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Genome scale models of yeast: towards standardized
evaluation and consistent omic integration

Benjamı́n J. Sánchezab and Jens Nielsen*abc

Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional

databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of

Saccharomyces cerevisiae (budding yeast), several GEMs have been published and are currently used for

metabolic engineering and elucidating biological interactions. Here we review the history of yeast’s GEMs,

focusing on recent developments. We study how these models are typically evaluated, using both

descriptive and predictive metrics. Additionally, we analyze the different ways in which all levels of omics

data (from gene expression to flux) have been integrated in yeast GEMs. Relevant conclusions and current

challenges for both GEM evaluation and omic integration are highlighted.

Insight, innovation, integration
A genome scale model (GEM) is a simple mathematical representation of a cell that models the interplay of all metabolites, reactions and genes for a given
organism. GEMs have been used in systems biology since the beginning of the 2000s for understanding and predicting metabolic strategies. Using these
models as computational scaffolds, different kinds of biological insights can be obtained when integrating one or more types of omics data. Here we review the
history of Saccharomyces cerevisiae’s GEMs and the current approaches for their evaluation and integration with omics data.

1. Introduction

Saccharomyces cerevisiae, also referred to as budding yeast,
is undoubtedly the best studied eukaryal unicellular organism.
It has been used to understand basic biochemical and bio-
molecular processes, as well as a model organism for studying
human diseases.1 It is also an important cell factory in meta-
bolic engineering, with successful applications in the biofuel,2,3

pharmaceutical4 and food5 industries. Understanding how yeast
uses its metabolism for growth and production of compounds
of interest is fundamental for its use in metabolic engineering.
Considering the very large number of reactions involved in
metabolism, a mathematical modeling approach becomes a
necessity.

Modeling and predicting cellular metabolism has always
been at the center of systems biology. Already in the 1960s, as
the biochemical steps of the main metabolic pathways were
being elucidated, kinetic models of metabolism were presented

for mathematical simulation and analysis.6 Because these models
required identifying a considerable amount of unknown rate laws
and parameters, constraint based modeling was developed
through the 1980s and 1990s, as a way of circumventing the
unavailability of kinetic data.7 With the advent of whole-
genome sequencing techniques and the exponential increase
in computational performance, genome scale modeling was
introduced at the beginning of the 2000s and until today is the
most widely used modeling approach for studying metabolism.8

Genome scale models of metabolism, referred to as GEMs
or sometimes as GSMMs, are usually reconstructed in a semi-
automatized manner, and contain 3 main levels of information:
metabolites, reactions and genes. The interplay between metabo-
lites and reactions is represented by a stoichiometric matrix, and
the interaction between reaction and genes with Boolean relation-
ships. The main advantage of the approach is that it allows
quantitative predictions of metabolism, such as the effect of genetic
perturbations on the cell’s physiology, with almost no parameters.
However, as discussed elsewhere,6 the approach has several limita-
tions, such as an assumption of a steady-state of metabolite
concentrations and the difficulty of incorporating regulatory con-
straints.9 For studying yeast metabolism, several GEMs have been
developed10,11 and applied extensively with satisfactory results.12–15

Here we review the genome scale modeling technique in
yeast. We start by briefly surveying the S. cerevisiae’s GEMs that
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have been published so far. We then focus on how GEMs of
yeast typically are evaluated and tested, using both descriptive
and predictive metrics, and how they can be integrated with
omics data. Finally, challenges in the field are discussed.

2. S. cerevisiae GEMs: an ongoing story

The history of yeast genome scale modeling, shown schemati-
cally in Fig. 1A, has been reviewed in depth previously.10,11 We
will therefore review it briefly and focus on recent advances.
The first genome scale model of yeast, iFF708, was published
12 years ago and considered three cellular compartments: the
cytosol, mitochondria and the extracellular space.16 It was the
first eukaryal GEM and also the basis for three subsequent
yeast models: iND750, which increased the number of compart-
ments to eight,17 iLL672, which improved the gene essentiality
predictions,18 and iIN800, which included a more detailed lipid
metabolism.19 iND750 was later updated to iMM904, achieving
better gene essentiality predictions and integrating meta-
bolomics data.20

Both iMM904 and iLL672 were used to generate Yeast 1,
the first consensus genome scale network reconstruction
(GENRE), created using a ‘jamboree’ approach where several
yeast research groups collaborated.21 The network was expanded
using iIN800 to improve lipid metabolism and connectivity, and
was also modified to allow constraint based simulations, result-
ing in Yeast 4 (the first consensus GEM).22 Since then, it has been
further improved 3 times, namely Yeast 5 (improved sphingolipid
metabolism),23 Yeast 6 (refined coverage and improved anaerobic
predictions)24 and Yeast 7 (enhanced fatty acid, glycerolipid and
glycerophospholipid metabolism).25

Besides the consensus yeast models, there have been additional
model developments from individual groups. In one study,
iMM904 was further improved using a procedure to reconcile
growth prediction inconsistencies; this resulted in iAZ900.26

Finally, the models iIN800 and Yeast 1 were recently merged to
create iTO97727 with different criteria than Yeast 4, using less
compartments and more unique reactions. Fig. 1B shows the
number of models published by year. We expect that the
number of yeast GEMs will continue to increase in the future,
as more biological data gets published and more manual/
automatic curations are performed.

Fig. 1 (A) Schematic history of GEMs in yeast. (B) Increase in the number
of published yeast GEMs through the years.
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3. GEM evaluation approaches

Each time a new GEM is published, it is evaluated to display
whether it is more complete in coverage and/or has better
prediction performance than previous models. These evalua-
tion metrics can be divided into four general groups (Fig. 2):
general metrics, connectivity metrics, growth metrics and
genetic deletion metrics. The former two are metrics for
describing the model (both quantitatively and qualitatively),
and the latter two are metrics for predicting biological beha-
vior. In the following we review in depth each category, high-
lighting which yeast studies have included which of them.

3.1. General metrics

The most basic descriptive evaluation of a GEM is to count the
total amount of reactions, metabolites, genes and compartments
it has. This has been done for all reviewed yeast models;16–27

a summary of all metrics is displayed in Fig. 3. Over the years,
the amount of reactions, metabolites and compartments has
increased, but the amount of genes remains relatively similar,
indicating that even though most of the metabolic genes are
included in the model, our understanding of metabolism is still
at a developing stage. It has been argued that the same meta-
bolite in different compartments should be counted only once,
in order to make a fair assessment of size.27 The amount of
unique reactions and unique metabolites are therefore also used
as metrics for comparison of GEMs.

Going further than merely counting, a useful general metric
scarcely used so far is comparing the similarity or heterogeneity
between models, with respect to metabolites, reactions or
genes. For this, a reference set including the union of all
elements (metabolites, reactions or genes) must be created.
Then, binary vectors can be computed for each model (in which
the i-th position will be = 1 if the i-th element is present in the

Fig. 2 Main metrics used to evaluate GEMs.

Fig. 3 Number of reactions, metabolites, genes and compartments in all 12 published yeast GEMs.
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model and = 0 otherwise), and distance scores can be computed
between models.28,29 Using this technique, it has been recently
shown that yeast models fall into ‘‘clusters’’ depending on their
historical development and research group origin.29 However, the
lack of standardized metabolite names between models can
severely hamper these analyses (an issue further discussed later).

There are additional qualitative general metrics for assess-
ing and comparing models: if additional metabolic pathways
are included,19,25 if there is a distinction between GENRE and
GEM,23 if standardized identifiers are used,21 or if additional
levels of data are included.27

3.2. Connectivity metrics

A central part of any genome scale model is the metabolic
network, which can be simplified as an undirected bipartite
graph, connecting metabolites with reactions. Here we refer to
this as the metabolic graph. In it, a metabolite Mi will have an
edge to reaction Rj if Mi participates in reaction Rj, either as a
substrate or a product. This is presented for an example net-
work in Fig. 4. The metabolic graph can be split into two
smaller graphs: the metabolite graph, in which the nodes are
metabolites and there is a connection between two metabolites
if they are present in the same reaction, and the reaction graph,
in which the nodes are reactions and there is a connection
between two reactions if they both share a metabolite (also
schematically shown in Fig. 4).30

Of the three mentioned graphs, the metabolite graph has
been the most studied in yeast GEMs.21,31–33 As any undirected
graph, several connectivity metrics can be computed, which
give insights about the network topological properties. The
most common descriptive calculations used are:
� Metrics for any pair of nodes (Mi, Mj):
– Shortest path: the smallest number of intermediate nodes

between Mi and Mj, typically calculated with a shortest path
algorithm such as Dijkstra’s algorithm.

– Shortest path diversity: the amount of paths between Mi

and Mj of length equal to the shortest path. Used for measuring
robustness in the network.
� Metrics for any node Mi:
– Node degree: the amount of nodes connected to Mi. Used

for finding the best connected metabolites.
– Local clustering coefficient: the fraction of connected

nodes between the neighbors of Mi, without considering Mi.
Used for finding local clusters.

– Betweenness centrality: the average fraction of times Mi is
present in the shortest path between any other couple of nodes.
Used for finding hubs in the network.
� Global metrics:
– Global clustering coefficient: the fraction of closed triplets

among all triplets, where a triplet consists of 3 nodes connected
by at least 2 connections, and a closed triplet is a triplet with all
3 connections. Used for measuring the cluster-like behavior of
the total network.

– Characteristic path length: the average shortest path.
– Network diameter: the maximum shortest path.
– Averages for other previous metrics (node degree, local

clustering coefficient, etc.) can also be computed.
Usually these metrics are computed with and/or without

currency metabolites (H2O, H+, CO2, phosphate, diphosphate,
ammonium, ATP, ADP, AMP, NAD+, NADH, NADP+ and
NADPH).21,30 Software such as Network Analyzer34 or cyto-
Hubba35 can calculate most of these metrics. Although this
analyses can be extended to the reaction – gene network of
GEMs, usually protein–gene networks are studied instead,
which are typically attained from other sources.36,37

Two additional descriptive metrics, specific for metabolic
networks, have been used in yeast models regularly. One is the
percentage of unreachable metabolites from the extracellular
space, which is a good metric to detect closed sub-networks
within the model, i.e. a set of reactions and metabolites that

Fig. 4 Metabolic, reaction and metabolite graphs for a fictional metabolic network.
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are disconnected from the rest of the network.22 It is easily
calculated using the metabolite graph with no currency meta-
bolites, by searching for the shortest path between each intra-
cellular metabolite and each extracellular metabolite. The other
descriptive metric is the percentage of blocked reactions, which
is relevant for detecting the part of the network that will always
have zero flux due to dead-end metabolites (metabolites that
are not consumed).22,23,25 It is usually checked using a flux
variability analysis (FVA)38 approach, allowing exchange for
all extracellular substrates, and maximizing/minimizing each
reaction of the model.

3.3. Growth metrics

One of the main uses of GEMs is for model predictions. The
most basic prediction a GEM can give, using the flux balance
(FBA) approach,39 is the specific growth rate of an organism,
together with the uptake and excretion rates of substrates and
products, respectively. Therefore, the validation of the specific
growth rate and other exchange fluxes with experimental
data has for several yeast models been a standard evaluation
procedure.16,19,20,23,27 Chemostat data is regularly used for this,
under carbon (usually glucose) or nitrogen (usually ammonium)
limitation, aerobic or anaerobic conditions, and varying specific
growth rate. As prediction performance improves, it could be of
interest to expand the evaluation of yeast GEM predictions to
complex media, or other carbon (ethanol, glycerol, galactose,
fructose, etc.) or nitrogen (amino acids) sources.

When predicting the growth rate, in order to correctly
account for the energy consumption for all cellular processes
an ATP requirement value has to be introduced, commonly
known as ATP maintenance. This maintenance can be divided
in a growth-associated maintenance (GAM; mmol(ATP) per
gDW) and a non-growth counterpart (NGAM; mmol(ATP) per
gDW per h). Both are usually obtained from experimental
measurements, and the former one is typically adjusted to
improve the fitting to experimental data.16,40

An additional growth metric is to evaluate flux distributions
inside the network. This is rarely done as a model evaluation
metric in yeast,19,27 but can give insights into how the carbon
and or nitrogen are being consumed, and how the simulated
cell is obtaining its energy, both at aerobic and anaerobic
conditions. Typical studied paths are glycolysis, pyruvate meta-
bolism, tricarboxylic acid (TCA) cycle, pentose phosphate path-
way (PPP) and the fermentative pathway.19

3.4. Gene deletion metrics

Another predictive metric, so far tested in all yeast
GEMs,17–20,22–27,29,41 is the ability to reproduce experimental
gene deletion data.42 The most common approach for this is to
perform a single knockout analysis, with the goal of correctly
predicting essential genes, i.e. genes for which no growth is
observed when removed from the model. This has been done
using experimental data of yeast growing on minimal glucose-
limited media,17–20,22–27,29 complex glucose-limited media
(usually YPD),17–19,26,27,29,41 and/or non-glucose limited media
(such as ethanol, galactose and glycerol).17–20,29 Recently, there

have been studies that also include double knockout analysis,
with the aim of detecting synthetic-lethal genes, i.e. pairs of
genes that are not essential by themselves, but when both of
them are deleted, the cell does not grow.27,29

The computational procedure is the same for all of the
abovementioned approaches: first the wild type strain is simulated
using FBA and maximizing biomass,39 and the specific growth rate
is saved as a reference. Then, for each gene (or for each pair of
genes in the double knockout analysis), the knockout is computed
by fixing the flux through all reactions controlled by the corre-
sponding gene(s) to zero. A second optimization is then performed,
by maximizing biomass, minimizing the metabolic adjustment
(MOMA)43 or using regulatory on/off minimization (ROOM).44 After
repeating the procedure for all genes, a growth threshold is used to
define if each knockout is able to grow or not. This is later
compared with experimental data, and metrics that account for
global performance of the model such as sensitivity (also known
as recall; the fraction of correct viable predictions), specificity
(the fraction of correct inviable predictions), accuracy (the fraction
of correct predictions), Matthew’s correlation coefficient (MCC) or
geometric mean (GM) can be computed.

For gene essentiality analysis there are three main factors
that should be considered: the threshold for considering
a knockout viable, the experimental dataset used and the
simulated media composition. The growth threshold is the
minimum specific growth rate required for a knockout to be
considered viable and therefore the gene non-essential. Some
studies have used small thresholds, such as 1� 10�6 1 h�1 23–25,29

or 1% of the wild type growth.26 These thresholds will increase
the sensitivity but decrease the specificity, as a higher proportion
of knockouts will be categorized as viable. Other studies have
used higher thresholds, such as 80% of the wild type growth27 or
one standard deviation below the mean of all knockout values.17

In turn, for these cases the sensitivity will decrease and the
specificity will increase. Because the choice of threshold is always
an arbitrary decision, it is recommended to study how the results
vary depending on the choice of threshold.20,27

Choice of the experimental dataset used for model evaluation
is also an important issue, especially since results from whole-
genome knockout analysis are published regularly. Among all
published yeast GEMs there is no consensus on dataset usage,
and most of the times two or more datasets are employed. For
gene essentiality, the most used approaches so far have been
mining and querying various versions of the Saccharomyces
Genome Deletion Project45–47 and the Saccharomyces Genome Data-
base (SGD).48,49 For gene synthetic lethality, a study that con-
structed all possible double knockouts for 1712 genes50 and also
the SGD database have been used. It is important to use the same
dataset when comparing models,29 otherwise predictive metrics
(sensitivity, specificity, MCC, etc.) between models will not be
comparable. Ideally, the dataset should have similar experi-
mental conditions; in this sense, studies that have developed
their own gene deletion datasets for genome-scale model
validation51,52 present important advantages.

Finally, it is important to note that the composition of the
simulated medium has a major influence on the results of the
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deletion analysis.17,29 When using minimal media, the carbon
source is typically fixed at a limiting rate, oxygen is supplied at a
small amount (but not limiting) and ammonium, sulfate, and
phosphate are supplied in unlimited amounts.17,19,20,22–27,29,41

Sometimes, the simulation allows for vitamins20,22,26 and meta-
bolites associated with auxotrophic markers17,20,22,26 consumption
as well. In the latter case, the associated marker genes are deleted
from the model as well. When using complex media on the other
hand, the regular practice is to additionally include a supply of all
20 amino acids and 4 nucleotide bases.17,19,26,27,41 In some simula-
tions trehalose is added as well.17 One key challenge, especially
when comparing models, is to use a standardized medium,

and to have consistency between the medium and the experi-
mental dataset, something that is not always done correctly.
Finally, recent studies suggest that there is no yeast GEM which
is better than the others in predicting gene essentiality in all
media, all datasets and under all metrics; each one will perform
different depending on the conditions employed.29,51

4. Integration of omics data into GEMs

There are many studies on the use of genome scale models
as scaffolds for integrative analysis of omics data.8 This is

Fig. 5 Integration of omics data in yeast GEMs. (A) Table showing all integrations studies found in literature, indicating which kinds of omics data were
used. (B) Integration studies per year. (C) Integration studies classified by type of omics data. If a study used more than one kind of omics data, it is
counted more than once as well.
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especially beneficial considering that the constraint based
approach involves a large degree of freedom in the feasible
flux space.39 Consequently, by integrating omics data into
GEMs it is possible to get improved predictions of cellular
phenotypes and gain new insight into regulation of metabolism
in response to environmental or genetic perturbations.11,53

Several approaches exist for doing this, depending on the type
of omics data.7,54,55 In the following, we will review yeast GEM
studies that have included: gene expression (transcriptomics),
gene–gene, protein–gene and protein–protein interactions
(interactomics), protein level (proteomics), reaction’s physico-
chemical (thermodynamics) and biochemical (kinetics) para-
meters, metabolite levels (metabolomics) and reaction fluxes
(fluxomics). Fig. 5A shows all 86 cases found in literature for
yeast, distinguishing in each case what type of omics data was
used. Correspondently, Fig. 5B shows the number of integration
studies per year, suggesting an exponential-like increase of
studies over time, and Fig. 5C displays a break-down in use
of different types of omics data.

4.1. Transcriptomics

Transcriptome data, in form of microarray data or RNAseq
data, is the most widely used omics data for integration with
GEMs (Fig. 5C),56 most likely due to the relative easiness of
generating these data and the fact that they are genome-wide in
contrary to most other omics data.57 The basic idea underlying
the use of transcriptome data is that there is a relationship
between the expression level of a gene and the flux that
the corresponding enzyme catalyzes. Transcriptome data are
relatively easy to integrate in GEMs thanks to the standardized
annotation of genes in the models, using the MIPS codes. Its
first use in a yeast GEM was more than 10 years ago and
consisted of blocking fluxes of the model that were controlled
by genes with no expression under a given threshold.58 Because
of the simplicity of this approach for integration with FBA,
other studies have use it59,60 and additional methods have been
developed from it.61,62

Instead of using an expression threshold for on/off fluxes,
other studies have found correlations between flux values
and gene expression. For instance, combining the random
sampling method63 with transcriptomics has been used to find
correlations between flux and mRNA levels,64,65 and to identify
the so-called transcriptionally controlled reactions (reactions
with high flux and corresponding high gene expression) in
yeast.27,66,67 Other correlation studies have used traditional
FBA, e.g. with linear programming, instead of random
sampling.68

Other studies included different sets of conditions to study
the metabolic adjustment by differential expression,69 accounted
for up/down constraints depending on expression levels,70,71

studied relative flux changes compared to a reference distri-
bution,72 used the expression data in the objective function (i.e.
maximizing consistency between fluxes and expression data),73–75

integrated gene expression and GEMs with regulatory
networks,69,76–78 analyzed the shadow prices in FBA79 of
metabolites80 and genes,81 transformed the metabolic state

via perturbations82 and included enzyme complex abundance.83

Recently, some of these approaches were compared under the
same conditions in yeast, showing that none of them outperforms
the rest under all conditions.84 Therefore more than one method
should always be tested when using gene expression in FBA
calculations.

Another popular approach for transcriptome integration has
been to use the network topology instead of FBA, inferring
reporter metabolites (metabolites that are present in several
highly-expressed reactions) from the metabolic graph, and
highly correlated subnetworks from the reaction graph
(Fig. 4). This was formulated for the first time for yeast,85 and
since then it has been extended to the broader concept ‘‘reporter
feature’’86 and used numerous times.19,67,87–92 Other gene-
expression approaches using network topology have also been
developed, using the metabolic graph,93,94 the reaction graph71,95

and the gene graph (in which the nodes are genes and there is a
connection between two genes if they control the same reaction).96,97

A main disadvantage of using transcriptome data is that
there are many intermediate biological processes between
gene expression and metabolic fluxes, sometimes leading to
low correlation between the transcriptome and the biological
functions.57 To improve this, additional levels of information
have been combined with transcriptome data in a number of
studies, such as proteomics,64 metabolomics27,68,73,75,80,94 and
fluxomics.66,72,94,95

4.2. Interactomics

Experimental measurements of interactions have been used in
genome scale modeling of yeast for understanding, from an
omics perspective, the positive or negative relationships
between yeast genes and/or proteins. These approaches can
be classified into two main groups: regulatory mechanisms
(protein–gene or protein–protein) and epistasis (gene–gene).
A pioneer study developed an integrated model of metabolism
and transcriptional regulation, consisting of a GEM and a
transcriptionally regulatory network (TRN).76 The study combined
different databases sources, ChIP-chip data and transcription-
factor binding site motifs for the regulatory network construction.
The model showed good performance in predicting growth under
different transcription factor deletions and carbon sources. TRNs
have been also used in a thermodynamic analysis of yeast’s
anaerobic fermentation process,98 and for further refinement
in transcriptome integration methods.69,77,78 A different study
merged a GEM with a protein–protein and kinase phosphatase
interaction network to construct an expanded reaction graph, for
correlating fluxes to mRNA levels.95

Genome scale modeling has been used to predict epistasis,
i.e. positive or negative correlations between genes, performing
double knockout analysis and using the knockout’s specific
growth rates for computing epistasis scores.99–101 However,
initial studies lacked experimental verification, due to the
combinatorial problem of generating all double knockouts
in vitro. This was first overcome by extracting experimental
data from different sources in the literature102 and later by
generating and using large datasets of genetic interactions.103,104
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More recently, an alternative approach, which optimizes meta-
bolite balances instead of fluxes, was used for predicting genetic
interactions.105 These studies revealed a clearer picture of the
interactions in the metabolic network and have given insights
into yeast metabolic network’s plasticity,102 modularity103 and
allele-specificity.104

4.3. Proteomics

Proteomics, measured in relative or absolute abundance, is the
least included omics data in yeast GEMs (Fig. 5C), which is
likely because of the difficulty of acquiring good quality data,
but also given that enzymes are the least well annotated
component in GEMs; only a fraction of the EC numbers are
present, and high-order relationships between enzymes and
reactions (such as complexes, isozymes or enzyme promiscuity)
are often incomplete or non-existent.

All of the reviewed proteomic studies have compared the
protein levels with other types of data to find correlations between
different conditions. One study correlated proteomics with tran-
scriptomics and metabolic fluxes obtained from random sampling
to explain expression conservation in certain genes.64 A second
study related metabolic predictions (constrained by extracellular
metabolite measurements) with proteome data for detecting ‘‘non-
necessary proteins’’ (i.e. metabolic enzymes that are present under
a given condition but no flux is being predicted to go through its
corresponding reaction).106 Finally, a third study used phospho-
proteomics, metabolomics and the pairwise distance between
enzymes and metabolites (using the metabolic graph) to suggest
the function of enzymatic phosphorylation levels.107 Clearly,
proteomics can answer important questions regarding yeast meta-
bolism, and should be further explored in the future.

4.4. Thermodynamics

Integrating thermodynamics data with GEMs is extremely
useful since it reveals which reactions are likely to occur and
in which direction. It is also a convenient way of relating
metabolomic data with model predicted fluxes. Although all
yeast models have included thermodynamics in the model
reconstruction to some extent, as it has to be specified for each
reaction whether it is reversible or not, there are some studies
that have developed methods for further improving the model’s
thermodynamic consistency. A highly used approach in yeast
has been network-embedded thermodynamic (NET) analysis,
which reconciles GEM predictions with Gibbs energies of for-
mation, using fluxomic and metabolomic data.108 This approach
allows consistency checks on the measured metabolomics data,
prediction of metabolite concentrations in the case of missing
data, and detection of reactions subject to allosteric or genetic
regulation. NET has been published as software109 and it has
been used to analyze metabolome differences between yeast
knockouts grown under different carbon sources.110 Recently it
was expanded to analyze elementary flux modes,111 and to infer
reaction directionalities from metabolomic and thermodynamic
data.112

Other thermodynamic approaches have also been presented.
To determine growth efficiency in anaerobic fermentation, the

general thermodynamic balance was analyzed connected to a
FBA problem, instead of considering the thermodynamics of
each reaction.98 Also, most of the kinetic modeling approaches
(reviewed in detail in the following section) use thermodynamic
data, such as the equilibrium constant for defining modular
rate laws,113,114 or the Gibbs energies of formation for sampling
metabolite concentrations.115 Finally, a recent study estimated
the Gibbs energy of all GEM reactions at varying temperatures,
in order to detect ‘‘cold-favoring’’ reactions for generating a
cold-tolerant yeast mutant.116

4.5. Kinetics

Another vastly used approach in yeast genome scale modeling
has been to include kinetic parameters (regarding the rate and
saturation) of enzymes in the models. This has been done up
to now using mainly two techniques: dynamic flux balance
analysis59,60,117–132 and kinetic modeling.113–115,133–135

Dynamic flux balance analysis (dFBA) is a simple kinetic
approach that uses the assumption that the intracellular
kinetics can be disregarded (given that they are much faster
than the extracellular ones),136 and therefore iterative FBA
problems can be solved for a dynamic simulation of the
organism. The main advantage of the approach is that it uses
minimal kinetic data (most of the times the consumption and/
or production kinetics of extracellular metabolites are suffi-
cient). In yeast, dFBA has been used on GEMs to predict ethanol
production,117,118 triacylglycerol metabolism,120 cofactor balance
in pentose utilization,119 wine fermentation performance123 and
the shift from respirative to fermentative metabolism.125 Some
studies have assessed the influence of different parameter values
in the overall predictions compared to experimental data.59,60,122

In the last years, numerous studies have used dFBA to simulate
microbial co-cultures of S. cerevisiae with other organisms, such
as E. coli,121,124,127,130,131 S. stipitis126,129 and C. reinhardtii.128

Some of the presented dFBA studies have included metabolomics
data, usually from the extracellular media.60,122,123,129 Recently,
an extension to dFBA has been developed that accounts for
intracellular metabolomics integration as well (METdFBA).132

Differing from the simplified approach of dFBA, kinetic
models have emerged that account for all kinetics outside
and inside the cell. Although the idea of kinetic modeling of
metabolism has been around for some time,137,138 it was just
recently that the first genome scale model of yeast was adapted
for this purpose,134 using linlog kinetics and metabolic control
analysis (MCA).139 This was later expanded to include modular
rate laws113 as well as thermodynamic and fluxomic data.114

An alternative method has been presented,115 that uses uncer-
tainty and risk analysis methods (ORACLE)140 for missing
metabolomics or kinetic data. Another kinetic yeast model
was developed with the objective of allowing easier and systematic
comparison between parameter estimation methods.135 The main
advantage of kinetic modeling is that it gives additional insights
to the metabolic network, such as bottle-necks and controlling
reactions. However, the scarcity of data, and in particular on
kinetic parameters,6 represents a significant drawback. Addition-
ally, most of the studies simplify the GEM to a fraction of the
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complete metabolic network, and include measures for only a
small part of the total number of metabolites, thereby assigning
estimates for most of them. To overcome these problems, a new
method has been proposed that instead of estimating missing
kinetic or metabolomic data, operates with the available data only
for further constraining the FBA simulation (k-OptForce).133

Two additional approaches that also include kinetics have
been tried out in yeast. FBA with molecular crowding (FBAwMC),141

which limits the amount of protein available to perform metabolic
activities, has been performed using a yeast GEM.142 It used random
values of enzymatic turnover rates derived from a typical distribu-
tion to better understand the overflow metabolism of yeast at high
specific growth rates (known as the Crabtree effect). Finally, an
alternative approach to dFBA was recently developed, namely
dynamic mass balance analysis (dMBA), which computes a
distribution of metabolite masses instead of fluxes, simplifying
integration of metabolomics data.143

4.6. Metabolomics

There are many studies on integrating metabolite concentration
measurements with yeast GEMs. The most typical approach is
to use extracellular measurements (generally under chemostat
conditions) to infer exchange fluxes used for FBA simulation,
either as sole data20,144,145 or in combination with other data
types.27,66–68,106,146 Intracellular metabolite concentration, on the
other hand, have been used far less. They are difficult to integrate
with FBA as this simulation approach does not consider the actual
metabolite levels. However, intracellular metabolite data have been
used together with the metabolic graph (Fig. 4) for identification of
reporter reactions, which are reactions that are likely to carry flux
changes in response to environmental or genetic perturbations.147

Intracellular metabolomics data has been used together with flux
coupling analysis148 as well, to classify and understand metabolite
profiles of mutant strains.149 Finally, metabolomics data has
been used as well as a calibration/validation metric for both
static73,75,150–152 and dynamic60,122,123,129 models, and as input
in kinetic modeling113–115,133,134 and other of the already
reviewed methods.80,94,107,108,110,111,132,143

4.7. Fluxomics

Fluxomics is recurrently used in genome scale modeling as it is
easy to integrate with FBA modeling. Intracellular fluxes can be
quantified using 13C-based flux analysis, a very widespread tech-
nique, albeit experimentally challenging, reviewed in depth else-
where.153 This approach uses information about the labeling
distribution in intracellular metabolites to quantify flux ratios at
key branch points in the metabolism, and combined with a
simple (or complete GEM) it is possible to quantify the absolute
fluxes through the different parts of the metabolic network.
Typically the data allows for estimation of an average flux value,
with corresponding standard deviations, for a limited amount of
reactions inside the model, usually the central carbon metabolism
and amino acid biosynthesis pathways, in units of mmol (gDW h)�1.
These estimated fluxes can be then used to constrain the FBA
simulations. This approach improves considerably the model
predictions, given that it reduces the otherwise large degrees of

freedom in the system, and has been used in several yeast
studies constraining fluxes to experimental values.18,95,145,146,154,155

Alternatively, the flux measurements can be used as part of the
objective function (minimizing the absolute differences between
the predicted and measures fluxes)72 or for later validation of the
model predictions.94,156 Finally, several yeast studies already
mentioned have used fluxomic measurements as general inputs
for their procedures.108,113–115

5. Current challenges

12 years of genome scale modeling of yeast have contributed
significantly to our understanding of yeast’s cellular processes
and life functions, and have improved strain performance
through model guided metabolic engineering.6 As new model
expansions (improving coverage and accuracy) and new
approaches for omics data integration (improving specificity
and applicability) appear, our understanding will grow even
further. However, important challenges remain in the field,
both in the area of model development/evaluation and data
integration.

One challenge in yeast GEMs is the need of standardized
evaluation and comparison. E. coli and S. cerevisiae are the only
two unicellular organisms for which several iterated versions of
GEMs exist,53 and therefore a crucial step when modeling these
organisms is the right choice of GEM. It has been frequently
discussed that there is a trade-off in GEMs between completeness
and prediction accuracy;22,23 usually models that contain the most
coverage (metabolites, reactions) have lower performance under
prediction metrics. No model is suited for all purposes; larger
models should be used for studying particular pathways that are
not present in other models, whereas smaller models may be
better for predicting growth phenotypes of knockout strains.
Consequently, there is need of benchmark tests that can evaluate
the performance of new models and compare results among
existing models, in order to identify the best model for a particular
purpose. Recent studies that evaluate yeast models under the same
gene deletion metrics are the first examples of this.29,52

Another critical aspect for GEM evaluation is the standardi-
zation of the chemical species involved, to avoid recurrent
annotation problems with dissimilar nomenclature.157,158 For
achieving this, several standard identifiers for enzymes (EC
numbers, PMID and KEGG36 codes), metabolites (SMILES,159

ChEBI160 and InChI161 identifiers) and genes (MIPS162 and SGD49

codes) have been used, albeit scarcely. An important challenge is
to maintain a continuous update and curation of the models
using these unified nomenclatures in the yeast GEMs. This will
decrease the difficulty of model development, and increase the
quality of model comparisons.29

We have detected areas for improvement for omic integration.
Fig. 5C pinpoints omics data types that have not been sufficiently
studied in context of yeast GEMs, such as regulation, thermo-
dynamics and especially proteomics. Nonetheless, the biggest
challenge is not to focus on only one level of data but to use the
GEM as a scaffold for integration of more than one or two levels,
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which has only been tried in a handful of studies, and using
subsets or simplifications of the full GEM (Fig. 5A). Further
considerations must be taken into account when performing this
type of studies, especially regarding the data; all datasets should
ideally come from the same source (similar media, strain, con-
dition, etc.). In this sense, experimental studies that measure
several layers of data are especially useful.163 However, even more
important is the constant crosstalk between experimental and
computational biologists, in order to on one side generate useful
data in statistically significant experimental setups, and in the
other one answer relevant biological questions.

Appropriately addressing the mentioned issues in model
evaluation and data integration will enable researchers to
construct a full picture of yeast metabolism, with all the ‘‘key
players’’ correctly considered, and ultimately enhance predictions
for applications in systems biology and metabolic engineering.
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108 A. Kümmel, S. Panke and M. Heinemann, Mol. Syst. Biol.,
2006, 2, 2006.0034.
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