regions defines a subspace
of high controllability with respect to the variables: for example,
in the range of MMPs activities between 0.1–1 and of TIMPs

Table 2 General model parametrization used to calculate sensitivity
landscapes of cell dissociation and capillary growth with respect to MMPs
and TIMPs activity. Activity units are arbitrary. Activity of 1 can be roughly
translated to a signalling protein that is very common in the cell (i.e., in the
order of 1 mM).45 Values for end points (cell dissociation and capillary
growth) can only be appreciated by comparison, and we assume that any
treatment would aspire to keep them as low as possible

Parameter name
Range of variation
(fold-variation step)

b(MMPs) 10�4–10+3(1.2)
b(TIMPs) 10�4–10+3(1.2)
b(S100A4_int) 10�3–10+1(100)
b(S100A4_ext) 10�3

b(BCat) 10�2

b(ECadh) 10�2

b(Myo9) 10�2

b(EGFR) 10�3

b(NFKB) 10�3

b(OPN) 10�3

b(uPA_uPAR) 10�3

b(EphrA1) 10�3

b(Plasmin) 10�3

b(CellDiss) 10�3

b(CapGrowth) 10�3

Fig. 2 Sensitivity of cell dissociation. Upper, convex sensitivity surfaces
are calculated in response to variation of MMPs activity levels

eCellDiss
MMPs ¼

D ln CellDissð Þ½ �
D ln MMPsð Þ½ �

� �
and are shown in light colours. Lower, concave

surfaces are calculated in response to variation of TIMPs activity levels

eCellDiss
TIMPs ¼

D ln CellDissð Þ½ �
D ln TIMPsð Þ½ �

� �
and are shown in dark colours. Projections in

the lower planes represent the activity ranges (steady-state values) of
MMPs and TIMPs (higher projections, colour code corresponding to the
sensitivity surfaces in response to varying MMPs). The lowest projection
represents the steady-state values of cell dissociation at low S100A4
activity.
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activity 45, small variations in the activities of MMPs and TIMPs
are predicted to have a decisive effect on cell dissociation. This
suggests that a therapeutic window exists where the system
could be influenced but also deteriorate, not unlike transition
states in chemistry. In addition to the combinatorial variation of
MMPs and TIMPs, the effect of S100A4 was investigated by
applying three different activity levels of S100A4. An increased
concentration of active S100A4 affects the system in two principal
ways: (i) the activities of MMPs and TIMPs shift to higher steady-
state values, the first of which is supposed to be a hallmark of
metastasis (see the bottom projections in Fig. 2). (ii) The system
loses sensitivity of cell dissociation to MMPs/TIMPs activity (see
the 3D upper surfaces in Fig. 2). Taken together, our simulations
indicate that once the system is driven to a metastatic regime
(high steady-state values of cell dissociation) characterized by high
proteinase activity, the system becomes less sensitive to MMPs
and TIMPs, i.e., it loses the potential of reverting to a normal
physiological state.

3.1.2 Sensitivity of capillary growth with respect to MMPs
and TIMPs activity. Based on the same simulation dataset, the
analysis described above was applied to study the sensitivity
of capillary growth in response to variable MMPs and TIMPs
activities combined with three different levels of S100A4 (see
Fig. 3). Similar pattern as for cell dissociation was observed by
increasing S100A4 activity: reduction of the MMPs and TIMPs
activity ranges, which became confined to higher steady-state
values, and a decrease in the sensitivity to their activities.
However, unlike the response in the case of cell dissociation,
sensitivity of capillary growth displays multiple regions sepa-
rated by near-zero boundaries. An increase of S100A4 causes a
change in the relative magnitudes and arrangement of these
regions. The presence of separate regions in space when
examining the sensitivity of capillary growth (Fig. 3) indicates

multistable equilibrium points. In order to better understand
the emergence of multistabilities, we investigated the PCA
of the steady states values. This analysis shows that the vari-
ables S100A4, EGFR, NFKB and cytoskeletal proteins are
grouped together (Fig. 4A–C), i.e., their activities are linked.
At intermediate activity of S100A4, this group is also adjacent to
capillary growth (Fig. 4B), which indicates a correlation
between the activities of S100A4, EGFR, NF-kB and cytoskeletal
proteins (together) and the malignant process. PCA of the
sensitivity values shows two subgroups (S100A4, EGFR, NFKB
and cytoskeletal proteins versus CellDiss), urokinase plasminogen
activator (uPA) and uPA receptor (uPA_uPAR) whose distances
decrease with increasing biological activity of S100A4, until they
merge into a single cluster isolated from EphrA1 and ECadh
(Fig. 4D–F; variables’ naming according to Fig. 1). Fig. ESI 6 and
ESI 7† summarize the main processes described in Fig. 2 and 3
through heat map representations detailing sensitive areas and
the corresponding MMPs and TIMPs activity ranges (Fig. ESI 6,†)
and steady-state activities (Fig. ESI 7,†).

3.2 Global parameter variation: basal activity (b)

We extended the procedure described above by including a
broader parameter variation. To this end, we evaluated the
robustness of the previous results by taking into account the
variable nature of basal activity due to cell heterogeneity.
A numerical range was therefore assigned to the basal activity
parameter (b) for those network components previously set to a
single initial value. Ranges of 10-fold increase in basal activities
(0.001–0.1) were combinatorially tested for all nodes except for
S100A4 which was varied as in the previous section; MMPs and
TIMPs, which were varied within same ranges as in the previous
section in 10-fold steps; and the nodes CellDiss and CapGrowth
that were assumed to have low initial activity (b = 0.001). The
resulting combinatorial set of simulation conditions was sub-
sequently averaged and the resulting mean sensitivity surfaces
were consistent with previous outcomes (see Fig. 5 compared
with Fig. 2 and Fig. 6 compared with Fig. 3). This indicates that
the effects of S100A4 low, medium and high activity levels are
not an artefact of an arbitrary choice of basal activities for the
nodes but a genuine feature of the interaction network. As in
the previous section, PCA was applied to this dataset. Only the
sensitivity data differed significantly compared to the PCA in
section ‘‘Determination of parameter space regions of interest’’.
Previously, a group of variables composed of S100A4, EGFR
and NFKB progressively merged together with CellDiss and
CapGrowth as S100A4 activity increased. Here instead, two
groups are distinguishable at low S100A4, one consisting of
S100A4, EGFR and NFKB and one including CellDiss and
CapGrowth that merge in a single compact cluster only at
intermediate S100A4 activity and remain grouped by sub-
sequent increase of S100A4 activity. This indicates that with a
more variable basal expression of the network components, the
regulation of the variables CellDiss and CapGrowth is still
driven by S100A4 over a certain threshold of S100A4 activity
(compare Fig. 4 to Fig. ESI 2,†).

Fig. 3 Sensitivity of capillary growth. Sensitivity surfaces calculated in

response to variation of MMPs activity eCapGrowth
MMPs ¼ D ln CapGrowthð Þ½ �

D ln MMPsð Þ½ �

� �

are shown in light colours and in response to variation of TIMPs activity

eCapGrowth
TIMPs ¼ D ln CapGrowthð Þ½ �

D ln TIMPsð Þ½ �

� �
in dark colours. Projections in the lower

planes represent the activity ranges (steady-state values) of MMPs and
TIMPs (higher projections are identical to Fig. 2, colour code corres-
ponding to the sensitivity surfaces). The lowest projection represents the
steady-state values of capillary growth at low S100A4 activity.

Molecular BioSystems Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ju

ne
 2

01
5.

 D
ow

nl
oa

de
d 

on
 5

/8
/2

02
4 

5:
57

:2
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5mb00110b


This journal is©The Royal Society of Chemistry 2015 Mol. BioSyst., 2015, 11, 2238--2246 | 2243

4 Discussion
Properties of the S100A4 model under variable activities of
MMPs and TIMPs

We first devised a network model of S100A4 based on the
available knowledge including information on interacting bio-
molecules and principal processes involved in angiogenesis
and metastasis formation (Fig. 1). On the basis of this model,

simulations were initially run under standard parametrization
and regulatory features of interest were subsequently validated
in a more general, computationally-intensive context account-
ing for global parameter variation. MMPs and their natural
inhibitors TIMPs are typically deregulated in metastatic
tumours. Therefore, we simulated the system over a broad
activity range of MMPs and TIMPs and analysed the sensitivity
of cell dissociation and capillary growth, i.e., whether these

Fig. 4 PCA (loading plots) of simulation datasets of the S100A4 network with varying S100A4 activity. MMPs and TIMPs variation; PCA calculations were
carried for low (A and D), medium (B and E), high (C and F) activities of S100A4. The top scheme (A–C) is the PCA of steady-state values whereas the
scheme at the bottom (D–F) is the PCA of sensitivity values. The dataset used for PCA is generated according to section ‘‘Determination of parameter
space regions of interest’’. The full names of the variables are found in Fig. 1.

Fig. 5 Sensitivity of cell dissociation (global b variation). (A) Sensitivity landscape plotted against variable b values. (B) Sensitivity landscape plotted against
steady-state values of MMPs and TIMPs (as a consequence of the variation of b(MMPs) and b(TIMPs), respectively). Logarithmic binning is applied for
specific b values (A) or for the corresponding ranges of steady-state values (B). Note that the regions of high sensitivity and high variability (high standard
deviation values) over the global parameter variation surfaces are comparable to the regions of high sensitivity of Fig. 2.
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outcomes can be influenced under certain conditions. Indeed,
we could identify regions of high controllability in the space
defined by the activities of MMPs and TIMPs. Furthermore,
under these conditions, we could distinguish two features of
relevance driven by S100A4. On the one hand, by increasing the
activity of S100A4, MMPs and TIMPs steady-state values were
predicted to shift to higher activities consistent with experi-
mental data (Fig. 2 and 3). On the other hand, sensitivity
analysis outlines two different scenarios for cell dissociation
and capillary growth. The sensitivity of cell dissociation pre-
sents a barrier separating the normal and metastatic regimes
(defined according to proteinases activity). Beyond a certain
threshold in MMPs activity, the system gains stability at the
high metastatic regime: it looses any sensitivity to external
control of MMPs and TIMPs, hence reducing its potential to
return to a normal physiological state. This explains why
tumours expressing S100A4 show poor prognosis. S100A4’s
activity has however a different effect on capillary growth. In
addition to an overall decrease of sensitivity, the sensitivity
landscape (Fig. 3) is characterised by multiple regions separated
by near-zero, buffering sensitivity boundaries that rearrange dyna-
mically with increasing activity of S100A4 suggesting multistable
equilibria. This implies different phenotypic responses depending
on the activity of S100A4 and could explain the formation of
aggressive tumours with limited sensitivity to therapy.

Despite the partial description of the network considered,
the simulations could reproduce recent experimental findings
by showing that the activity of S100A4 dramatically reduced the
sensitivity of cell dissociation to MMPs and their natural
inhibitors TIMPs, thereby driving a metastatic phenotype. It
also suggests that, in order to prevent the emergence of a
metastatic phenotype, MMPs inhibitors may only be useful in
cells with low S100A4 activity, potentially explaining the failure
of an MMP inhibitor (Marimastat) in clinical trials.46–48 Our
results suggest that blockage of MMPs alone is not sufficient to
prevent cell dissociation. Rather, it appears that combined
inhibition of different targets is required to combat metastasis

when it is about to emerge, unless some of the components are
not expressed in the tumour.

5 Conclusions

In this article we discuss a steady-state simulation framework that
integrates partial information on biological networks and through
sensitivity analysis identifies control points of interest for targeted
therapeutic intervention. Similarly to mass-action kinetics models,
our approach assumes continuous regulation between nodes and
can therefore provide quantitative insights on the studied system. It
however requires only minimal information to set up simpler
qualitative boolean models. Steady-state relationships between the
network’s components enable the user to supplement pre-existing
settings with experimentally retrieved information. In addition, lack
of information can be compensated by efficient sampling using
parallel computing architectures. Such an approach is especially
useful in the case of S100A4: the high connectivity between different
regulatory processes needs to be considered simultaneously in order
to understand phenomena underlying drug resistance and be able
to design appropriate therapeutic strategies. Despite large amount
of data, the precise biological role of S100A4 as a metastasis
promoter still remains unclear; our approach allows efficient inte-
gration of the sparse information which is available. The outcome of
different simulated conditions can be tested with different available
in vivo and in vitro models. Our results suggest that it would be
instructive to assess the efficacy of inhibitors that previously failed
clinical trials in cell lines with naturally low or no activity of S100A4.
Finally, the general design of the modelling enables a flexible
application of the tool to diverse problems as long as the scientific
question can be described by an activation/inhibition network.
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