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Introduction

Efficient Bayesian estimates for discrimination
among topologically different systems biology
models¥

David R. Hagen®® and Bruce Tidor*®°°

A major effort in systems biology is the development of mathematical models that describe complex
biological systems at multiple scales and levels of abstraction. Determining the topology—the set of
interactions—of a biological system from observations of the system’s behavior is an important and
difficult problem. Here we present and demonstrate new methodology for efficiently computing the
probability distribution over a set of topologies based on consistency with existing measurements. Key
features of the new approach include derivation in a Bayesian framework, incorporation of prior
probability distributions of topologies and parameters, and use of an analytically integrable linearization
based on the Fisher information matrix that is responsible for large gains in efficiency. The new method
was demonstrated on a collection of four biological topologies representing a kinase and phosphatase
that operate in opposition to each other with either processive or distributive kinetics, giving 8-12 para-
meters for each topology. The linearization produced an approximate result very rapidly (CPU minutes)
that was highly accurate on its own, as compared to a Monte Carlo method guaranteed to converge to
the correct answer but at greater cost (CPU weeks). The Monte Carlo method developed and applied
here used the linearization method as a starting point and importance sampling to approach the Baye-
sian answer in acceptable time. Other inexpensive methods to estimate probabilities produced poor
approximations for this system, with likelihood estimation showing its well-known bias toward
topologies with more parameters and the Akaike and Schwarz Information Criteria showing a strong bias
toward topologies with fewer parameters. These results suggest that this linear approximation may be
an effective compromise, providing an answer whose accuracy is near the true Bayesian answer, but at a
cost near the common heuristics.

result if a particular part of the system were altered or what part of
the system would have to be altered to effect a desired behavior.

In systems biology, mechanistic models of biochemical networks
can be seen as a combination of two main components, a
topology that defines the set of elementary reactions that occur
and a parameter set that defines the rate constants of those
interactions and perhaps initial concentrations. By mapping
components of the model to components of the system, one
can computationally ask what role individual parts of the system
play with respect to a particular behavior—what behavior would
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Determining the topology of a biological network from data
is a difficult and widely studied problem."™ The space of possible
biological topologies is a discrete one. For a finite number of
chemical species, there is a finite, though exponentially large,
number of possible ways to connect those species in a network of
reactions. In this work, different mathematical formulations of the
same network will be considered different topologies. For example,
one may wish to test if the data supports using Michaelis-Menten
kinetics or mass action kinetics to describe the enzymatic reac-
tions. The two different sets of differential equations would be
considered different topologies. There is currently a tradeoff
between greater freedom in the mathematical formulation of the
topologies and an ability to consider a larger space of topologies,
since only some structures have algorithms that can define good
topologies without enumerating all possibilities. One can consider
three main classes of topology determination methods along this
spectrum.
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At the most abstract level are the statistical clustering
algorithms.>® In hierarchical clustering,"* well-known for its
use in analyzing microarrays, each state is organized as a leaf
on a tree where the distance along the branches indicates the
amount of dissimilarity in the behavior of the states either in
response to a set of perturbations or over time in response to a
single perturbation. If a previously unknown state is clustered
closely with several known states, this suggests that the
unknown state may be involved in the same role as the known
states. However, a specific function or mechanism is not
elucidated for any state. Another popular method is principal
component analysis, which finds the relationships between the
states that explain the most variance under the conditions
studied.'” The resulting relationships may reveal the states that
are most closely associated with the process that is perturbed
between the conditions as well as group the conditions with
similar responses. Like hierarchical clustering, such groupings
only suggest a coarse organization of the topology, leaving out
individual interactions. Methods at this level are widely used
because they provide testable hypotheses from very data large
sets, even if the studied system is poorly understood.

At the next level are algorithms that reverse engineer causal
networks. These algorithms use data to generate de novo
interaction networks between states of the system.*™” These
methods exploit a useful mathematical relation between a
specific formulation of the model and a specific type of data.
An algorithm by Sachs et al. generates an acyclic Bayesian
network using single-cell measurements.'”® This method
exploits the fact that the short-term stochastic fluctuations in
one state would be most strongly correlated with the short-term
fluctuations of the nearest states. Thus, a causal graph can be
built, not by finding the strongest correlations in the states, but
by finding the strongest correlations in the stochastic fluctua-
tions of the states about their mean value. Another algorithm
by Yeung et al. generates a system of linear ODEs using
concentrations of states near a gently perturbed steady state.®
The method exploits the fact that a linear approximation is
good near a steady state, allowing a sparse SVD to be used to
solve for the topology. By requiring little a priori information,
methods at this level bridge the gap between the exponentially
large number of possible topologies and a smaller number of
topologies supported by the data.

At the most specific level are algorithms that compare the
evidence for an enumerated set of topologies. Because one
cannot actually enumerate all possible networks for even a
small number of states, the set must be shrunk either by
assembling topologies based on prior knowledge or by collecting
the most favorable topologies generated by a higher-level
method like one mentioned in the previous paragraph. These
algorithms make use of the likelihood that a topology generated
the data to compute the probability that the topology is correct.
Several of these methods are used in this work and are described
below. Because these methods only require the likelihood of the
data, they can be used on a broad range of mathematical
modeling techniques such as dynamic nonlinear ODE modeling,
which is used in this work.
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We phrase the problem of topology probability in a Bayesian
framework. Each topology is defined by a pair of functions, a
likelihood and a parameter prior. The topologies are indexed by m:

T (m) = (pyjo,m(¥10,m),pom(6]m)) 1)

where py0,m(y|0,m) is the likelihood, the probability of seeing
data y given a model with topology m and parameters 6, and
Dojm(0|m) is the parameter prior, the probability distribution of
0 for topology m.

Bayes theorem provides the basic identity for computing the
posterior topology probability:

N pm(m) 'py\m(y|m)
Pnd.v(m')) ;pm(i) *Pylm (y|i) (2)
where p,,,(m|y) is the posterior probability that the topology
with index m is correct given that data y (a vector of length n,)
has been observed, p,,(m) is the topology prior of model m, and
Dyjm(y|m) is the marginal likelihood of data y given model m.

The marginal likelihood is the probability that a set of data
would be observed under a particular topology. Because topologies
alone do not generate data (parameterized topologies do) the
average probability over all parameters weighted by the prior on
the parameters is computed by an integral over parameter space:

Pymylm) = pr\mﬂ(y\m, 0) - pap (O1m) ©)

where py|mo(y|m,0) is the likelihood of data y being produced by
model topology m parameterized with values 0 and pyj,,,(0]m) is the
parameter prior for parameter values 6 in model topology m.

It is difficult and computationally expensive to evaluate the
Bayesian result because of the multidimensional integral
required to compute the marginal likelihood in eqn (3). This
integral does not have an analytical solution for many interesting
problems, including mass-action models, and the possibly large
number of dimensions of the integral precludes the use of
standard quadrature methods such as the trapezoidal rule for
numerical integration.

A number of methods have been developed to solve this
integral for biological problems.>® All are Monte Carlo methods
that compare a known distribution to the unknown posterior
distribution and currently require prohibitive computational
resources even for simple topologies. To be a known distribution
means that its normalization factor, the integral over all space, is
known. The simplest methods compare the prior distribution
to the posterior distribution while either sampling from the
prior (Prior Arithmetic Mean Estimator>') or from the posterior
(Posterior Harmonic Mean Estimator’?). Unfortunately, these
methods are inefficient®®**** and cannot be used effectively
for any biological system because the difference between the
prior and posterior is always large for a topology with more than
a few parameters and a few data points, and the size of this
difference determines the uncertainty in the estimators.>* Bridge
sampling improves on these methods by having one distribution
“in between” the prior and posterior to which the prior and
posterior are compared, rather than to each other, so that the
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differences between the compared distributions (and, thus,
the variances) are smaller resulting in faster convergence.”®
Other methods, such as Thermodynamic Integration,>***>” Path
Sampling,*® Annealed Importance Sampling,>® and more,***"
use even more distributions between the prior and the posterior,
so that each comparison is between two quite similar distribu-
tions resulting in a variance that is low enough to converge for
simple biological topologies.**> We tried several of these methods
but were unable to find one that would converge in a reasonable
time for the system we investigated.

Because of this, we developed our own Monte Carlo method
for use here. Our method is similar to the one used by Neal.*
Like almost all methods of this type, ours integrates the
marginal likelihood by stepping through a sequence of distributions
between the unknown marginal likelihood and a known distribu-
tion. Our method uses the linear approximation as the known
starting distribution, and the step size from one distribution to
the next is generated dynamically to minimize the variance in the
answer. A detailed description of our linearized approximation and
full Monte Carlo method is provided in the Methods section. The
full method was used as the gold standard to which our linearization
and other methods were compared.

Because of the computational costs of Monte Carlo methods,
approximations to the topology probability are often used instead.
The simplest method is to fit each topology to the data and
compare the likelihoods of obtaining the data from each topology
parameterized by the best-fit parameters.**** According to this
method, a topology that has a higher likelihood has more evidence
in its favor. The method is problematic for one main reason:
because topologies have different numbers of parameters, and
topologies with more parameters can typically fit data better
whether or not they are true, this leads to a bias in favor of more
complex topologies and an inability to rule out complex topologies
if a simpler topology is true.

To compensate for the shortcomings of a simple comparison of
likelihoods, several methods have been developed to appropriately
penalize topologies with more parameters. The two most popular
are the Akaike Information Criterion (AIC)** and the Schwarz (or
Bayes) Information Criterion (SIC),*® each justified by a different
derivation. These heuristics are no more expensive to compute than
the likelihood. One assumption of both heuristics is that sufficient
data has been collected to make the parameter uncertainty small.*”
This is not the case for typical biological models fit to typical data,
as our work and that of others has found.>®*** As a result, the
heuristics can be quite inaccurate,*>** which is also the case in the
current work.

Unsatisfied with the accuracy of the existing heuristics and
computational cost of the Monte Carlo methods, we created
an approximation to the topology probability problem that
provides an accurate answer but at a lower computational cost.
We noticed that, if the model has a linear relationship between the
parameters and outputs and the measurements have Gaussian
noise, the topology probability has an analytical solution. We
wondered if there was a way to linearize the nonlinear model such
that it provided an effective approximation to the nonlinear
answer. In this work, we derive a method to compute the topology
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Fig. 1 lllustration of linear topology probability. Here is a plot of the joint
probability distribution between the parameter and data point of a one-
parameter, one-data-point model. The orange curve has the same shape
as the posterior, the probability distribution over the parameters 0 given
that a particular data point was observed, but does not have an integral
equal to 1, which a true distribution must have. The integral of that curve is
the marginal likelihood and the critical component to determining the
topology probability. For a linear Gaussian model, the curve has the shape
of a Gaussian with a mean at the maximum a posteriori parameter set and
a variance equal to the posterior variance. Such an expression has an
analytical solution to the integral. If the model is nonlinear, then a
linearization at the maximum a posteriori parameter set will provide a
linear approximation to the marginal likelihood.

probability for a model linearized at the maximum a posteriori
parameters (the best-fit parameters considering the data and
prior).

A detailed derivation is provided in the Methods section of
this work, but the key insight in developing this method,
visualized in Fig. 1, is that the marginal likelihood (eqn 3) of
a linear Gaussian model can be written as:

Pym(¥1m) = Pyjo,m(910(3,m),m) pojm(0(y,m) | m)- 127 Vi y,m) I
(4)

where IX]l is the determinant of matrix X, 6( y,m) is the maximum
a posteriori parameter set, and Vj(y,m) is the posterior variance
of the parameters. While the maximum a posteriori parameter
set and posterior variance terms have analytic expressions for a
linear Gaussian model, each can be computed numerically using
nonlinear fitting and numeric integration; thus, using this
equation to compute the marginal likelihood provides a linear
approximation of the topology probability. This approach is
similar to a Laplace approximation but exchanges the Hessian
(second-order sensitivities of the negative log posterior) for the
Fisher information matrix as the approximation to the inverse of
the variance.

We demonstrated this method on a set of four candidate
topologies of MAPK signaling by Ferrell et al.*> We generated
random data sets by selecting a random topology from the set
of four according to a prior, a random parameter set according
to a prior, and a random data set by simulating the model and
adding noise. We then asked the various methods (Monte
Carlo, linearization, likelihood comparison, AIC, and SIC), to
determine which topology had generated the data set and
compared the accuracy and speed of the methods. The Monte

This journal is © The Royal Society of Chemistry 2015
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Carlo method gave the most accurate answer, but took signifi-
cantly more time, while the heuristics took only the time
needed to fit the data, but performed only slightly better than
random. The linearization method performed almost as well as
Monte Carlo but took no longer than the heuristics. These
results suggest that this method is an effective tool for topology
discrimination for systems biology.

Methods

Linearization

Important to the linearization method is not just having an
analytical solution to the linear model, but writing that solution
with terms that can be calculated for the nonlinear model. In
this section, we outline the derivation of the analytical solution
to the marginal likelihood (eqn (3)) for a model that has a linear
relationship between the parameters and the outputs, which
are measured with Gaussian noise superimposed. The like-
lihood function of a topology with this form is defined by:

py|6,m(y|9’m) = N(y)j(eim)ivy) (5)

where N(y,3,V;) is the probability density function of the
normal distribution over the data y with a mean of j (a vector of
length 7)) and a variance of V, (an n, by n, matrix). The mean,
which can be interpreted as the true value underneath a noisy
measurement, is a function of the topology and parameters and, in
a linear model, is defined in the following way:

3(6,m) = A(m)-0 + b(m) (6)

where A(m) is a matrix ny by ng(m) and b(m) is a column vector of
length n,. Together, A(m) and b(m) define linear topology m. The
length of the parameter vector § depends on the topology.
Combining eqn (5) and (6), we arrive at the likelihood of a
linear Gaussian model:

DPyjom(y|0,m) = N(y,A(m)-0 + b(m),Vy) (7)

We also assume that the prior on the parameters is a
Gaussian as well:

Pojm(01m) = N(0,0(m), Vo(m)) (8)

where O(m) is the mean of the prior on the parameters for
topology m (a vector of length ny(m)) and Vy(m) is the variance
(an ny(m) by ny(m) symmetric positive definite matrix).

Substituting the Gaussian definitions for the likelihood and
prior into eqn (3), we get:

Pym(ylm) = LN(y, A(m) -0+ b(m), V,) - N(6,8(m), Vo(m))
(©)

This integral, the marginal likelihood of a linear Gaussian
model, has a well-known analytical solution:

Pyim(Y1m) = N(y,A(m)-0(m) + b(m), Vy, + A(m)-Vo(m)-A(m)")
(10)

Nonlinear models are not defined using the A(m) and b(m)
matrices, so this form is not directly applicable as a linear
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approximation of nonlinear models. It is known®® and is
rederived with matrix transformations in Appendix 1 (ESIt)
that this can be rearranged into a convenient form that is the
product of the likelihood and prior evaluated at the maximum a
posteriori parameter set and a term involving the determinant
of the posterior variance:

Pytm(¥1m) = Pyjo,m( 91003, 1), m) Pojm(0(y,m) | m)-12-7-Vi( y, m) I
(11)

where 0(y,m) is the maximum a posteriori parameter set, the
best-fit parameters of topology m for data y, and Vj3(y,m) is the
posterior variance, which is equal to the inverse of the Fisher
information matrix. While the maximum a posteriori parameter
values and posterior variance have closed-form solutions for
linear Gaussian models (eqn (A5) and (A31) in Appendix 1, ESIT),
such an analytic expression does not exist for the topologies we
investigated, nor for mass action models in general and many
other biological models of interest. Therefore, the best-fit para-
meters were found using a nonlinear fitting algorithm. The
posterior covariance was computed by evaluating the Fisher
information matrix at the best-fit parameter set:

Gﬁ(@(y7m)7m>T B 0’((3(}4171),111)
a0 Y

F(y,m) =

where 20m 00, m))

is the n, by ny(m) sensitivity matrix, calcu
lated by integrating the forward sensitivities with a numerical
ODE solver for each topology m parameterized with its best fit
parameters 0(y,m).

The representation of the marginal likelihood in eqn (11) is
the central formula to our method. While it is an exact
representation for linear models, it is composed of terms that
are also well defined for nonlinear models. Since all terms are
calculated at the maximum a posteriori parameter set, this
formula can be interpreted as a linearization at that point. As
we show in Results, this turns out to be a powerfully effective
approximation for ODE models of biological systems.

Topologies

As our test case, we used four mass-action ODE topologies of
MAPK activation.*® A set of reaction diagrams illustrating these
topologies is provided in Fig. 2. The topologies model the
double phosphorylation of Erk by Mek. Each topology has a
pair of phosphorylation reactions in which the kinase either
binds, phosphorylates once, and falls off before rebinding and
phosphorylating a second time (distributive mechanism) or,
after initial binding, the kinase phosphorylates once and
remains bound until a second phosphorylation occurs (proces-
sive mechanism). Each topology also has a pair of phosphatase
reactions that follow either the distributive or processive
mechanisms like the kinase, falling off or remaining bound
between reactions. The four possible combinations of these two
mechanisms for these two enzymes constitute the four topologies
used in this work. As an example of the mathematical form of these
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Topology 2: Distributed Kinase—Processive Phosphatase
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Topology 4: Processive Kinase—Processive Phosphatase

Fig. 2 MAPK topologies. These are the four topologies used in the scenario to generate synthetic data, which was then presented to several topology
discrimination methods to determine what the probability was that each topology had generated the particular data set. The suffix “#P" indicates a

phosphorylated species.

topologies, the differential equation for unphosphorylated Erk,
which is the same for all topologies, is shown here:

Erk
B font - Erk - Mek + ko - Mek:Erk
dr (13)

+ ket 4 - Ptase: Erk#P

The four model topologies have 12, 10, 10, and 8 parameters
in the respective order they will be listed throughout this work
and shown in Fig. 2A-D. Each distributive mechanism has two
additional parameters for the on and off rates of enzyme
rebinding that don’t exist for the corresponding distributive
topology. Each topology has 8 species, although in topology 4
(processive/processive) the free singly phosphorylated state is
not populated. Each topology has 1 input, the amount of
kinase, which has a constant value of 1 uM. The initial amount
of substrate is 2 uM, the initial amount of phosphatase is 1 uM,
and all other initial amounts are 0 puM. These values are
comparable to experimental procedures of Ferrell et al.*®

There are three outputs, the amounts of unphosphorylated
substrate, singly phosphorylated substrate, and doubly phos-
phosphorylated substrate. The outputs include the amounts of
that species that are free or are bound in a complex with the
kinase or phosphatase.

Scenario

We set up a computational scenario to generate many data sets
from the topologies so that we could interrogate several methods of
topology discrimination to determine how well each performed. To
generate each data set, a topology was chosen randomly from a

578 | Mol BioSyst, 2015, 11, 574-584

uniform distribution (all four topologies were equally likely to be
chosen) and the topology was parameterized with random para-
meters chosen from a multivariate log-normal distribution with a
geometric mean of 0.1 and an independent geometric variance
such that the 95% confidence intervals stretched 100-fold above
and below the geometric mean. This meant that each parameter
was essentially chosen over a range of four orders of magnitude.

Each randomly drawn model was simulated for 100 minutes
and the three outputs were measured at 12.5, 25.0, 37.5, 50.0,
62.5, 75.0, 87.5, and 100.0 min. Each measurement had Gaussian
error added to it with a standard deviation equal to 10% plus 0.01
uM. The resulting noisy measurements were floored at 0 (negative
values were moved to zero). By measuring the sum of phosphoryla-
tion sites across the complexes in which they appear and by only
measuring at 8 time points, we intended to represent the modern
measurement capabilities of mass spectrometry.*”

This scenario was repeated 1000 times to generate that many
random models with that many random data sets.

Monte Carlo

The various Monte Carlo methods used to solve this problem
are all similar in that they compare the unknown likelihood
function to a known likelihood function by sampling from one
and comparing the sample in some way to the other.?*?>2%28:29
To be a known likelihood function means that its normal-
ization factor, the integral over all space, is known. The method
we use in this work has some conceptual similarity to the
Annealed Importance Sampling method,*® but is procedurally
very different.

This journal is © The Royal Society of Chemistry 2015
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To use importance sampling to determine the normalization
constant z; of a distribution determined by likelihood function
15, we sample from a distribution determined by likelihood [,
with known normalization constant z, and use the following
formula to estimate the ratio of the normalization constants:

1 e 1 11(0,)
P EZ[O(G,)

where each 6; is one of n random parameter sets drawn from
the distribution represented by [,. The uncertainty in this

estimator is:
1 : 2
11(0,) — W
n—1 7 10(0,)

The convergence of this estimator is dependent on the amount
of overlap between the known and unknown distributions. If the
distributions are similar, the estimator will converge quickly. If the
distributions are very different, the estimator will converge slowly.
To ensure that the distributions are similar enough, we used a
sequence of distributions between the known and unknown dis-
tribution defined by the formula:

10,8) = 10(6)17/3'[1(0)/f

(14)

(15)

(16)

which, by tuning f, gradually transforms the known dis-
tribution at f = 0 into the unknown distribution at = 1.

For the known distribution, we used a linear Gaussian
approximation of the posterior by using a nonlinear fitting
algorithm to find the maximum a posteriori parameter set (the
best-fit parameters) and the Fisher information matrix evalu-
ated at the best-fit parameters. The best-fit parameters became
the mean and the inverse of the Fisher information matrix plus
the inverse of the prior variance became the variance of a log-
normal distribution in parameter space that served as the
known, starting distribution of the Monte Carlo procedure.

The final piece of the transformation process is the schedule
on f to transform the known distribution into a sequence of
unknown distributions culminating in the final unknown distri-
bution. Again, there are many ways to select the points between 0
and 1. The most basic method, a uniform spacing did not allow
the Monte Carlo method to converge because the distribution
changed far more near the ends than near the middle (data not
shown). For example, a change from 0% to 1% or 99% to 100%
unknown distribution was a far greater change than going from
49% to 50%. As a result, the importance sampling estimates near
the ends had very large uncertainties, but making the steps fine
enough to reduce the uncertainty resulted in many wasteful
estimates being made of the low-uncertainty middle region. To
ensure that each step had a reasonably low variance, we started
from f = 0 and determined the next value of f§ by generating a
small sample from the distribution defined by the current value of
f and finding, via Matlab’s numerical root finder fzero, the value
of the next f that would result in a desired sample standard
deviation. We chose 0.2, or 20%, as the desired sample standard
deviation of each step.
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The importance sampling at each span provides an estimate to
the change in the integral across that span and an uncertainty in
that estimate. The estimates are combined by a simple product:

Whinal = H W; (17)
J

where j is an index over each bridge point. (Because of the
limitations of floating point arithmetic, these calculations were
actually performed in log space and exponentiated to get the final
answer.) The uncertainty in this estimate can be computed by the
linear propagation of uncertainty, but in working with this system
we found that this dramatically overestimated the uncertainty (data
not shown). So we used bootstrap resampling instead. We
resampled with replacement each bridge point and recomputed
the estimate of the integral. This resampling was repeated
100 times, the sample standard deviation of the recomputed
integrals was used as the uncertainty in the integral.

The sampling of the posterior was done using the Metropolis-
Hastings algorithm.*®*® At each bridge point, the sampling was
started at the maximum a posteriori parameter set. The proposal
distribution of the algorithm was a log-normal distribution with a
geometric mean of the current point and a geometric variance
equal to the inverse of the Fisher information matrix plus the
inverse of the prior variance computed at the starting point of the
sampling multiplied by 5.66 divided by the number of dimen-
sions.*® The log-normal distribution was truncated below 1 x 10~ *°
and above 1 x 10° to reduce the chance of drawing an extreme
parameter set that could destabilize the integrator. The sampling
was thinned by saving only every fifth point, and the sampling was
restarted every 100 samples after thinning using an updated
proposal variance. The autocorrelation in each parameter was
computed with Matlab’s autocorr function. The sampling was
thinned further using the smallest step size such that the estimated
autocorrelation in every parameter was less than 0.05. To ensure
that the estimate of the autocorrelation was itself accurate, the
autocorrelation step size was not trusted until the total length of the
sample used to compute the autocorrelation was 20 times longer
than the step size.

Akaike Information Criterion

The Akaike Information Criterion (AIC)*® is a popular heuristic
for topology discrimination:

(18)

which evaluates the log likelihood at the best-fit parameters and
adds a penalty proportional to the number of parameters. To
plot the relative evidence, we return the AIC to probability space:

AIC(m,y) = 2:ng(m) — 2-10g Py|0,m(Y|0(y,m),m)

Dylo.m (y‘é(yv }’}’l), m)
exp (0 ()

Pylo.m (y|0(y7 m)v i)
2 explm (D)

paic(mly) = (19)

The ranking of topologies under this metric is the same, but
makes the values comparable to the Monte Carlo and linear
methods.
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Schwarz Information Criterion

The Schwarz (or Bayes) Information Criterion (SIC)*° is another
popular heuristic for topology discrimination:

SIC(m,y) = no(m)-log(ny) — 2-1og pyjom(¥|0(y,m),m) (20)

which differs from the AIC only by the size of the penalty. Both
use the log likelihood of the best-fit parameters, but the SIC
penalizes the topologies with more parameters more strongly.
This metric can be transformed into parameter space in a
similar way to the AIC:

Dylom (y‘é(yv m)? m)
1y - €xp(ro(m))
py\ﬁ,m(y|6(y,m)7 i)

Xl«: ny - exp(ng(i))

psic(mly) = (21)

Availability of software

Matlab files for implementing the algorithm, running the
simulations, and generating the figures described here are
available at the authors’ website: www.mit.edu/tidor.
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Results

We generated 1000 data sets from 1000 random parameterized
topologies and asked each of the methods to determine the
relative evidence that each topology had generated the data,
quantified as a probability distribution over the four candidate
topologies. These probability distributions were compared to
each other and, in particular, to the Monte Carlo result, which
should have converged to the correct probability distribution.

We show four of the thousand runs in Fig. 3 to illustrate
typical results seen. The true topologies underlying Fig. 3A-D
were topologies 1, 2, 3, and 4, respectively. The results for our
scenario can be classified into two main cases. The less
common case, represented by Fig. 3B, is the case where the
data unambiguously indicate the true topology; in this case, it
was topology 2. When only one topology can fit the data, with
the ability to fit the data indicated by the ‘“Likelihood” bars,
then all methods agree that the topology that fits is the correct
topology. The more common case is represented in Fig. 3A, C
and D. Here, all the topologies can the fit the data to some
degree and the different methods give different probability
distributions on the data. In these cases, one can see that the
likelihood method tends to overstate the true probability, given
by the “Monte Carlo” bars, for topology 1, which has the
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Fig. 3 Typical results. The topology probability according to each of the five methods is shown for four example data sets. The synthetic data underlying
A, B, C, and D were generated by topologies 1, 2, 3, and 4, respectively. The error bars on the Monte Carlo method are the standard error on the mean as

computed by bootstrap resampling.
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Fig. 4 Divergence of each method from the gold standard. The Jensen—Shannon (JS) divergence measures the difference between two distributions on
a scale of 0 to 1, which ranges from identical to no overlap, respectively. The divergence between the topology probability supplied by each method and
the gold standard Monte Carlo were computed for all 1000 data sets, sorted into 50 evenly spaced bins, and plotted as histograms. For reference, the
median residual divergence in the Monte Carlo from the true probability distribution was estimated with bootstrap resampling to be 0.0061.

greatest number of parameters. Interestingly, the AIC and SIC
methods show a strong bias in favor of topology 4, which has
the fewest parameters. However, it can be seen that the
linearization method is quite close to the Monte Carlo method
in each case, suggesting that it is a good approximation. If one
were to look at just one result, for instance Fig. 3D, it may
appear that the AIC and SIC are the superior methods because
they are the only ones that put the highest probability on the
true topology, topology 4. However, this would be misleading,
because they frequently put a high probability on topology 4,
even when it is not the topology that generated the data (Fig. 3A
and 3C). In fact, even in Fig. 3D, they are overstating the
evidence that topology 4 is true, for the actual probability is
provided by the Monte Carlo.

For each of the 1000 runs, we calculated the Jensen-Shannon (JS)
divergence between the probability distribution given by each
method and the Monte Carlo probability distribution. The JS
divergence is one standard measure of how different two probability
distributions are, which in this case provides a single quantification
for how far each method’s answer is from the correct answer. The JS
divergence returns a value between 0 (identical distributions) and
1 (non-overlapping distributions). The divergence values for each
method over all runs were binned and plotted as a histogram in
Fig. 4. Of the other methods, the linearization method is closest to
the Monte Carlo. The likelihood comparison was the next closest,
followed by the AIC and the SIC.

While the JS divergence is one measure of how different one
probability distribution is from a reference distribution, it does

This journal is © The Royal Society of Chemistry 2015

not report numbers that can easily be used to understand if the
error in each approximation is large enough to matter. To
aggregate the results in a way that was easier to interpret, we
took the most likely topology according to each method and
compared it to the topology that actually generated the data. In
the real world, we would not be able to do this test because the

0.5 T T T T

0.45

0.3

Fraction correct for most likely
o o
o 9 N
w N [$,]

o
=

o
=
o

MCMC

Linear Likelihood AIC SIC Random

Fig. 5 Accuracy of the most probable topology. For all 1000 data sets, the
most likely topology according to each method was compared to the
actual topology that generated the data. The fraction that each method
found correct is plotted here. The error bars are the standard error of the
mean.
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true topology would be unknown, but this computational
scenario allows us to investigate whether the methods actually
do what they are intended to do—tell us which topology is
correct according to the data. We computed the fraction of top
hits that were correct for each method (Fig. 5). As expected, the
Monte Carlo was correct most often; the most likely topology
according to this method was the true topology 46% of the
time. Because Monte Carlo provides the correct probability, it is
impossible to do better than this provided that the Monte Carlo
has converged and a sufficiently large number of runs are done
to approach statistical averages. No method could pick the
correct topology 100% of the time because that information was
not contained in the data. The linearization method did almost
as well as Monte Carlo, finding the correct topology 44% of the
time. The likelihood comparison, the AIC, and the SIC were
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Fig. 6 Bias in methods. The mean topology probability distribution was
taken over all 1000 runs. Because all topologies were drawn with equal
probability, the mean probability distribution should be uniform if the
method is unbiased (dashed line). The linearization method shows this
lack of bias as does the Monte Carlo method. The likelihood method
is expected to have a bias toward the topology with the most para-
meters (topology 1) and against the topology with the fewest parameters
(topology 4), which is visible but slight. A strong bias in favor of topologies
with fewer parameters can be seen with the AIC and SIC methods. The
number of parameters in topologies 1, 2, 3, and 4 are 12, 10, 10, and 8,
respectively. (A) Monte Carlo method, (B) the linearization method developed
here, (C) likelihood method, (D) Akaike Information Criterion method, and
(E) Schwarz Information Criterion method.
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correct 30%, 30%, and 28% of the time, respectively. Surprisingly,
these heuristics only do slightly better than randomly guessing one
of the four topologies, which would be correct 25% of the time.

We analyzed the bias in each method by plotting the mean
probability each method returned for each topology (Fig. 6). An
unbiased method will return a mean of 0.25 for each topology
because that is the probability by which each topology was
drawn. The bias that the likelihood comparison has for the
topology with the most parameters can be seen though it is not
particularly large. Interestingly, AIC and SIC are strongly biased
toward the topology with the fewest parameters. The Monte
Carlo method has no bias, as expected, but neither does the
linearization, which is a satisfying result.

Despite the improved accuracy of linearization, the method
does not take substantially greater computational resources
than the heuristics, which take radically less time to compute
than the full Monte Carlo. While the Monte Carlo method took
a median of 13 days to complete, the linearization method,
likelihood comparison, AIC, and SIC all took a median of
4.2 minutes to complete. The fast methods took the same
amount of time to complete because the time of each was
dominated by the time it took to simply fit parameters for each
of the topologies to the data. The computation of the likelihood
(needed for all methods) and the Fisher information matrix
(needed for the linearization method) took about as much time
as a single iteration of the gradient descent fitting algorithm.
Computing the Fisher information matrix requires computing
the sensitivities of the outputs to the parameters, which is not
needed to compute a likelihood comparison, the AIC, or the SIC
and is more expensive than simply simulating the system
to compute the likelihood of the data. If the time to fit the
topologies to the data is ignored, it took a median of 0.80 seconds
to compute the likelihood comparison, AIC, and SIC and
3.4 seconds to compute the linearization method. Thus, the
linearization was slightly more time consuming than the other
fast methods, but insignificantly so.

Conclusion

The quantification of parameter uncertainty in ODE models of
biological systems has a number of successful and computa-
tionally feasible methods.?!*%3%*>! However, doing the same
for the other half of the model, the topology, has not been as
successful. The existing methods are either expensive (Monte
Carlo methods) or inaccurate (various heuristics). We have
proposed one method, our linearized Bayesian approach, which
may fill this gap. It returns an answer that is similar to the
Monte Carlo gold standard, but does so at a computational cost
no more than fitting the topologies to data.

There are several ways to interpret what the method is doing.
The simplest one and the one we have used throughout this
work is that it is a linearization at the maximum a posteriori
parameter set, because we arrive at this parameter set with
nonlinear fitting and then evaluate the likelihood, the prior,
and the Fisher information matrix with these parameters.

This journal is © The Royal Society of Chemistry 2015
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These values are then plugged into a formula that is exactly true
only for linear Gaussian topologies. Another interpretation is
that the integrand of the marginal likelihood equation has been
replaced by a Laplace approximation. A Laplace approximation
is like a second-order Taylor approximation except that an
exponential of a polynomial is used rather than a polynomial
itself.>® A Laplace approximation generates a single Gaussian at
a point to approximate the rest of the function. This interpreta-
tion has one additional caveat: instead of the second-order
derivative of the log likelihood with respect to the parameters
(also known as the Hessian), we use the Fisher information
matrix, which is only exactly equal to the Hessian if the model
is linear. Computing the Hessian takes greater computational
resources, yet has little impact on the result (data not shown).
The use of the Hessian and Fisher information matrix in the
Laplace approximation of marginal likelihoods even has some
use in other fields.*®

The number of possible topologies grows exponentially with
the number of states. The linearization method would not be
very effective at reverse engineering the topology from scratch
because the method considers each topology individually.
However, the method could work effectively as a subsequent
step to other methods that efficiently pare down the vast
topological space to a manageable number of topologies. As
long as the number of topologies is small enough such that
each can be fit to data, possibly in parallel, then the lineariza-
tion method would efficiently quantify the uncertainty in the
remaining set.

Because the problem is phrased in a Bayesian fashion, the
probability distribution returned by the linearization method
sums to 1. This means that, like all Bayesian methods, it is
implicitly assumed that the true topology is in the set of
possibilities. The possibility that no topology is a good fit for
the data can be mitigated by checking after the fact that there is
one at least one topology that fits the data by using a frequentist
statistic, such as a chi-square p-value.

In this work we have demonstrated the effectiveness of
the approximation only on a single set of simple biological
topologies. Testing on more systems, especially more complex
systems, is warranted. The main limitation with our testing
scenario in evaluating the method on more complex topologies
was that the Monte Carlo method already took 13 days to
complete. A noticeably more complex set of topologies would
not finish in a reasonable amount of time, so that there would
be no gold standard with which to compare. Perhaps this
illustrates why a good approximation of the topology probability
is so important: most of the models that biologists care about
are too large to compute the topology probability with a Monte
Carlo method.

The approximation is dependent on the ‘“area” under the
hyperdimensional Gaussian being similar to the “area” under
the product of the likelihood and the prior, which has the
shape of the parameter posterior distribution. If the region of
probable parameters is substantially larger or smaller than the
approximation, the approximation will fail unless the difference
is similar for all topologies. It may be interesting to note that the
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linear Gaussian approximation does not have to be very similar
to the true distribution; it only has to have a similar integral.
This may be an important property because the posterior para-
meter uncertainty is typically very large for biological models.
When the uncertainty is large, there will be regions of likely
parameter sets that a linear approximation will not recognize as
likely parameters because the linear approximation is only valid
for a short range. Fortunately, the linear approximation does not
actually have to overlay the underlying posterior distribution in
order to be a good approximation for the purpose of topology
probability; it only has to have a similar integral. A case where
one might expect the approximation to be very different from the
true value is when the posterior is multimodal. How much of a
problem this is in practice should be monitored through
experience.

In our previous work, we found that a linear approximation
of the parameter uncertainty was an effective enough approxi-
mation for designing experiments to efficiently reduce that
uncertainty.*>*> This work does not consider the effectiveness
of our approximation for any particular task, but the ability to
not only determine the current topology uncertainty but design
experiments to reduce that uncertainty is an alluring goal for
which research is ongoing to achieve.
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