
JAAS

TECHNICAL NOTE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ja

nu
ar

y 
20

15
. D

ow
nl

oa
de

d 
on

 7
/2

9/
20

25
 3

:2
7:

17
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
A simple procedu
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re to select a model for mass
discrimination correction in isotope dilution
inductively coupled plasma mass spectrometry

J. Terán-Baamonde, J. M. Andrade,* R. M. Soto-Ferreiro, A. Carlosena and D. Prada

A fast, simple and straightforward procedure to decide on the best model to calculate the mass

discrimination factor in Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (ID-ICP-MS) is

proposed. It is based on the study of the residuals of the different models that are proposed commonly,

viz., the linear, the exponential, the power and Russell's models. However, it can be generalized to

evaluate any model proposed to linearize the relationship between the theoretical/measured isotope

ratios and the mass. The procedure does not involve laboratory extra work, it is rooted on basic statistics

associated with the least squares fit, and can be applied easily by the analysts so that decision making is

fast and reliable. The procedure was exemplified with four different examples where Cd, Cr, Nd and Sm

were determined by ID-ICP-MS.
Introduction

Isotope dilution inductively coupled plasma mass spectrometry
(ID-ICP-MS) has become a work horse technique to quantify
metals at trace and ultra trace levels, study their species and,
more recently, determine proteins (using either inspecic and
species-specic methods).1–3 This can be explained, amongst
other considerations, because isotope dilution mass spec-
trometry (ID-MS) was recognized as a denite primary method,
meeting the highest metrological standards, by the ‘Comité
Consultative pour la Quantité de Matière (CCQM)’ and so its
results are directly traceable to SI units.4

Further, in most ID-MS applications the typical working
calibration graphs based on the use of calibration solutions of
different quantities of the analyte may be avoided. This saves
costly instrument time and makes ID-MS applications much
more robust than conventional methodologies so less-careful
sample preparation is required. Also, ID-MS procedures are
more accurate than conventional methodologies, so that fewer
quality-control failures are to be expected.5

However, adequate training of laboratory staff is required
as ID-ICP-MS needs a careful and laborious optimization in
order to look for the best measuring conditions that yield a
reliable and traceable working chain. A relevant issue here is
to recall that a mass discrimination occurs in ICP-MS when
ions of different mass are transmitted through the spec-
trometer, leading to different efficiencies in the transport of
ions which results in non-uniform sensitivity across the mass
range and inaccurate isotope ratio measurements.6
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Following, ICP-MS devices may yield biased isotope amount
ratios7 and, therefore, mass discrimination must be corrected
for using a correction factor, termed mass discrimination
factor, K (it is oen presented, simply, as the ‘mass bias’ or
‘mass bias factor’, or ‘mass bias factor per unit mass’). This is
dened as the quotient between the true and the measured
mass ratios for a pair of given isotopes and so it underlines
that the instrumental system may yield a systematic error
regarding the correct mass ratio.8–10

It is worth noting that K is dened and determined locally for
a specic isotope pair. This raises a further potential difficulty
as K may incorporate contributions from unsuspected spectral
interferences which could vary from sample to sample and,
thus, make it unrepresentative of the bias obtained for adjacent
masses.6

In general, two approaches exist to correct for mass
discrimination, measured by K.11 First, external stand-
ardisation, where the isotope ratio of interest is measured in a
standard solution of exactly known composition of the analyte
to be analyzed, and the experimental bias is used to correct
the same ratio in the unknown sample. This allows the mass
discrimination factor to be measured at the same masses as
the analyte, and approximately at the same abundances.
Second, internal standardisation determines the mass
discrimination factor of the isotope ratio of interest in the
unknown sample solution by means of either a known isotope
ratio of an element added to the sample for that purpose, or
using a pair of invariant isotopes of the analyte element.6

Another relevant issue is that K can dri throughout the
experiment time and, thus, it must be determined periodi-
cally. A standard bracketing sequence is adopted usually,
yielding low throughput.10
J. Anal. At. Spectrom., 2015, 30, 1197–1206 | 1197
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The relative magnitude of mass discrimination can be
ascertained using multielemental molar-response curves by
which the response observed in the detector is measured as a
function of the ion transmission efficiency through the system.5

In general, these curves have to span through a range of mass/
charge values, and are complex and depend on the instrument
at hand. To make them useful it is necessary to model them
functionally. All models calculate a corrected isotope ratio
(Rcorr) from an experimentally measured one (Rexp), the absolute
masses of the isotopes (mi and mj), or the mass difference
between the isotopes (DM), and K (the mass bias factor, which
must be determined empirically).

Three functions are of general use; viz. the linear, the
exponential and the power ones. They were critiziced
somehow by Ingle et al.6 because they predicted that the bias
was dependent on the mass difference and not on the abso-
lute mass. Besides, they have a common origin and the former
two may be considered as approximations to the power
model.6,12 Further, in these functions K should be considered
as the mass bias per unit mass and it is assumed to be
constant across the mass range and proportional, which is not
totally correct.6 This explains why Russell's model became
popular because it avoids these problems as it uses the mass
of the two isotopes.

Even though the models might yield similar mass bias
factors, inaccuracy may arise from the use of an inappropriate
one.13 Accordingly, the selection of the most suitable functional
model is not trivial. Indeed, calculating the mass bias factor is
far from a standardized procedure and is demonstrated by the
existence of several approaches. Some can be mentioned here (a
complete review is out of the scope of this technical note). K was
determined as the ratio between the theoretical, or true, isotope
ratio and the same ratio measured experimentally.8 Then, K can
be applied using either a bracketing approach or a mathemat-
ical model.4,6,14 The use of several internal reference isotope
pairs was compared against the classical approaches mentioned
above.11 This implied the use of a polynomial function and the
so-called ‘common analyte internal standardization’. The
results emphasized the importance of a proper mass discrimi-
nation correction (along with the need for a selection of an
adequate internal standard).

To complicate things further, the reasons why a model was
selected have not always been claried.15–17

Following, this paper aims at presenting a fast and simple
procedure to select the best model to calculate the mass
discrimination factor in ID-ICP-MS. The key idea is to study and
Table 1 Models to determine the mass discrimination factor (K) in ID-IC
ratio, Rtheo is the theoretical isotope ratio, mi and mj are the absolute m
them

Model Instrumental relationship

Exponential Rcorr ¼ Rexpe
DMK

Straight line (linear) Rcorr ¼ Rexp/(1 + DMK)
Power Rcorr ¼ Rexp(1 + K)DM

Russell Rcorr ¼ Rexp(mi/mj)
K

1198 | J. Anal. At. Spectrom., 2015, 30, 1197–1206
compare the residuals of the different linearized models. Here
we will consider the most common ones; viz., the exponential,
the linear, the power and Russell's models, although the
procedure can be generalized to any other. Four examples will
be considered where Cd, Cr, Sm and Nd were determined.
Evaluation of the mass bias factor per unit mass

From a pragmatic viewpoint, the most convenient way to model
the instrumental mass discrimination is to relate a suite of
theoretical isotope ratios (Rtheo) to their corresponding empir-
ical values (Rexp), calculate K and, then, use it (along with Rexp) to
calculate a corrected ratio (Rcorr) for the unknown. In general, K
is involved in an algebraic equation describing a curve but it can
be calculated straightforwardly whenever a linear model is used
instead.6,8

As discussed in the previous section, the empirical rela-
tionship between Rtheo, Rexp and the two isotope masses can be
described in different ways, among which four stand out in the
literature: the linear (straight line), the exponential, the power
and Russell's models. They are depicted in the second column
of Table 1. As their direct use is not trivial, the common practice
is to linearize them to get simpler and more straightforward
equations (see the third column of Table 1). To select the best
model for a particular problem it was proposed to t the four
linearized models and to study the straight lines obtained by
plotting the Rtheo/Rexp ratio (or a logarithmic form) against the
mass difference (or logarithm of the masses, in Russell's
model).5 However, this approach is subjective and prone to
errors because the signicance of those plots is not immediate
and a sound decision making is not possible.

Fortunately, basic statistics associated with the straight line
(or rst-order) least squares t yield very simple and reliable
criteria to judge on the adequacy of each linearized model.18–20

Note that the expression ‘straight line t’ will be used
throughout the text to denote that the models are converted to a
straight line function. The term ‘linear t’ and the like are not of
sufficient quality to assure the traceability of the calculations
because, aer all, any mathematical relationship is ‘a line’.
Analogously, the term ‘linearization’ is used to denote an alge-
braic transformation from a (usually) complex mathematical
expression to a straight line equation, whose parameters are of
interest (here, the slope K).

Although the conceptual idea is really simple, it is worth
remembering some basic statistics. More details and extensive
explanations can be found in the references given herein.
P-MS. Rcorr is the corrected isotope ratio, Rexp is the measured isotope
asses of the selected isotopes and DM is the mass difference between

Functional linearized form Dependent variable

y ¼ DMK y ¼ ln(Rtheo/Rexp)
y ¼ DMK y ¼ (Rexp � Rtheo)/Rtheo
y ¼ DM log10(1 + K) y ¼ log10(Rtheo/Rexp)
y ¼ K log10(mi/mj) y ¼ log10(Rtheo/Rexp)

This journal is © The Royal Society of Chemistry 2015
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Fig. 1 Effect on the regression lines calculated by the ordinary least
squares criterion when outliers are present in the dataset (the rota-
tional and translational denominations stem from ref. 24) and a
graphical example of homoscedasticity (c) and heteroscedasticity (d) in
the residuals.

Technical Note JAAS

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ja

nu
ar

y 
20

15
. D

ow
nl

oa
de

d 
on

 7
/2

9/
20

25
 3

:2
7:

17
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Review of some concepts associated with the straight line t

In a typical model, two variables are related as y¼ f(x) + 3, where
f(x) is a mathematical function that relates y to x (it is a common
practice to select a straight line function but other possibilities
exist, and the choice is under the analyst's responsibility based
on his/her experience and/or experimental data). Note that the
model is a mere working hypothesis, which must be modied if
the experimental data are against it. Finally, 3 is the random
error, or information not modelled by the calibration function,
which is associated with the variable response and denotes how
closely the model resembles the measured signals. It is
reasonable to accept that the smaller the random errors are, the
better the model is. Therefore, how can we t the best model
through a swarm of points? A quite intuitive solution is to look
for a model that adheres as much as possible to each and every
experimental point so that it minimizes the average difference
between the experimental signals and those predicted by the
model. Hence, the common criterion by which the sum of the
squared differences between the measured signal (yexp) and that
predicted by the model (ypred) is minimal was accepted as a
natural tting criterion.18–20 The differences (ypred � yexp) are
referred to as ‘residuals’. This is the (ordinary) least squares
criterion (OLS or LS). Despite its widespread and ubiquitous
usage the OLS criterion has three basic mathematical assump-
tions that are less broadly known:18–22

(i) the experimental errors occur only in the direction of the
signal to be measured, y.

(ii) The errors in the y-direction are normally distributed.
This means that the resulting errors associated with the
analytical signals should follow a normal distribution.

(iii) The errors in the y-direction are independent and of the
same magnitude regardless of the x values. This property is
referred to as ‘homoscedasticity’ (the opposite situation is
called ‘heteroscedasticity’). Its presence simplies the calcula-
tions and gives rise to the usual unweighted least-squares line.

Statements (ii) and (iii) above constitute two cornerstones to
assure whether a model t is acceptable. Since the OLS criterion
is a universal procedure to t functions, it does not guarantee by
itself that the model under scrutiny is correct. In order to accept
it, we must assess that these two requisites hold on. There are
different statistical tests to evaluate the models but most of
them should not be used due to the usual low number of data
points employed to t themodel23 (this will be considered later).
Therefore, a suitable alternative consists of a graphical visuali-
zation and evaluation of the residuals associated with our
(temptative) model.

Homoscedasticity of the t must be assured and, fortunately,
can be visualized easily. First, the absence of outlying points
must be checked as they may strongly bias any model in
different ways,24 see Fig. 1a and b for a general, conceptual idea
on how strongly an outlier will inuence the regression. In
general, outliers situated in extreme positions affect more the t
(rotational effects).22 Check that all points do follow a unique
trend; in case a point behaves anomalously, consider rejecting it
and recalculating the model. Sometimes, decisions are not
immediate and plotting the residuals will help. This can be
This journal is © The Royal Society of Chemistry 2015
done straightforwardly in any spreadsheet, less than a minute,
and it may yield enormous benets. Any data point with a too
high residual is suspicious (more formally, a point whose
standardized residual is around 3, or higher, should be
considered as an outlier23). Next, check for the absence of visual
trends in the residuals (Fig. 1c and d). In particular, parabolic
trends are frequent (Fig. 1d) and they mean that a straight line
does not t the experimental data properly. If a clear trend is not
visualized, all residuals are more or less randomly distributed,
and are of the same magnitude (Fig. 1c), it can be reasonably
assured that they are normally distributed and that they have
common variance (another requisite of the OLS methodology).20

Normality can be studied more formally using statistical tests,
as those described in the next section, where more details are
presented.

It may surprise that so much emphasis is put on graphical
decision-making but this can be explained quoting NIST:
‘Numerical methods for model validation are useful, but usually
to a lesser degree than graphical methods. The latter have an
advantage [.] because they readily illustrate a broad range of
complex aspects of the relationship between the model and the
data’.25

Experimental
Datasets

Four case studies will exemplify the working methodology
proposed here. Two of them deal with the determination of Sm
and Nd and were used as tutorials in a recent textbook.5 They
present a situation where the replicates of the experimental
ratios are not considered explicitly to set the model. The other
two examples are about determining Cd and Cr by ID-ICP-MS,
using a quadrupole analyzer equipped with a kinetic energy
discrimination cell. They correspond to an ongoing study in our
laboratory to measure some environmentally relevant metals in
J. Anal. At. Spectrom., 2015, 30, 1197–1206 | 1199
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Table 2 Original data for the four case studies considered here. The isotopes selected for each element are shown under the heading ‘Isotopes’,
along with their theoretical (derived from IUPAC26) and experimentally measured ratios. The mass difference is denoted as DMa,b

Isotopes
Theoretical
ratio

Experimental
ratio DM Isotopes Theoretical ratio

Experimental
ratio DM Isotopes

Theoretical
ratio

Experimental
ratio DM

Case study 1: Cd
106/114 0.043508528 0.031349113 8 111/114 0.445527323 0.391757742 3 113/114 0.425339367 0.406410177 1

0.031121068 8 0.391053577 3 0.405081916 1
0.030958661 8 0.394968971 3 0.406683127 1
0.030647223 8 0.392116797 3 0.406479036 1
0.030951996 8 0.393185914 3 0.405911499 1

108/114 0.030978072 0.023971763 6 112/114 0.839888618 0.772383915 2 116/114 0.260703098 0.279916302 �2
0.023763753 6 0.768285734 2 0.278555226 �2
0.0247017* 6 0.775911501 2 0.279184221 �2
0.024381751 6 0.774078028 2 0.281141181 �2
0.02392011 6 0.772314239 2 0.279164297 �2

110/114 0.434737208 0.365326652 4
0.365379831 4
0.370625246 4
0.36543465 4
0.366794537 4

Case study 2: Cr
50/52 0.051456543 0.04146233 2 53/52 0.114016237 0.126390065 �1 54/52 0.028414518 0.035143948 �2

0.039952749* 2 0.125910941 �1 0.03487478 �2
0.041939234 2 0.125490294 �1 0.034398109 �2
0.042557359 2 0.126713427 �1 0.036049048 �2
0.042027005 2 0.127015489 �1 0.035308014 �2
0.042005136 2 0.125975986 �1 0.03475144 �2
0.041460437 2 0.126565896 �1 0.035736555 �2
0.040932561 2 0.125553057 �1 0.034422643 �2

Case study 3: Nd (**) Case study 4: Sm (**)
142/146 1.57961487 1.491953 4 144/147 0.2048032 0.197872 3
143/146 0.70824364 0.679507 3 148/147 0.74983322 0.758822 �1
144/146 1.38449008 1.345698 2 149/147 0.92194797 0.943961 �2
145/146 0.48245971 0.475716 1 150/147 0.49232822 0.510151 �3
148/146 0.33486532 0.34442 �2 152/147 1.78452302 1.891842 �5
150/146 0.32800047 0.346675 �4 154/147 1.51767845 1.647119 �7

a (*) Outliers excluded from the studies. b (**) Case studies 3 and 4 stem from ref. 5.

JAAS Technical Note

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ja

nu
ar

y 
20

15
. D

ow
nl

oa
de

d 
on

 7
/2

9/
20

25
 3

:2
7:

17
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
sediments. Replicates of the mass isotopes are presented and,
therefore, will be applied to illustrate the use of the lack-of-t
test (LOF). In addition, Cr was selected because of the low
number of isotopes and their low mass (compared to the other
elements in the present work).

The experimental isotope ratios were obtained from
measurements carried out on Cd and Cr standard solutions of
natural isotope composition for ICP analysis (Sigma Aldrich)
whose theoretical isotope abundances were obtained from
IUPAC.26 Table 2 shows the compiled experimental results.
Working methodology

In the following, the different candidate models will be
considered in their functional linearized straight line forms and
the unweighted OLS t obtained for each one. The rst step in
selecting a model is to inspect visually the residuals (potential
outliers, relative magnitudes of the residuals and the absence of
clear trends) and to study the statistics associated with the
regression line (the standard error of the t, or residual
1200 | J. Anal. At. Spectrom., 2015, 30, 1197–1206
standard deviation, Sy/x). A careful inspection and a bit of
experience are usually enough to make sound decisions, as it
will be shown next.

Note that as a referee pointed out, the units of Sy/x depend on
the particular transformation undergone by the data. Hence, to
compare them it is necessary to get rid of the scales. A natural
way would be to divide Sy/x by an average value (like the classical
relative standard deviation, RSD). However, this is not possible
here because the average value of the residuals is zero. To
circumvent this problem, the average absolute error (i.e., the
average of the absolute values of the residuals),

�
�yres

�
�, is

proposed here to get a sort of ‘relative standard deviation of the
t’, RSDF as: RSDF ¼ 100*((Sy/x)/

�
�yres

�
�). As classical RSD, it

shows the extent of the variability of the residuals in relation to
the average value (of the absolute residuals).

In addition, two traditional scale-independent statistics were
also considered: the coefficient of determination (R2) and the
lack-of-t test (which must be derived from an Analysis of
Variance – ANOVA – study when replicates are available).27 Both
are used to evaluate the adequacy of the model to the
This journal is © The Royal Society of Chemistry 2015
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experimental data. In simple linear regression, the former
equals the squared correlation coefficient (given in percentage),
but this cannot be generalized to other situations and it is a
rough approach to evaluate goodness-of-t. The lack-of-t test is
an F-test which determines whether the residual information
can be associated with the experimental random errors or with
‘something’ else (i.e., the model has not been able to capture all
the relevant variance in the data points and therefore causes a
‘lack-of-t’). Though both tests can be used to compare among
different regression models, they should be used in conjunction
with the residual plots because they are not powerful enough to
assure by themselves that the model is suitable28,29 (a typical
problem is that even curvilinear models can exhibit very good
gures in both parameters).

Then, statistical tests can be applied to check the
normality of the residuals. A normal probability curve (avail-
able in most common soware) will also simplify decision
making. However, as mentioned above, usual calibrations in
analytical chemistry do not imply many experimental points
due to work, time and resources constraints. As a conse-
quence, it is difficult (sometimes impossible) to rely on sound
statistics for decision making due to the low power of the tests
(very few degrees of freedom). Non parametric statistics might
constitute a powerful alternative but, again, they are not good
enough when very few data are available. A clear example here
was the impossible application of the non parametric Wald–
Wolfowitz's runs test (to check for a random distribution of
the residuals) to the Nd and Sm examples due to a lack of
tabulated values for such a small number of runs (because of
the few data points).

Here, the standardized Kurtosis and Skewness were calcu-
lated as a way to describe whether the distribution of the
residuals is symmetric and without tails. Then, the non para-
metric sign test and the Wilcoxon's signed rank test were used
Fig. 2 Conceptual description of the approach proposed to select the
most suitable model to calculate the mass discrimination factor, K.

This journal is © The Royal Society of Chemistry 2015
to check whether the residuals are distributed randomly.
Finally, the Kolmogorov–Smirnov's and the Shapiro–Wilk's tests
(the latter is more powerful than the Kolmogorov–Smirnov's
one when few data are available) were used to check whether the
distribution of the experimental residuals is compatible with a
Gaussian one.22

Fig. 2 shows the working procedure conceptually.
Soware

The statistical studies were performed using Excel® and Stat-
graphics (StatPoint Technologies, Inc., Warrenton, VA, USA).
Results and discussion
Case study 1 and 2: selection of the model when determining
Cd and Cr

Table 3 shows the results of several statistical tests calculated on
the residuals of the different models whereas Fig. 3 and 4 depict
the residuals associated with each model and each example,
along with the standard error of the calibration (Sy/x), the rela-
tive standard deviation of the t (RSDF), the coefficient of
determination (R2) and the lack-of-t test (LOF).

With respect to Cd, a replicate was rejected because it had
an outlying behaviour throughout the studies (see Table 2).
The linear (straight-line) t presents a rather clear parabolic
pattern (Fig. 3) and, so, it has to be discarded. This model
shows also a signicant lack-of-t (95% condence) and,
accordingly, it is not suitable for our purposes. The other
models do not exhibit a clear trend and, thus, are considered
further. The exponential and power models (whose behaviour
is almost equal) present a borderline lack-of-t (LOF).
Although, strictly speaking, the test is not signicant as the
experimental p-value associated with the F test is too close to
the critical one (0.05, 95% condence). Finally, the residuals
for Russell's method do not have a denite pattern, the LOF
test is clearly not signicant, the RSDF is comparable to the
other models and the R2 statistic is marginally better. There-
fore, the latter model should be selected.

This conclusion was assured by studying the residuals of the
models deeper and calculating the statistics mentioned above.
Table 3 reveals that no model had either a skewed distribution
or a tailed shape (standardized skewness and kurtosis lower
than �2). Thus, these statistics do not help in deciding on the
best model.

The null hypotheses of the sign test and of the Wilcoxon's
signed rank test (in both cases, H0: the data derive from a
population with a median value of zero) cannot be rejected for
any model, hereby revealing that the sets of residuals are
compatible with a symmetric distribution whose median is
zero. However, this does not guarantee that they are normally
distributed.22

The other tests are intended to check whether the distribu-
tion of the residuals is Gaussian (H0: the distribution of resid-
uals follows a normal distribution); namely, the Shapiro–Wilk's
and the Kolmogorov–Smirnov's tests. In Table 3 no rejection
can be made so all models are compatible with the normal
J. Anal. At. Spectrom., 2015, 30, 1197–1206 | 1201
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Fig. 3 Case study 1 (Cd): statistics associated with the calibration and graphical representation of the residuals. Models to calculate the K factor:
(a) exponential, (b) straight-line, (c) power, and (d) Russell.

Table 3 Statistics associated with the residuals of the models developed to calculate the mass bias factor in each case study. See text for details

Case study Exponential Straight line Power Russell

Cd Skewness 0.14 1.41 0.14 �0.48
Kurtosis 0.01 �0.46 0.01 �0.44
Sign test p-value ¼ 1.00 p-value ¼ 0.39 p-value ¼ 1.00 p-value ¼ 0.61
Wilcoxon's test p-value ¼ 1.00 p-value ¼ 0.78 p-value ¼ 1.00 p-value ¼ 0.76
Shapiro–Wilk`s test p-value ¼ 0.99 p-value ¼ 0.16 p-value ¼ 0.99 p-value ¼ 0.54
Kolmogorov–Smirnov`s test p-value ¼ 0.99 p-value ¼ 0.65 p-value ¼ 0.99 p-value ¼ 0.89

Cr Skewness �1.26 2.13 �1.26 �1.61
Kurtosis 0.53 0.80 0.53 0.57
Sign test p-value ¼ 1.00 p-value ¼ 0.40 p-value ¼ 1.00 p-value ¼ 0.40
Wilcoxon's test p-value ¼ 0.75 p-value ¼ 0.57 p-value ¼ 0.75 p-value ¼ 0.70
Shapiro–Wilk test p-value ¼ 0.30 p-value ¼ 0.03 p-value ¼ 0.29 p-value ¼ 0.21
Kolmogorov–Smirnov's test p-value ¼ 0.93 p-value ¼ 0.71 p-value ¼ 0.93 p-value ¼ 0.88

Nd Skewness �0.05 0.75 �0.05 �1.52
Kurtosis �0.22 0.13 �0.22 1.24
Sign test p-value ¼ 1.00 p-value ¼ 0.68 p-value ¼ 1.00 p-value ¼ 0.68
Wilcoxon's test p-value ¼ 1.00 p-value ¼ 0.83 p-value ¼ 1.04 p-value ¼ 0.68
Shapiro–Wilk test p-value ¼ 0.99 p-value ¼ 0.53 p-value ¼ 0.99 p-value ¼ 0.19
Kolmogorov–Smirnov's test p-value ¼ 1.00 p-value ¼ 0.99 p-value ¼ 1.00 p-value ¼ 0.93

Sm Skewness �1.12 0.71 �1.12 �0.56
Kurtosis 0.57 �0.94 0.57 �0.94
Sign test p-value ¼ 1.00 p-value ¼ 0.68 p-value ¼ 1.00 p-value ¼ 0.68
Wilcoxon's test p-value ¼ 1.00 p-value ¼ 1.00 p-value ¼ 1.04 p-value ¼ 1.00
Shapiro–Wilk's test p-value ¼ 0.34 p-value ¼ 0.07 p-value ¼ 0.34 p-value ¼ 0.14
Kolmogorov–Smirnov's test p-value ¼ 0.94 p-value ¼ 0.75 p-value ¼ 0.94 p-value ¼ 0.89
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distribution of the residuals. The other tests yielded the same
conclusion (but for a borderline situation of the straight line
model when the Shapiro–Wilk's test was used).
1202 | J. Anal. At. Spectrom., 2015, 30, 1197–1206
Finally, Russell's method led to the lowest dispersion of the
residuals (Fig. 5). Therefore, there is not additional evidence
against the selection of Russell's model for Cd.
This journal is © The Royal Society of Chemistry 2015
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Fig. 4 Case study 2 (Cr): statistics associated with the calibration and graphical representation of the residuals. Models to calculate the K factor:
(a) exponential, (b) straight-line, (c) power, and (d) Russell.
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With respect to Cr, the low number of isotopes yields only
three different calibration levels, which complicates decision
making. However, the linear model shows a clear trend (Fig. 4)
which makes it unsuitable (Fig. 2). This was conrmed by the
high skewness of the residuals (Table 3), a bad normal proba-
bility plot (gure not shown) and a high dispersion of its
residuals (Fig. 5). Further, the R2 and LOF revealed that it is the
model that ts the experimental data worst. Hence, it should be
discarded denitely.

The other three models performed very similar, with good
statistics for the residuals (Table 3). The R2 and LOF tests
were almost equal and only marginal best RSDF values were
obtained for the exponential and power models. The LOF test
was not signicant for any of these three models (95%
condence) although it was better for the power and
exponential models than for Russells' one. As the dispersion
of the residuals (Fig. 5) was slightly better for the power
than for the exponential method, the former was selected
for Cr.
Case study 2 and 3: selection of the model when determining
Nd and Sm

Analogous studies were carried out to select the best model to
determine K when studying Nd and Sm. These examples do not
include replicates for the isotope ratios and, so, the lack-of-t
test cannot be calculated. Previous studies concluded that all
models, but the straight-line one, may be acceptable and the
This journal is © The Royal Society of Chemistry 2015
exponential method was preferred (although there was a
somehow marginal best performance of Russell's method when
determining Nd).5

When the residual plots were considered for Nd (Fig. 6) it was
concluded that any one showed a particularly cumbersome
behaviour as all models had a quite random distribution. The
model with the best RSDF was the exponential one, which
agreed with the conclusion obtained elsewhere, although
following a more elaborate procedure.5 The R2 statistic was
almost the same for all models and it did not allow drawing
sound conclusions.

The statistics associated with the residuals, Table 3,
revealed that Russell's method yielded a somehow worst
distribution (skewness and kurtosis, although not statisti-
cally signicant), whereas the exponential and the power
methods performed the best. The latter one was selected
nally for Nd because of the lowest dispersion of the residuals
(Fig. 5).

When Sm was considered (Fig. 7) Russell's and the straight-
line methods were not acceptable as they showed a parabolic
residual pattern and, therefore, the models do not t the data
properly. Hence, they are discarded at the rst step of Fig. 2. It
is noteworthy that the approach presented here allows an
immediate and clear rejection of Russell's model, which was
not so simple when calculating relative errors.5 The exponen-
tial and power models behave totally similar (as noticed
previously)5 although with a marginal better RSDF for the
power method. With regards to the residual statistics (Table 3)
J. Anal. At. Spectrom., 2015, 30, 1197–1206 | 1203
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Fig. 5 Box and Whiskers plot of the residuals for each model (Exp ¼
exponential, Lin¼ straight line, Pow¼ power, Rus¼ Russell). The cross
in the middle of the box represents the average value whereas the
vertical line within the box represents the median.

1204 | J. Anal. At. Spectrom., 2015, 30, 1197–1206
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they reinforce the graphical conclusions. Note that it is not
possible to select between the methods (once Russell's and
straight-line ones were discarded) considering the statistics
alone (as for most models in the previous section, the null
hypotheses of the statistical tests could not be rejected and
they were of little value to select a model). The power model
was selected owing to the smallest scattering of the residuals
(Fig. 5).

Two nal notes can be given. First, most statistics shown in
Table 3 can be visualized in a common box and whiskers plot
(Fig. 5). Although – strictly speaking – such a plot is not a
graphical representation of the tests, the symmetry of the
residuals, their distribution and the closeness of the mean and
the median can be observed easily. So, for a reduced dataset
(as is usually the case), it is possible to take advantage of this
plot for decision making: (i) the smaller the box and the
whiskers are, the lower the standard error of the regression is;
(ii) the closer the mean (in the plot this is shown by a cross)
and the median (the bar within the box) are, the less likely the
existence of outliers will be; (iii) the more symmetrical the box
and the whiskers are, the less skewed the distribution will be
and, likely, the more Gaussian the distribution of the residuals
will become. Second, the RSDF was always greater than 100%
because it is derived from the residuals. These, in turn, follow
essentially a random distribution and, therefore, their vari-
ability is expected to be large when compared to the average (of
the absolute values, because the arithmetic average is zero).
The relevant issue here is to look for models with the lowest
RSDF values.
Conclusions

It was shown that simple plots derived from the residuals of the
least squares t provide a powerful, simple and rather objective
criterion to decide on the suitability of a model to calculate the
mass discrimination factor (K) in ID-ICP-MS. Visualization of
the residuals of the t for the different models allows deciding
on the existence of both outliers and non random (typically,
parabolic) patterns.

Then, the lack-of-t test (if replicates are available) will
further test the adequacy of the model. In the examples studied
in this paper, the classical coefficient of determination (R2) and
the relative standard error of the t (RSDF) were not critical to
select among different candidate models. However their calcu-
lation is straightforward and it is recommended to keep them in
order to gather additional information on the models. Further,
a box and whiskers plot yields good clues on the symmetry
(likely, on the Gaussian distribution) and scattering of the
residuals, which can help selecting amongst two very similar
candidate models.

It was also observed that on some occasions non parametric
statistics were not conclusive enough for decision making.
Thus, the graphical study of the residuals and the lack-of-t test
constitute the cornerstones to differentiate among several
models to calculate the mass discrimination factor and to select
a suitable one.
This journal is © The Royal Society of Chemistry 2015
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Fig. 6 Case study 3 (Nd): standard error of the fit (Sy/x) and graphical representation of the residuals. Models to calculate the K factor: (a)
exponential, (b) straight-line, (c) power, and (d) Russell.

Fig. 7 Case study 3 (Sm): standard error of the fit (Sy/x) and graphical representation of the residuals. Models to calculate the K factor: (a)
exponential, (b) straight-line, (c) power, and (d) Russell.
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7 J. Ruiz Encinar, J. I. Garćıa Alonso, A. Sanz-Medel, S. Main
and P. J. Turner, J. Anal. At. Spectrom., 2001, 16, 322–326.

8 K. G. Heumann, S. M. Gallus, G. Rädlinger and J. Vogl, J.
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