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On the translocation of bacteria and their
lipopolysaccharides between blood and peripheral
locations in chronic, inflammatory diseases: the
central roles of LPS and LPS-induced cell death+

Douglas B. Kell*® and Etheresia Pretorius*®

We have recently highlighted (and added to) the considerable evidence that blood can contain dormant
bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under
conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to
lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide
(LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be
cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides
an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production)
that is characteristic of many such diseases. Although experimental conditions and determinants have
varied considerably between investigators, we summarise the evidence that in a great many
circumstances LPS can play a central role in all of these processes, including in particular cell death
processes that permit translocation between the gut, blood and other tissues. Such localised cell death
processes might also contribute strongly to the specific diseases of interest. The bacterial requirement
for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production,
and inflammation. Overall this analysis provides an integrative picture, with significant predictive power,
that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate
and shed cell wall components.

Insight, innovation, integration

The Biological Insight of this manuscript is that while dormant bacteria, including those in blood, are normally unnoticed (as they are invisible to conventional
methods of culture), they can by definition be resuscitated and then proliferate for at least a certain number of generations before possibly returning to a state of
dormancy. This allows a continuing production and shedding of potent inflammatory agents such as the lipopolysaccharide (LPS) characteristic of the Gram-negative
cell wall. Well-established pathways link LPS (sensu lato) to inflammatory cytokine production, and to cell death via apoptosis, programmed necrosis, and pyroptosis,

with the accompanying microparticle formation known to occur with these cell death mechanisms. Cytokine-mediated cell death mechanisms that permit both (i) the
translocation of bacteria between blood and other tissues, and (ii) localised proliferation leading to inflammation and cell death, are likely to be a major component of

the various disease manifestations involved. One established requirement for bacterial resuscitation and proliferation comes from the need for available iron. The
Technological Innovation is the use of advanced microscopy techniques to detect these dormant bacteria as well as microparticle formation. The Benefit of Integration
comes (i) from bringing together these multiple biochemical elements (bacterial dormancy and resuscitation, LPS-induced inflammatory cytokine production, cytokine-
induced cell death, cell-death-induced translocation, and localised cell death induced by LPS), and (ii) by showing their commonality, and the centrality of LPS, across a

range of chronic, inflammatory diseases normally considered to lack a microbial component.
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Blood is normally considered a sterile environment in the sense
of lacking active microbes, since any bacteraemia or sepsis is
potentially extremely life-threatening.’ However, this does not
exclude the presence in blood of dormant bacteria, that by
>3 are not growing but resist detection by standard
culture techniques, yet are not ‘dead’ as they may be resuscitated
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and then proliferate. We have recently summarised the consider-
able evidence®® to the effect that human blood contains an
authentic but dormant microbiome that can contribute signifi-
cantly to a large variety of chronic inflammatory diseases, a set
of diseases that is strikingly similar to those for which we had
previously noted the presence of iron dysregulation®™ and
hypercoagulability.’

Given the well-established facts (i) that microbial growth
in vivo is normally strongly limited by the (non-) availability of
free iron (e.g. ref. 11-21), and (ii) that bacterial components
such as lipopolysaccharide (LPS) are strongly inflammatory
(e.g. ref. 22 and 23), such an analysis leads to the recognition
that the iron-related inflammatory diseases also have a major
microbial component involving the resuscitation of dormant
organisms and their shedding of inflammatory molecules, and
especially of cell wall components such as LPS (Fig. 1). LPS is
commonly known as endotoxin, albeit that it is frequently shed,
and we shall use this name interchangeably unless otherwise
specified. Most work has been done with LPS from Gram-
negative bacteria, but unless specified, we recognise that much
of what we have to say should be taken to apply to inflammatory
processes catalysed by cell wall components (such as lipoteichoic
acids**) from Gram-positive organisms, ultramicrobacteria,>” and
potentially (though there seems to be relatively little work on
this**°) from the cell envelopes of archaea. Also, though many
of the ideas developed here very likely apply to them too, and
there is a considerable literature, we shall not discuss viruses,*°
nor mycoplasmas®'~* in much detail.

The earlier overviews™® recognised that the chief sources of
the blood microbiome were likely to be via translocations of
microbes from the gut and oral cavities, and although a
number of the diseases discussed were neurodegenerative in
nature, we did not look at the evidence (and mechanism) for
the transport of cells from blood into tissues such as the CNS.
A chief purpose of the present review is thus to take a systems
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Fig. 1 An overallillustration of the headline processes involved in chronic
inflammation and disease aetiology mediated via the resuscitation of
dormant microbes and the increased production and shedding of cell wall
components.

approach, designed to bring together the evidence for the
strong involvement of microbes and their inflammatory bacterial
cell wall components in both the diseases themselves and their
dynamics, and relating the known ability of LPS and related
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Fig. 2 A 'mind map* summarising the article.

component to induce (mainly apoptotic) cell death. This turns
out to be sufficient to explain many of the acute and chronic
sequelae of the presence of microbes and their cell envelope
products in mammals. An overview of the present article is given
in the form of a mind map (Fig. 2). As background, we first
discuss microbial dormancy, culturability and non-culturability.

A dormant blood microbiome
Nature

As foreshadowed in the introduction, we*” and others**=® have
summarised the rather extensive evidence that the presence
of bacteria in blood is - perhaps unsurprisingly, given the
assumption that blood is normally sterile -~ much commoner
than is usually supposed, and we have pointed out™” that, in
the usual absence of overt bacteraemia, such organisms are
best considered as being in a dormant physiological state.

Dormancy is defined as a reversible non-replicating state,
often of low metabolic activity. Leaving aside obviously specia-
lised forms such as spores and seeds (‘constitutive dormancy’?),
in non-sporulating bacteria it manifests typically as an inability
of an individual cell to proliferate (e.g. to form a colony) under
conditions normally considered adequate for cultivation, but
where the cell is not operationally ‘dead’® in that it can revert to
a state of ‘aliveness’ or ‘culturability’ via processes referred to as
resuscitation. Thus, by definition, dormant cells are resuscitable,
but this necessarily operational definition means that we can only
tell that they were dormant, not that they are dormant.>* Indeed,
the ability to undergo dormancy (as with pheromone produc-
tion®”) is increasingly being recognised as an adaptive phenotypic
trait (e.g. ref. 38-41). Ewald in particular (e.g. ref. 42-44) has
stressed the evolutionary aspects of infectious diseases.

Evidence

The evidence for a dormant blood microbiome comes mainly*?>
from its direct assessment using culture-independent methods
(although we know of Domingue’s resuscitation papers*>~*").
Culture-independent methods include the detection of blood
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(or tissue) microbial macromolecules such as rDNA**7° and
the direct visualisation of cells using ultramicroscopic methods
(e.g. ref. 5,43, 45, 46, 60-64). In particular, it is recognised that
dormant blood bacteria could ‘hide’ (or at least survive®>®%) not
only in white cells (e.g. ref. 69) but also within the (more than
1000-fold more numerous) erythrocytes. The significance of
this, of course, is the sheer numbers that may be involved. If
only one in 50 000 erythrocytes (that are present in blood at ca.
5 x 10° mL ™) each harboured just a single dormant bacterium,
there would still be more than 10> mL ™" (a number equivalent
in urine to the threshold normally given for culturable cells in
defining clinical bacteriuria).

Although there is evidence that a surprisingly large variety of
bacteria can invade erythrocytes,”> we know next to nothing
about how they enter and egress from such cells. Even whether
the latter involves pore-forming toxins’®”' or haemolysins’>
that may effect membrane destruction, is unclear.

Origins, and translocation into blood

We also rehearsed® the considerable evidence that minor
leakages from the gut microbiome (e.g. ref. 73-75), even if only
a tiny fraction of the 10-100 trillion”® cells involved, whether via
specialised structures such as M cells or more significant
breaches in the gut epithelium (as can also occur in some
cancers’” and stroke’®), are more than sufficient to provide a
continuing inoculum to the bloodstream. Clearly the innate
and adaptive immune system will normally remove those
organisms threatening growth and noticeable bacteraemia,
but this statement does not account for the fraction that
become dormant and hide therefrom (whether geographically
in cells and/or by losing their immunogenic potential, for
instance by creating i-forms®!). While the dormant bacteria
do seem mainly to be hidden inside cells, their inflammatory
products may not be. In the blood, LPS is typically bound either
to an LPS binding protein (LBP)’°"®? which is a glycoprotein
with a molecular weight of some 58 kDa®® (452 amino acids®*)
or to the lipoprotein ApoE that is protective against LPS.**™®”
The ApoE4 polymorphism is of course well known as a genetic
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locus favouring the development of Alzheimer’s disease
(e.g. ref. 87-92).

‘Concentrations’ of LPS and
LPS-binding protein in blood

Our central argument is that low grade inflammation is mainly
effected via the continuing production and shedding of LPS
(and similar molecules) as dormant bacteria periodically awaken,
proliferate and produce LPS before returning to dormancy. If
this is going to be true, it is instructive to determine how much
LPS and related molecules are typically found in human blood
under various conditions. The potential load of LPS in the
alimentary canal is ~1 g.>*> We note, of course, that (as with
serum ferritin®) the basis of these assays used to estimate
concentration is typically a binding reaction, whether to an
antibody or (in the case of LPS) based on a Limulus amoebocyte
lysate (or its recombinant factor C**). Thus these and other (e.g.
ref. 95-97) assays typically measure the (thermodynamically
active) free forms, while the total amounts may be very much
greater if (as with LPS) they are mainly bound to LBP or ApoE of
HDL/cholesterol, or even monocyte surfaces.’® Indeed, given
that HDL-cholesterol is capable of sequestering LPS®® (and
lipoteichoic acid'®), it is not surprising that there is consider-
able evidence that HDL-cholesterol is protective against sepsis
and sepsis-related death,®>'°"'%” showing further the impor-
tance of free LPS levels in disease prognosis.

View Article Online

Integrative Biology

This said, it is important to point out that if a substance is
hydrophobic, i.e poorly water-soluble, and its targets are
hydrophobic (i.e. insoluble) as well, its measured potency also
depends on the concentration of the hydrophobic elements
containing the target (or otherwise).'®'% In such circum-
stances, it is arguably better to speak of functional concentra-
tions in terms of nmol per nmol target or similar, rather than in
concentration terms (e.g. nM). In a similar vein, when consider-
ing properties such as cell death, what matters is the distribu-
tion of ligands between targets and the fraction of cells that die.
In other words, if an added toxic molecule kills a cell (ie.
irreversibly) then this is a quantised property of the molecule,
and again ‘concentrations’ are not an entirely meaningful
manner with which to describe the toxic stimulus.>"*%""*

Our main purpose here, though, is comparative, and aimed
at obtaining a feel for the typical concentrations in health and
disease, and those that are used in research studies. Note that
as well as coming from infections, LPS is a common component
of dust."'® Thus, reported LPS ‘concentrations’ in healthy
subjects seem to be of the order of 10-15 ng L™, while those
of LBP are roughly 1 000 000 times greater at 5-15 mg L™ " (with
both values increasing during sepsis) (Tables 1 and 2). LPS
challenges of 5-100 ng per patient are commonly administered
as experimental challenges and seen as ‘safe’.’"> The larger
volume, if distributed in 5 L of blood (a typical human value)
equates to 20000 ng L', which is obviously much higher
than those free amounts typically measured even in sepsis. In
terms of relating LPS to microbial biomass (see ref. 113),

Table 1 A summary of LBP (LPS-binding protein) concentrations in health and disease

Tissue type LBP in disease (mg L") LBP in control (mg L") Place Ref.
Bacterial gastrointestinal infections 28.5 + 16.5 — Serum 122
Crohn’s disease (CD) and ulcerative colitis (UC) 57.11 (49.4-65.8) 50.01 (37.1-63.9) Plasma 123
Diabetes type 2 19.78 + 6.40 20.53 £ 6.99 Serum 124
Endocarditis

Infectious endocarditis Median 33.41 Median 5.61 Serum 125
Noninfectious heart valve diseases Median 6.67

Inflammatory bowel disease 52.7 (45.4-64.6) 39.1 (32.1-43.7) Serum 123
Lifestyle factors

Smoking 7.11 (5.85-8.74) 7.18 (5.42-9.15) Serum 83
Obese 5.90 (5.09-7.67) 7.75 (6.35-9.47) Serum
Overweight 5.90 (5.09-7.67) 7.29 (5.96-8.78) Serum
Metabolic syndrome 6.82 (5.48-8.40) 8.02 (6.63-9.82) Serum

Obesity, T2D and metabolic syndrome 27 10 Plasma 126
Liver

Hepatocytes 5to 15 — Cells 127
Hepatic macrophages LPS concentration were 10-fold higher than in the healthy controls Plasma 128
Urinary tract infection in childhood >43.23 — Serum 129
Sepsis

Sepsis/septic shock LBP concentration 46.2 (3.74-155) 7.94 Serum 127
at onset of severe sepsis

Sepsis in neonates Median 36.6 Median 7.8 Plasma 130
Late-onset neonatal sepsis (LONS) 17.5 Unstated Plasma 131
Gram +ve or Gram —ve sepsis 216 16 Plasma 132
(Higher in survivors) 31 4 Plasma 133
Septic shock tests 200 5-15 Unstated 134
Non-survivors 121 vs. 77 at 48 h 116-132 baseline Serum 135
Remained much higher in non-survivors 34-55 8-15 Serum 136

1342 | Integr. Biol, 2015, 7, 1339-1377

This journal is © The Royal Society of Chemistry 2015


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5ib00158g

Open Access Article. Published on 01 September 2015. Downloaded on 1/20/2026 5:18:21 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Integrative Biology

View Article Online

Perspective

Table 2 A compilation of LPS levels observed in health and disease. An accepted conversion factor between endotoxin units (EU) and ng LPS is 1 ng

endotoxin (LPS) = 10 EU

LPS in disease (ng L™*

LPS in controls (ng L™*

Disease unless indicated as EU mL™") unless indicated as EU mL™")  Tissue type Ref.
Healthy individuals — 0.15 to 0.35 EU mL " Plasma 137
Non-obese, post-menopausal women 10-20 Serum 93
Healthy controls 5 Plasma 133
HIV infection 60 138
Inflammatory bowel disease 12.6 (5.9-16.2) 12.2 (3.8-26.3) Serum 123
Non-alcoholic fatty liver disease 7.8-14.8 EU mL " 3.2-5.2 EUmL ™" Serum 139
Sepsis
300 7.3 Plasma 133
470 Not noted Whole blood 140
Type 1 diabetes
Microalbuminuria group 31-60 EU mL ™" Plasma LAL assay 141

Normoalbuminuric group 38-74 EU mL !

Type 2 diabetes

Non-obese postmemoposal women —

Diabetic non-obese postmenoposal women 0.39 + 0.03 EU mL "

Insulin-treated diabetes 6.6-10.7 EU mL "

Atherosclerosis
of atherosclerosis

Watson and colleagues'™* showed in laboratory cultures that
LPS amounted to some 50 fg cell ' in a logarithmic growth
phase, falling to 29 fg cell ' in stationary phase, but in the
oligotrophic conditions of seawater was just some 2.8 fg cell .
This shows at once that LPS contents per cell can be quite
variable, and that bacteria can shed a considerable amount of
LPS at no major harm to themselves. On the basis that 1 mg dry
weight of bacteria is about 10° cells, each cell is about 1 pg, so
50 fg LPS per cell equates to about 5% of its dry weight, a
reasonable and self-consistent figure for approximate calcula-
tions. To deal with the fact that LPS is typically not a mole-
cularly defined substance, its activity is sometimes reported in
‘endotoxin units’ (EU) based on a standard taken''® from an
E. coli 0O55:B5 strain; an approximate relationship is that 1 ng
endotoxin ~10 EU. While the Limulus amoebocyte lysate assay
is widely and effectively used as a test for pyrogens in parenteral
solutions, its use in the estimation of LPS in blood is not
considered especially reliable,"®**® and it may be better to
look more closely at LBP. This said, it is LPS that is the
stimulus, and thus knowing its effective concentration is
important. Unfortunately (Table 2), although the values in
sepsis are considerably greater than are those in controls, there
is a rather substantial variation between different studies, likely
reflecting the rather different qualities of the assays used, the
variation in the nature of the LPS (which is not a molecular
entity), and the fact that much of the (rather hydrophobic) LPS
in vivo is bound to other substances such that the result of the
assay depends in significant measure on the extent and nature
of any pre-extraction methods employed. Indeed, there are
surprisingly few measurements of LPS in non-infectious low-
grade inflammation, and very little evidence that plasma or
serum LPS might be a particularly useful marker of it. The
situation is a little clearer with LPS-binding protein (LBP), with
a much more obvious distinction between controls and those

This journal is © The Royal Society of Chemistry 2015

Above 50 gave 3x greater chance 14

Plasma LAL assay

0.37 + 0.02 EU mL " Plasma LAL assay 93

Plasma LAL assay

3.1-5.1 EU mL™* Serum 142

143

with sepsis. Less severe instances of infection include a median
of 16 mg L' for cirrhosis (interestingly reversed by the anti-
biotic norfloxacin)."** Thus on the basis of present assay methods,
there seems little benefit of seeking to follow the behaviour of a
dormant blood microbiome with LPS measurements.

A dormant tissue microbiome

Our previous reviews™ (and many other works, e.g. those
summarised in ref. 43, 62, 64 and 144) outlined in some detail
the fact that many known infectious agents can enter cells and
persist intracellularly, and those discussions are not repeated
in detail here. Indeed, the very existence of eukaryotes is consi-
dered to be based on the intracellular uptake of prokaryotes to
form structures such as mitochondria,'** and there is increas-
ing evidence for dinitrogen fixation by endosymbionts in plant
leaf cells (e.g. ref. 146 and 147). Regarding human tissue, as
Nash and colleagues put it,"** “the blood is the most effective
vehicle of all for the spread of microbes through the body. After
entering the blood they can be transported within a minute or
two to a vascular bed in any part of the body. In small vessel
such as capillaries and sinusoids where blood flows slowly,
there is an opportunity for the microorganism to be arrested
and to establish infection in neighbouring tissues.” (The same
holds true, of course, for circulating tumour cells and their role
in metastasis.) Later we shall look at this translocation from
blood to tissues in more detail. However, we first mention an
example that we did not deal with previously in much detail,
viz. E. coli-based cystitis.

E. coli-based cystitis

Cystitis (inflammation of the bladder) is commonly caused
by urinary tract infection, typically by E. coli,"*®'*° and

Integr. Biol, 2015, 7, 1339-1377 | 1343
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especially in women. It can also lead to bacteraemia."™® A
particular point of present interest regarding dormancy™" is
the fact that a high percentage of cystitis patients suffer rein-
fection,'®>™*° that is often clearly from the same strains that
caused the original infection."®*"®* This has led to the recognition
in bladder epithelial cells of so-called ‘quiescent intracellular
reservoirs’>*1*%1%7170 of dormant cells that can resuscitate.
Because one cannot determine these things in humans in vivo,
it is not known precisely how they enter such cells after binding to
appropriate receptors such as uroplakins,'”* but it is presumed
that as with many other cells where it is better understood this
occurs via endocytosis of some kind.

Separating the blood from certain tissues are physical
barriers such as the blood-brain, blood-retina and blood-testis
barriers, consisting of layers of epithelial cells with especially
tight junction. They are of notable significance to drug
transport(ers) as well."”>""7> It is of particular interest that even
here we can find that these barriers are (or must be) breached
from time to time, as dormant microbes can be found even in
the CNS. Possible means of resuscitation are discussed below
and elsewhere.”

A dormant CNS microbiome

As one might suppose, the CNS differs little from other tissues
with regard to the possibility that dormant microbes may
persist there, occasionally ‘waking up’ to cause trouble. Three
examples, as they pertain to the aetiology of Alzheimer’s disease
(and presumably other dementias) are represented by Chlamydia
pneumoniae (as stressed by Balin and colleagues, e.g
ref. 176-185), by herpes simplex virus (as highlighted by Itzhaki
and colleagues®®®*18>186719%) and by a variety of spirochetes
(as championed by Miklossy and colleagues'*®>°®). The latter
is consistent with the well-established dementia in the terminal
stages of another spirochetal disease in the form of syphilis, and
also with Lyme disease.'®®?%*2%° Of course multiple classes of
microorganisms may contribute. There is also evidence for a CNS
involvement of the parasitic protozoan Toxoplasma gondii in a
numbers of neurodegenerative diseases.**” 2%

The ‘gut-brain axis’ describes the well-established observa-
tions of a bidirectional neurohumoral communication system
in the human body. Given the above, it is not surprising that
there has been increasing recognition over the last couple of
years of quite overt (and bidirectional) communication between
the gut microbiome and the CNS via the gut-brain axis, in
particular, the idea that bacteria in the gastrointestinal (GI)
tract can activate neural pathways and CNS signalling systems,
from the earliest moments in life. Dysfunctions of this axis can
lead to all kinds of neurological problems, including anxiety,
depression and other CNS disorders (e.g. ref. 210-229). Most
studies have focussed on the endocrine and immune systems.
As yet, however, we have found no literature that has sought a
role for LPS here, although given that LPS is actually used in
a variety of experimental models (e.g. for Parkinson’s*>*°>%’
and even obesity>*®) to initiate CNS disorders, it is an easy
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prediction that it is likely to play a significant role in the gut
microbiota-brain interaction.

A high-level overview of the effects of
LPS in sepsis, septic shock and SIRS

Although our focus here is more on chronic inflammatory
states induced by dormant and resuscitating bacteria, it is
instructive first to consider events that occur in the more
extreme and life-threatening cases of sepsis, septic shock, and
the systemic inflammatory response syndrome (SIRS). While
these are commonly observed in the Intensive Therapy Unit as a
result of an initial infection (hence the term ‘sepsis’), their
typical treatment there with broad spectrum antibiotics means
that proliferating microbes are rare or absent, and it is their
products such as LPS that are then the main problem. Speci-
fically, although these are responsible for invoking the innate
immune response that triggers cells to attack and dispose of
the invading microbes, an overstimulation of these activities
leads to the life-threatening ‘cytokine storms’ that are the
proximate causes of, and reflect, endotoxic or septic shock or
SIRS (e.g. ref. 7 and 239-247).

It is worth rehearsing the definitions to help discriminate
sepsis®®®**! from its sequelae. Thus, sepsis has been defined as
“the presence (probable or documented) of infection together
with systemic manifestations of infection”,”>> while severe sepsis
is defined as sepsis plus sepsis-induced organ dysfunction or
tissue hypoperfusion®? Septic shock is “sepsis-induced hypo-
tension persisting despite adequate fluid resuscitation”.?>*> SIRS
refers to “the systemic inflaimmatory response to a variety of
severe clinical insults” (infectious or otherwise). It usually involves
two or more of the following criteria: (i) temperature >38 °C or
<36 °C; (ii) heart rate >90 beats per m; (iii) respiratory rate
>20 breaths per m or PaCO, <32 mm Hg; (iv) WBC count
>12000 pL~ " or <4000 pL " or (v) >10% immature neutrophil
forms (i.e., “bands”).****** The chief point about recognising and
using SIRS instead of ‘sepsis’ is, of course, that it does not rely on
the presence of observable (or culturable) microbes (and it can
anyway be caused by traumas lacking an immediate microbial
component). A Venn diagram (redrawn from ref. 254) illustrates
the main ideas (Fig. 3).

Clearly any increases in microbial cell numbers increase the
likelihood of LPS production and shedding that leads to the
cytokine storm. Thus, the progression of the microbial variant
in unfavourable cases goes roughly from left to right in Fig. 4,
as infection — bacteraemia — LPS — sepsis — septic shock —
SIRS — multiple organ failure (MOF/MODS) — death. Mortality
rates from sepsis/SIRS are extremely high (30-70% in intensive
care units),”*"*** and dependent on age.>>® Note too that anti-
biotics can themselves promote shedding of LPS from dying
bacteria (e.g. ref. 118 and 256-265), especially from spirochetes
such as Borrelia burgdorferi, leading to a Jarisch-Herxheimer (JH)
reaction.>®>*®” The JH reaction can be mitigated by antibodies
to TNF-0.>°® Importantly, this continual shedding of LPS is a
normal property of growing Gram-negative bacteria, especially in

248,249
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Fig. 3 Relationships and overlaps between bacteraemia, sepsis and systemic
infammatory response syndrome. Redrawn from ref. 254.
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Fig. 4 The main steps that represent the progression of infection/sepsis
in acute cases.

media such as those containing serum that are inimical to their
growth.>®”?*® This has obvious implications.

Even if one survives septic shock, there are other sequelae,
such as long-term cognitive impairment,®”® cardiovascular®”*
and other*”?> complications that may reflect or contribute to
symptoms seen under more chronic conditions.>”® Indeed,
there are a great many comorbidities between various diseases
with a microbial component.®®

Clearly, LPS plays a central role in the development of
inflammation. We therefore spend time in the next paragraphs
to discuss the role of LPS in the cellular inflammatory
processes.

Positive feedback and amplification in
integrative and systems biology

The first point to make here is a general one about how various
kinds of kinetic schemes or network topologies can amplify

biochemical signals. For a single enzyme, if its product or any
other molecule is an uncompetitive inhibitor that binds only to

This journal is © The Royal Society of Chemistry 2015
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the enzyme-substrate complex, a small amount of this can lead
to a very large increase in a substrate concentration. This serves
to explain both the peculiar effectiveness of glyphosate as a
herbicide,>”*”” and the extreme rarity of uncompetitive inhi-
bition in natural systems.?”® One type of network-based ampli-
fication, that is familiar in signalling cascades, is one in which
a signalling activity such as a kinase changes the activity of
another kinase, and so on. Here, as well as amplification, the
cascade is partly about serving as a suitable delay loop,>”® as
clearly variations in amino acid sequence can and do**" have
major effects on the activities of individual proteins such that
the cascade would otherwise seem unnecessary. A second kind
of amplification, known as ultrasensitivity, comes from a
structure in which an effector stimulates by covalent modifica-
tion (e.g. phosphorylation) of an enzyme catalysing a particular
reaction, while simultaneously inhibiting a second enzyme
(e.g. a phosphatase) catalysing the removal of the covalent
modification. This leads to very large changes in flux and
network behaviour as the concentration of the effector passes
a threshold.”®* % Similarly, pulsatile or oscillatory signals
can be much more effective for the same ‘average’ concen-
286287 Thus, a variety of network motifs can provide
“sniffers, buzzers, toggles and blinkers”.”®*® And most of all,
although other behaviours are possible,>® a variety of simple
systems with positive feedback can amplify a very small signal
into a much larger one (Fig. 5). This can typically occur in
inflammatory systems’ where molecules whose production is
induced by LPS, such as IL-13°°°"** (Fig. 6) or TNFu (see later),
can stimulate their own synthesis or effect crosstalk (e.g. IL-1
induced TNF-0*%%).

A second major area where an effector can appear to amplify
a small stimulus, or have a large effect, is when it interacts with

tration.

multiple targets simultaneously (in drug discovery this is
known as polypharmacology (e.g. ref. 295-297)). This need
actually follows from the principles of systems biology as
encapsulated in metabolic control analysis,>** ! where med-
iators that modify only one target can rarely be expected to have
much effect. As we shall see, LPS qualifies here too, as it
stimulates a great many proinflammatory and proapoptotic
pathways, including those necessary for its translocation in
both free and bacterial cell-associated forms.

|_ Positive feedback-enabled amplification

,

+

A—>B—C

D stimulates its own production from A
by a positive feedback

Fig. 5 A system exhibiting positive feedback in which a product stimulates its
own synthesis. In a biochemical context, A to D represent metabolites, while
the arrows represent enzymatic steps.
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Fig. 6 IL-1B is an example of a cytokine that can stimulate its own
synthesis (figure redrawn from and based on one in ref. 291).

Thus we shall see that LPS is likely to serve as a major nexus
in inflammation in general and that induced by microbes in
particular.

Structure and function of LPS

An overall ‘cartoon’-type structure of typical LPS molecules is
given in Fig. 7A based on.?> They consist of an inner lipid A
core and a number of branched polysaccharide chains (e.g.
ref. 302-307), terminating in those that determine the strain’s
serology via the O-antigen.?® The biosynthesis is discussed by
Wang and Quinn.**® According to the comprehensive LIPID-
MAPS classification,*'° LPS is a saccharolipid glycan. The lipid
A core is significantly the most inflammatory part of the
molecule,*™ with typically two N-acetylglucosamine residues
attached to a 2-keto-3-deoxy-p-manno-octulosonic acid (Kdo) dis-
accharide (Fig. 7B). Bacteria lacking the outer O-antigen chains
are known as ‘rough’ and are significantly more immunostimu-
latory than are their ‘smooth’ equivalents that contain them.*'?

A systems perspective on LPS-induced
cytokine production and cell death

A standard approach to systems biology modelling (e.g. ref. 279
and 289) has four main stages. The first two are qualitative, and
involve determining the players and how they interact, whether
as substrates, products or effectors — this establishes the
topology of the network. The second two are more quantitative,
involving the mathematical form of the equations describing
each step, and their parametrisation, also involving the running
of the model, typically as a set of coupled ordinary differential
equations, using suitable software (e.g. ref. 313-315). Note too
that in a typical network of this type, a systems approach
typically discriminates parameters from variables. Parameters
are either fixed or outside the control of the experimenter; they
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typically include the unchanging concentrations of substances
involved in flux-generating steps, as well as kinetic constants
such as K, and k.,.. By contrast, variables are those things that
vary during an experiment, typically involving concentrations of
intermediary substances and fluxes through pathways towards
‘exit’ variables. Thus, figures such as those in Fig. 1, while
accurate in the sense of illustrating flows of information, are
misleading because they are at once both static and qualitative.
While we can and shall point to many papers that show clearly
that “LPS can cause inflammation (or apoptosis)”’, such a
statement too is less than complete. This is because individual
papers rarely if ever state, use or vary systematically a number of
parameters that are known to have a huge impact on cell fate.
These include

e The exact type of LPS (even though some, especially their
lipid A component, are known to be much more immunogenic
or inflammatory than are others - see e.g. ref. 306, 309 and
316-324 and later)

e The rather variable amount of LPS added, whether the
assay is for cytokine production (Table 3) or ‘viability’ (Table 4)

e The nature of the host (human or rodent, that respond
differently,****” or in vitro)

e Whether the LPS is added in a bolus or a dynamic manner
(this matters a lot>®”)

e Whether measurements are done in single cells or as an
ensemble, and or quasi-continuously; this matters because
much evidence in the NF-kB system>®”**733% and other related
systems>*'7*** shows that it is the nature and dynamics of the
oscillations that determines which genes are transcribed and
with which kinetics, as well as cell fate, and not just say an
NF-kB concentration at a particular time. Thus knowledge of
single-cell behaviour is vital*''®''" (also in pharmaceutical
drug uptake'’*'7),

e Which other substances, conditions or parameters have
been co-varied or even recorded, and whether they themselves
are known to modify the effect of LPS alone. One example is
ATP, which activates the purinergic PX27 receptors and
increases massively the extent of cell death.**>?3® Another is
acidosis.**’

LPS as a stimulant of inflammatory
cytokine production: cellular
mechanisms

While only partly consistent with the ‘danger theory’ of the
immune response,****%® and more obviously stemming from
the ideas of Janeway,**® LPS is recognised as a major ‘pathogen-
associated molecular pattern’ or PAMP that triggers the body’s
innate immune response to pathogens (e.g. ref. 367). In addi-
tion, cells release damage-associated molecular pattern mole-
cules (DAMPs) as signals that alert the innate immune system
to unexpected cell death and to microbial invasion. It is now
very well established that a chief means by which LPS excites
an inflammatory innate immune response is by binding to the
toll-like receptor 4 (TLR4).>**3” Typically, the LPS is bound in

This journal is © The Royal Society of Chemistry 2015
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blood to LBP, and the LPS is ferried to the TLR4 receptor via a
CD14 co-receptor (which also links innate immunity with
Alzheimer’s disease®”*””). This binding of LPS to TLR4 in
turn activates the production of a variety of pro-inflammatory
cytokines.’”® %1 The extent of cytokine activation reflects in
part the strength of binding to CD14/TLR4.>*° These inflam-
matory cytokines are induced via a set of canonical pathways
illustrated in Fig. 8, with the transcription factor NF-xB playing
a prominent role.*®>% As is also well known (and see below),
NF-xB is normally held inactive in the cytoplasm by being
bound to an inhibitor IkB protein, and the means by which
extracellular signals such as LPS are transduced involve a series
of kinases, one of which (IKK) in particular phosphorylates the
IxB and thereby releases the NF-kB that can translocate to the

This journal is © The Royal Society of Chemistry 2015

nucleus to turn on a large variety of other genes, including in
particular TNF-o. and IL-6.>%® There is also a ‘non-canonical’
inflammasome LPS activation pathway independent of TLR4,%%"~3%°
that occurs at higher external concentrations of LPS,***% comes
into play when the LPS is internalised, and involves (via p38 MAP
kinase and intracellular LPS) the activation and secretion of
cytokines such as IL-1f (Fig. 9) and also TNF-r).

Muropeptides and host signalling

A more recent recognition is that as well as lipid A, shorter
bacterial cell-wall derived muropeptides also have a significant
role in innate immunity (e.g. ref. 392-405; they act synergistically

Integr. Biol., 2015, 7, 1339-1377 | 1347
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Table 4 Some examples of LPS administered to cells (primary or permanent cell culture or in vivo) and its effect on cell viability

Cell type Cell name LPS conc (ng mL ™) LPS type Viability assay Viability % Ref.
Rat origin
Rat duodenum Epithelial cells 0.75-3 mg kg™ H. pylori LPS MTT 60% 351
i.v. or 3-12 mg kg~ p.o
Rat myocytes 25-10000 (most 100) Unstated Apoptosis 80% 352
Alveolar macrophages NR8383 10 Unstated LDH and Hoechst/PI 90% without 353
particulates
Myocardial myocytes ~ H9c2 1000 MTT, LDH, TUNEL, JC-1  85% 354
Myocardial myocytes = H9c2 20000 MTT 65% 355
Mouse origin
C57BL/6 mice Primary microglial 100 E. coli 026:B6  LDH release ~10% in presence 335
cultures of ATP
Osteoblast MC3T3-E1 101001000 E. coli O55:B5 MTT 70% 356
Mouse macrophages = RAW 264.7 100 Unstated MTT Not stated; increased 357
apoptosis
Macrophages BMDM 100 (6 h) Unstated DNA fragmentation ~60% 358
Human origin
Pulmonary epithelia ~ A549 1000 Unstated Sigma Unstated kit 60-70% 359
Human PBMC PBMC 0.01-3 E. coli unstated None - only IL-8 and ROS 360
Microgial BV2 10 000-30 000 Unstated MTT and trypan blue ~60% 361
Vascular human HUVECs 500 Unstated Annexin 80% 362
endothelia
Dopaminergic SH-SY5Y 100 E. coli 0127:B8 MTT Unclear 363
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E

: bacterial Rpf*®® and other bacterial resuscitation systems.*® See

Pro-inflammatory Cytokines IFNB, IFN-inducible genes . . . . .
IL-12, IL-6, IL-8, TNFo. RANTES Fig. 10 for a visual representation of the host signalling pathway

of MDPs.

Fig. 8 The LPS-mediated cellular production of inflammatory cytokines.
Canonical pathway of LPS-mediated release and nuclear translocation of

NF-xB (based on ref. 379). LPS induction of apoptotic,

programmed necrotic and pyroptotic
with LPS,**® probably because they also interact with the NFxB @l death
pathway, via the RICK/Rip2/CARDIAK kinase*®*%”). It is of
particular interest in the context of bacterial dormancy that such A particularly important inflammatory cytokine whose secre-
muropeptides seem to be part of the ‘wake-up’ activity of the tion is induced by NF-xB (and also by p38 MAP kinase) is
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TNF-o (e.g. ref. 411-414). This too is inflammatory and itself
induces further changes in NF-kB expression. The same is true
for IL-1B.>**27® In particular, these inflammatory cytokines can
lead to apoptotic cell death (e.g. ref. 343 and 358). As we shall
see, however, and as presaged in Tables 3 and 4, it is quite
difficult to establish precisely what is going on in many cases,
as individual studies tend to study a restricted set of pathways
and individual players, be they NF-xB, p38, IL-1p or IL-6. It
would not in our view be completely unfair to describe a lot of
these studies collectively as ‘a bit of a mess’. Taking NF-kB as a
canonical example (though the same is true for p38*"®), what
are ostensibly the same kinds of signal can lead to dramatically
different cell fates, e.g. proliferation vs. apoptosis*'®***
depending on the conditions. What this is telling us, of course,
since these processes are considered largely deterministic,
is that we are not measuring or controlling all of the relevant
factors (see also Table 3), and in great measure these studies
are largely qualitative in nature. Here our purposes are thus
simply to recognise that the genes induced or repressed
via transcription factors such as NF-kB can be pro- or anti-
apoptotic, and which ones are activated depend on all prevailing
conditions.

As well as apoptosis, there is a less tightly (but partly)
regulated form of cell death known as ‘programmed necrosis’

or ‘necroptosis’,"*>**” that may be induced by inflammatory
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ligands such as TNF, especially during infection, and that some-
times also involve NF-kB. Another important mode of cell death
induced by related stimuli is pyroptosis**®*™*°° (that involves the
caspase 1-dependent production of IL-1p). Ferroptosis****°* is a
cell death mechanism that stresses the importance of unliganded
iron (see also ref. 6, 7, 453 and 454). Although the stimulus in
each of these cases is nominally the same (LPS of some kind)
there are presumably pre-existing conditions that differ and
thereby determine precisely the kind of cell death that ensues.
However, we do not discuss the emerging differences in their
molecular details nor taxonomy here, since the important thing
for the present arguments is simply that the cells die, disappear,
and thereby leave gaps where once they lived.

LPS as a stimulant of coagulation and
thrombosis

As we recently reviewed,’ a hallmark of many chronic, inflam-
matory diseases is the fact that they simultaneously exhibit
both hypercoagulability and hypofibrinolysis. While a great
many biochemicals can influence both the kinetics and end-
product structures of the clotting process, and we previously
highlighted unliganded iron®'%******® and the fibrin concen-
tration itself,” we can hardly avoid noting that LPS itself is a
strong procoagulant.*>*™*%* How direct some of these mechan-
isms are seems not to have been established, though certainly
LPS can bind to erythrocyte membranes.*®**®> Given that
promiscuity correlates with hydrophobicity (e.g. ref. 173 and
466-469), it is not surprising that the very hydrophobic LPS can
potentially interact with a great many (lipo)proteins; its ability
to convert prions to their more toxic PrP* form*”° is a pertinent
case in point.

The role of microparticles and LPS

We wish, however, to spend some time on the possible involvement
of LPS in microparticle formation. Microparticle formation is
typically via apoptosis and the related pathways described
above.*”*™*7* Such microparticle formation is prominently asso-
ciated with inflammatory conditions. Microparticles have also
been associated with proinflammatory effects and also with
autoimmune processes, and they are thought to be a source
of autoantigenic nuclear material, which can form immune
complexes.*”® Various cells such as platelets, lymphocytes, endo-
thelial cells, erythrocytes and monocytes do release surface-
derived microparticles’”® and these microparticles are seen as
multi-purpose carriers.*”” They carty proteins, lipids and nucleic
acids, and play a fundamental role in the pathogenesis of
thrombosis and are known to modulate the properties of target
cells.””® Microparticles from erythrocytes also carry heme and
these heme-laden microparticles have a physiopathological
impact on the rest of the haematological system.*”® Microparticles
also frequently elicit an immune response.*®°*%3

As microparticles are known to be present in many inflam-
matory diseases,®*”#*847457 they might therefore develop via an

This journal is © The Royal Society of Chemistry 2015
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external or internal stimulus on cells (e.g. erythrocytes and
platelets), and here we suggest that the stimulus might be LPS.
While pure lipid systems are not always good membrane
mimics,’”>"7* LPS has been shown to insert spontaneously
into lipid bilayers, and this insertion can lead to membrane
breakdown.*®>*8%48% This insertion capability has also been
demonstrated in lipid raft models.**® Given that we have
recently shown that bacteria can hide inside erythrocytes,
shedding of LPS may thus occur within the cells (as well as
obviously outside the cells, where “free” bacteria may shed
LPS). There is considerable literature that suggests that LPS can
be a cause of apoptosis etc, so LPS shed from internalized

Fig. 11 Whole blood smears from a thrombo-embolic ischemic stroke
patient. (A) Hyperactivated platelet mass with pseudopodia and micro-
particle formation. (B) Hyperactivated platelet mass showing fusion with
spontanously formed fibrin fibres, in whole blood. This activated mass is
closely associated with an abnormally shaped erythrocyte covered with
plasma proteins/microparicles, either from apoptotic hyperactivated
platelets or damaged erythrocytes. Explanation of asterisks and arrows:
in (A): red asterisk: platelet pseudopodia formation; blue arrows: micro-
particles. In (B): blue arrows: microparticles; green asterisk spontaneous
fibrin fibre formation merging with pseudopodia formation from a hyper-
activated, spreaded platelet (white asterisk). Note significant pseudopodia/
fibrin extending from the spreaded platelet mass (white asterisk). Bacterium
(pseudo-coloured in yellow-brown) is shown with a white block drawn
around it.
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cellular bacteria may also trigger apoptotic pathways from
within the cells (via caspase-11, caspase-4 and IL-1p pathways),
resulting in microparticle formation. This eventually stimulates
the processes of coagulation and thrombosis already known to
be associated with microparticle presence in inflammatory
conditions.**"**> An example of this is shown in Fig. 11A and B,
where microparticle formation in thrombo-embolic ischemic
stroke is seen associated with both hyperactivated platelets and
damaged erythrocytes, together with the presence of bacteria.

The sequelae of intestinal inflammation
and LPS-induced apoptosis,
necroptosis and pyroptosis include
epithelial permeabilisation

It is clear that as the concentration(s) or activities of LPS,
inflammatory cytokines and other mediating factors increase,
cell death is an inevitable consequence.**>**™*%> While, as
mentioned above, there is almost certainly a continuing small
leakage of microbes from the gut*®® (known as the ‘leaky gut’
hypothesis), it is evident that a variety of conditions, that we
may loosely refer to as ‘stress’ can increase this considerably
(e.g. ref. 73, 78 and 497-505). Bacterial sepsis itself is one such
stress,”*® and interestingly there is now a burgeoning literature
to the effect that the immunodeficiency seen in HIV/AIDS
patients may actually be caused by gut-derived LPS causing
hyperactivation (then death) of CD4" cells (e.g. ref. 138 and
507-509). There does not seem to be a major genetic contribu-
tion to leaky gut.”'® Although many of the same signalling
pathways are involved, the extent to which this is mediated via
LPS is not yet clear, albeit LPS itself can indeed disrupt tight
junctions and increase intestinal permeability.>''>'® Overall,
these kinds of endothelial dysfunction clearly lead to increased
leakiness or permeabilisation®*® (Fig. 12).

Localised microbial proliferation,
inflammation and cell death as a cause
of specific diseases

We have here sought to provide a rather general explanation for
the role of LPS-induced chronic inflammation in a variety of
different diseases, with the ‘continuing’ element driven by the
resuscitation of a resident blood and tissue microbiome. How-
ever, it is obvious that while all these diseases are inflammatory
(and have been linked to microbes™* and/or LPS (Fig. 2), diseases
such as Alzheimer’s, Parkinson’s, atherosclerosis and rheuma-
toid arthritis obviously occur - or one might better say manifest —
in largely different tissue or tissue subtypes. Thus, the dis-
appearance of cells from the CNS can manifest as Parkinson’s
disease if in the dopaminergic neurons of the substantia nigra
pars compacta,®'” or to more widespread cell disappearance is
diseases such as those mediated by prions (e.g. ref. 7 and 518).
Note of course that LPS is actually used to induce a form of
Parkinson’s disease in experimental animals.*?3°2%’

Integr. Biol,, 2015, 7, 1339-1377 | 1351


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5ib00158g

Open Access Article. Published on 01 September 2015. Downloaded on 1/20/2026 5:18:21 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Perspective

Bacterially-mediated gut translocation
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Fig. 12 Some of the mechanisms of bacterial translocation from the
intestine in a ‘'leaky gut’, based on ref. 430. Some cells (and LPS) may pass
through tight junctions, while others pass through Peyer's patches or
through spaces vacated by dead cells whose death may be initiated by
LPS. Diagram is not to scale.

Within the present framework, there are at least three
general and straightforward explanations for this differentia-
tion of diseases despite a broad common cause. The first is that
(as with infectious diseases), the nature of the microorganisms
differs, with some of these inflammatory diseases clearly being
more associated with some microbes than are others (e.g. ref. 5,
43 and 64). The second is simply that the tissue location of the
dormant bacteria differs. The third follows as much from our
ignorance of the molecular details, as discussed above, as from
what we know - namely the fact that we know little of the
different effects of LPS type and concentration, and the effects
of different levels of cytokines and other molecules that may
themselves vary this. Sharpening these kinds of analyses will
obviously feature as an important area for future research, and
we rehearse the first two points briefly.

Differences in the organisms forming the dormant blood
microbiome

We® and others (e.g. ref. 36, 43, 48, 49, 52, 62, 64 and 519-522)
have provided both (ultra)microsocopic and molecular (sequence-
based) evidence for a very great variety of culture-negative organ-
isms that have been noted to be present in the blood, despite the
fact that it is normally considered to be sterile.

Differences in the tissue locations of dormant bacteria

In a similar vein, microbes - presumably persistent, dormant
organisms — are regularly detected in other tissues in which any

1352 | Integr. Biol,, 2015, 7, 1339-1377
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degree of proliferation would be highly inimical to the host.
Some recent examples involving just reproductive disorders
include the vagina,®**7>?° the placenta,®**™>*° and the amniotic
fluid,>**~>*® while recent evidence has also been provided for a
sub-epidermal microbiome.>**
dormant CNS microbiome was discussed earlier, and we here
note the presence in the brain of TLR4 and its major role
in neurodegeneration,’*> consistent with the idea that waking
up dormant microbes can stimulate overt neurodegenerative
disease.

The considerable evidence for a

A note on autoantibodies

A number of the diseases (e.g. rheumatoid arthritis, multiple
sclerosis, psoriasis) for which we are invoking a microbial
component involving LPS are usually considered to be auto-
immune diseases. The question then arises as to the origins of
this autoimmunity. If LPS were a protein with a defined
structure it would be relatively easy to compare its epitope
sequences with those of the targets of host antibodies in
different circumstances (e.g. ref. 543-546), but of course it is
not. This said, there is plenty of evidence that host autoanti-
bodies are elicited by LPS that have less than perfect specificity
for the immunogen (e.g. ref. 547-558), so while most of this
work is not very recent, this question of LPS-induced antibody
non-specificity seems an avenue well worth exploring. We note
too the potential toxicity of exogenously administered anti-LPS
antibodies.***>* Regarding an autoimmune hypothesis, Marshall,
Proal and colleagues highlight precisely this, along with a role for
the vitamin D receptor,*>3%361756>

Other hallmarks, and the role of iron
dysregulation

While LPS itself as commonly measured seems to be a rather
inadequate biomarker for chronic, inflammatory disease (Table 2),
LBP (Table 1) and longer-lived markers of LPS exposure like IgM
and IgA antibodies®>**">#*°%"570 may be more promising.

What serves to wake up the dormant microbes is not yet
clear, and it is unlikely to be a single element. One possibility is
certainly host stress as reflected in noradrenaline levels, a
mechanism championed with considerable evidence (at least
in terms of stimulating the growth of Gram-negative organ-
isms) by Lyte, Freestone and colleagues.>>**>°7157% We note
that catecholamine synthesis may be induced in macrophages by
LPS,”%%%8 and that catecholamines increase inflammation®*°%
(another positive feedback loop). It is of special interest here that
noradrenaline can act as an iron chelator,’®* % since iron is
normally seen as the nutrient most limiting to bacterial growth
in vivo (e.g. ref. 16, 19-21 and 587-591). As we have pointed out
before,°'° the diseases highlighted here are precisely those
iron dysregulation, inflammation, coagulopathies,
microparticles,””>*** and now a microbial component involving
LPS sensu lato, are seen to coexist.

where

This journal is © The Royal Society of Chemistry 2015
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Concluding remarks, areas of
ignorance, and therapeutic potential

It is undoubtedly the case that despite our greatly improved
understanding of many of the pathways involved in inflamma-
tion and sepsis (sensu lato), strategies for drug development have
been noted mainly by their relative failure,*"***>*” probably in
significant measure because they aim at individual targets (see
ref. 297). As a systems problem, the way to improve our thera-
peutic strategies is to recognise that there are multiple targets or
steps. We have here stressed that LPS (sensu lato) created by the
resuscitation of dormant bacteria is likely heavily involved, and
that the latter can be affected greatly by the concentrations of free
iron (that may also be a target for therapy). Fig. 13 shows some of
the various translocations of dormant and proliferating bacteria
between the different tissues, and the various steps that might
thus be targeted. Improving methods for quantitative lipidomics
(e.g ref. 598-603) are likely to be of considerable value here.
Here we have stressed the significance of LPS, but initially
promising trials of an anti-LPS antibody (HA-1A, Centoxin)®*
were not sustained (as is common®*>®®) because of ineffective-
ness®?”%% or toxicity.>>*>% This was probably because of its lack
of specificity between lipid A and other hydrophobic ligands,*”
and drug promiscuity is a function of hydrophobicity more
generally (e.g. ref. 173, 468 and 610-612). Recognising that factor
C, the active component of the Limulus amoebocyte lysate,**
necessarily binds to LPS, Ding, Wohland and colleagues have

isolated so-called sushi peptides therefrom,***° in particular

Gut and oral

microbiomes

Blood
microbiome

Growth
and LPS
shedding

Fig. 13 Some of the various translocations of dormant and proliferating bacteria
between different tissues as discussed herein. The red dotted lines indicate the
influence of inflammation, while the resuscitation step is indicated by the black
dotted line. The solid black lines likely involve some kind of translocation.
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sushi peptides S1 and S3. These are 34mers that that can bind to
and inactivate endotoxin molecules (and are in some cases
directly antibacterial), in concert with bacterial phospholipids.®**
They are said to have low human cell toxicity, and these peptides
(or variants®**°*®) would seem to have significant therapeutic
potential. As a hydrophobic target, variant lipocalins binding LPS
(‘anticalins’®**~**%) might also be of value here. The evidence that
HDL can bind to and sequester LPS was given above.

It is hard to gauge whether a better treatment than an anti-
LPS antibody might involve recombinant LBP because while
LBP can sequester LPS it can also transfer it to TLR4,'>71346297631
Probably the best strategy is to avoid letting the bacteria proli-
ferate in an uncontrolled manner at all, and to this end an iron-
withholding strategy®*? seems most suitable (e.g. ref. 6, 7 and 633-
636) (and not a fortification one®*”**%), In a similar vein, many of
the substances found to be anti-inflammatory are so because of
their iron-chelating properties (e.g. ref. 7 and 639-641), though
clearly there are a vast number of possible steps (plural) at which
anti-inflammatory substances may act. Those involving down-
stream cytokines (e.g. ref. 539) are outwith our scope here.

In addition, provided one can avoid excessive LPS shedding
and a Jarisch-Herxheimer reaction,?°®?® suitable antibiotics
(e.g. minocycline®*?~%°) that have polypharmacological proper-
ties®*>*> must certainly have a role in treating purportedly
non-communicable inflammatory diseases, as well as those
established as infectious. It is at least worthy of mention,®*?
albeit drugs can be quite promiscuous with regard to hitting
multiple targets,'”>*6651,652.654 that certain antibiotics are
both used and effective in the treatment of diseases such as
multiple sclerosis,®®>®* rheumatoid arthritis,>**642651:652:662-665
and psoriasis,®®®®%® while vaccination can also work to protect
against supposedly non-communicable disease.®***”°

A modern trend is to use patients as their own controls
(so-called n = 1°”* or n-of-1°7>%”® methods), in suitable cross-
over designs. These seem ideally suited to chronic diseases of
the type discussed here, especially for those in which disease
severity can itself change significantly (‘flare’®”**””) on quite
rapid timescales (for the large and very numerous circadian
changes in a mammalian transcriptome, see ref. 678). Indeed,
we predict that such flares will be accompanied by major
changes in the relevant microbiomes. But to understand the
precise mechanisms involved we shall need much better, more
quantitative, and above all reliable methods for measuring and
manipulating the microbes, pathways and pathway elements
involved. This is the most urgent task for the future.

Note added in proof

A recent and complementary article highlights the role of LPS
translocation directly from the gut.®”®
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