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In this paper, we outline the theoretical framework for understanding the equilibrium force-dependent
folding and unfolding transitions of protein domains and small nucleic acid structures, both having small
rigid folded structures and highly flexible unfolded polymeric chain conformations. A complete statistical

description of the state described by the probability function p%(n,x), is obtained, where n is an index

denoting the structural state, and x is the extension of the molecule. ¢ denotes an external constraint
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applied to the molecule, which is either a constant force or a harmonic spring attached to one end of
the molecule. The extension probability distribution regardless of the structural state: p¢(x) = 3 p¢(n, x),
the free energy landscape: —kgTn(p(x), and the probability of the states regardless of the "&xtension:

pn = [odxp*(n,x), are analyzed using the force-dependent structural transitions of the classic titin 127
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domain as an example. The impact of different external constraints is also discussed.

Single molecule manipulation techniques have been widely used to study the force induced structural transitions of biomolecules such as DNA and proteins. With

recent advances in technology, increasing measurements are carried out under equilibrium conditions for a long time scale of several hours, in contrast to
previous experiments carried out under non-equilibrium conditions over short experimental time scales of seconds to minutes. However, most of the current

theoretical frameworks were originally developed to understand experiments carried out under non-equilibrium conditions with a focus on the kinetics of
transitions. In this paper, we outlined a systematic theoretical framework to understand the force dependent unfolding and refolding of macromolecules under

equilibrium conditions, which is linked to popular experimental systems such as magnetic tweezers, optical tweezers and AFM by introducing different external
constraints into the molecules. We believe that such a theoretical description will be useful for both designing experiments and interpreting experimental results.

Introduction

Single-molecular manipulation techniques have been widely
used to study the force responses of macromolecules, such as
DNA and proteins." Mechanical forces applied on macromolecules
can drive transitions between different structural states, which
depend on the differential entropic force responses of the
respective structural states and the chemical energies that
stabilize the folded state. Being a ubiquitous factor in cells, it
is now broadly acknowledged that mechanical force is a key
regulator of the functions of many biomolecules, influencing
various important biological processes in development, tissue
maintenance and diseases.*”
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The force response of a biomolecule in a particular structural
state and the force-dependent transitions between different struc-
tural states can be studied at the single-molecule level using single-
molecule manipulation techniques. Currently, there are three
major types of such techniques available, namely atomic force
microscopy (AFM), optical tweezers and magnetic tweezers. They
can mechanically stretch a single biomolecule by applying an
external mechanical constraint to the molecule. In the cases of
AFM and optical tweezers, it can be considered that the molecule is
linked to an external harmonic spring at the end of the molecule,
where the equilibrium position of the spring and the spring
constant can be controlled. In the case of magnetic tweezers,
constant forces are applied on the molecule using magnets through
a paramagnetic bead attached to one end of the molecule.

In principle, the equilibrium properties of the force-
dependent conformations and structural transitions can be
obtained under a given external mechanical constraint by observing
the extension fluctuation of the molecule. Such measurements
require the maintenance of the external mechanical constraint
(e.z, a constant force or a spring placed at a fixed position) for a

This journal is © The Royal Society of Chemistry 2015
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long enough time to allow the molecule to sample all possible
conformations and structures by thermal fluctuation. However,
equilibrium fluctuations between different structures often involve
overcoming high kinetic barriers and therefore have slow transition
kinetics. Due to the rapid mechanical drift of the pulling devices,
it has been challenging to study the force-dependent structural
transitions under equilibrium conditions for many mechanically
stable molecules. What has been typically done is forcing the
molecule to unfold in a short time by rapidly moving the spring
away from the molecule or by rapidly increasing the external
force. Data obtained from such non-equilibrium measurements
have been interpreted based on kinetic theories®> or non-
equilibrium statistical mechanics.**

The most recently developed anti-drift technology, magnetic
tweezers, has been reported to be able to maintain a constant
force for several hours with negligible force drift and spatial
drift."”*> Such technical improvement has made it possible to
probe the equilibrium mechanical folding and unfolding tran-
sitions of stable protein domains'*"” and small nucleic acid
structures such as G-quadruplexes.'®'® However, a systematic
theoretical framework based on equilibrium statistical physics
dedicated to the understanding of the mechanical unfolding
and folding of small protein domains and nucleic acid
structures is still lacking. Motivated by the need for such a
systematic theoretical framework for extracting information
from equilibrium experimental measurements, we provide here
a complete statistical description of the probability function
p*(n,x), where n is an index denoting the structural state, x is
the extension of the molecule, and ¢ denotes an external
constraint. We demonstrate the application of this prob-
ability function by analyzing the force-dependent structural
transitions of the classic titin 127 domain, and discuss the
impact of different external constraints on experimental
observations.

The states of the system

To discuss the statistics of the force-dependent folding and
unfolding problem, we describe the state of the system by (7,x)
in this paper. Here n is the structural index, with n = 1 denoting
the folded state, and n = 2 denoting the unfolded state. x is the
extension of the molecule, which is the end-to-end distance
vector of the molecule projected along the direction X.

The folded structure is typically a rigid body, which can be
modeled as a rigid rod with a rod length of [, in the absence of
mechanical stretching. Its extension is simply x = [of-%. In the
unfolded state, the molecule is typically an inextensible flexible

polymer chain, with an extension of x = [1'7(s) - ¥ds, where L is
the polymer chain contour length.

Force—extension curves of the
respective structural states

When a molecule is stretched to an extension x, a tension fis
built inside the molecule depending on the level of stretching.
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The relation f(x), or its inverse x(f), is referred to as the force-
extension curve. The force-extension curve of a rod is simply
the monomeric force-extension curve in the freely-jointed
chain (FJC) polymer model, since each monomer in the FJC is
treated as an independent rigid segment:

Xrod Mo ksT S
o= (com b -E0) (147) )

where kg is the Boltzmann constant, T is the absolute tempera-

ture, and X,.q is the extension of the rod. The factor (1 +Jj;) is
0

added to allow a certain level of deformability of the rod,
where f, » fto ensure a small deformability. Hereafter a rigid
body described by eqn (1) is referred to as the extensible
rigid body.

In the unfolded state, the conformation of the molecule can
be described as an inextensible polymer chain with a weak
bending rigidity. The force-extension curve of such polymers is
described using the so-called worm-like chain model, which
can be approximated analytically using the Marko-Siggia for-
mula:*°

fi 1 l Xchain : (2)

kBT:4(17xchain/L)2_4 L

where A is the persistence length describing the bending
stiffness of the chain, X.n.in is the extension, and L is the
contour length.

The above force-extension curves describe the entropic
elasticity of the molecule in a particular structural state n.
The resulting elastic energies at an extension x are:

¢mw=]§x%mx, )

where f,(x) is the force-extension curve of the corresponding
structural state n. The following relation immediately follows:

%CDH(X) = dﬁ,,’(x) :f;’(x)

The conformational free energies
under an external constraint

Under an external constraint £, the conformational free energy
of the molecule in a particular state n includes a part from the
entropic elastic energy of the molecule and another part from
the external constraint, which can be generally described by the
following equation:

ﬁm:EMﬂw+wm, (@)

where w°(x) is an additional energy contribution from the
constraint. P

The derivative d>f;’ (x) = fulx) + awi (x) is the difference
between the tension in the molecule and the force applied to
the end from the external constraint, which is the mean force
applied to the end of the molecule (mean force applied to the
link point between the molecule and the constraint). At the
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Fig. 1 Illustration of different external mechanical constraints. (A) A con-
stant force constraint — a constant force F is applied to the molecule. (B)
An external spring constraint — an external spring with a spring constant k
attached to one end of the molecule. The equilibrium position of the
spring is located at the position R.

equilibrium extension x = X.q,,, the mean force should be zero.
Therefore, X.q,, can be solved from the equation <Df/(xeq,n) =0.
Considering <15,§(x) as a free energy landscape, X, corresponds
to the free energy minimum extension of the structural state n.

In this work, we focus our discussions on two commonly used
constraints. One is the constraint of a constant external force of
F applied to one end of the molecule, and the other is an external
harmonic spring connected to one end of the molecule, which
can be described by the equilibrium position of the spring and
the spring constant (x,R). The two different constraints are
illustrated in the schematic shown in Fig. 1. w'(x) is the potential
energy of the end of the molecule in the constant force field,
while w*®(x) is the spring energy of the spring:

w(x) = —Fx,

(5a)

wB(x) = Ix(x — R (5b)

The probability density function of the extension of a particular
state, p,(x), is related to ®4(x) through the Boltzmann distribu-
tion:

¢ 1%l
py(x) = zZ (6)
where
) JRHE)
zZ :J dxe kT (7)
0

is the partition function of the molecule in the state n. Here
J,dx denotes the integral of the extension from zero to the
allowed extension range of the molecule in the structural state
n. In the subsequent discussions, the folded state is treated as
an extensible rigid body, as such its extension can be longer
than the contour length of the natively folded state /,. The
unfolded state is treated as an inextensible WLC, and therefore
its extension cannot exceed the contour length of the unfolded
chain. Z; only depends on the external constraint, from which
the conformational free energy of the molecule in the structural
state n can be calculated as: —kgT'In Z5.
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Boltzmann distribution of the two-
state system under a constraint
A complete statistical description of the two-state system under

a consraint ¢ requires the knowledge of the joint probability
function of p“(n,x). The energy of the state can be written as:

°(1%) = 0,1 (P5(x) — () + Fn2P5(x), (8)

where ¢, is the Kronecker delta which equals 1 when i =j and is
zero otherwise. u(x) > 0 is the folding energy of the folded
state, which is dependent on x based on the following:

x—L
u(x) = 0(Ly = x)pg + 0(x — Li)pge” 7

©)

where the step function 0(x) equals zero if x < 0 and 1
otherwise. y, is the folding energy of the natively folded state
in the absence of an external stretching: the larger its value, the
more stable the natively folded state. u(x) indicates that as soon
as the extension of the folded state exceeds the contour length
of the natively folded structure (L,), the stability of the folded
state decays exponentially over a characteristic length scale of 4
(Fig. 2). Therefore, 4 is similar to the “unfolding transition
distance”, over which the free energy barrier is overcome.

At equilibrium, p°(n,x) should follow the Boltzmann distri-
bution:

&)

ﬂg(mX):%e kT (10)
where
7= 3o
n=1+0
g T (11)

= J dxe k8T +J dve 7
0 0

(P -n) B
= J dxe kpT +J dxe kT |
0 0

is the total partition function of the system which depends on
the constraint ¢. The total free energy of the two-state system is
therefore:

Giotal = —kgT1n Z°. (12)

5 10
X (nm)

Fig. 2 An example of the extension-dependent folding energy plotted at
1o = 10 kgT, 2 = 0.4 nm, and L; = 4 nm.

This journal is © The Royal Society of Chemistry 2015
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Two important probability functions can be derived from the
joint-probability function. One is the probability density of the
extension regardless of the state:

7
_Z

@5 (x)

(#i-n0)
+e kT | is a dimensionless quan-

kgT

where Z¢(x) = <e

tity, which can be considered as a partition function under the
external constraint ¢ and an additional constraint of the extension x.
Its ratio over the total partition function is therefore the probability
density function of x.

The so-called free energy landscape G(x) defined as —kpT
In(Z(x)) is shown as follows:

(CHORIO)! sb;‘(x))

G‘: (_x) = —kB Tin <e_ kgT + e_ ks T (14)

which is related to p*(x) through the Boltzmann distribution
i Gi(x)

p°(x) xe k8T . Clearly, it determines the probability of the

The

average and the variance of the extension can be calculated as:

extension of the molecule under the constraint of ¢&.

£ L £
Xivg = Jodxxp=(x),
(15)
. L . §
0% = [dxx?pt(x) — x5,
Another important probability function is the probability of
structural states regardless of the extension, which can be

calculated as p, = [,p*(n,x):

1 CHORIE))
Pi Zg,jodxe ol
(16)
.1 »5(x)
Ps= ?jodxe T

p§c = pgc determines a critical external constraint at which the
two structural states have equal probabilities.

Applications

In this section, we demontrate the applications of the above
theoretical framework by discussing the mechanical unfolding
and folding transitions of the 27th immunoglobulin (Ig)
domain of classic titin in the I-band (I127) as an example. This
domain was studied extensively using AFM which revealed that
127 has an excellent mechanical stability to resist unfolding at
>200 pN forces in the direct pulling mode**"** and more
recently using force-clamping AFM under a constant average
force constraint through feedback control which revealed a

This journal is © The Royal Society of Chemistry 2015
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much lower unfolding force (<100 pN).>* In the above studies,
due to the mechanical drift of AFM, the measurements were not
taken at equilibrium and therefore the measured unfolding
force depended on the pulling speed in the direct pulling mode
and the clamping time in the force-clamping mode. Most
recently, the 127 domain was stretched using ultra-stable magnetic
tweezers under a constant external force constraint which exhibited
equilibrium unfolding and folding transitions at a very small force
of ~5 pN and a very low transition rate of ~10> s~*. From this
measurement, the equilibrium free energy difference between the
folded and unfolded states was estimated to be ~10 kzT.'” Here,
we discuss the mechanical transitions of 127 under the constant
force constraint and under a spring constraint based on the
theoretical framework described in the preceding sections.

An 127 domain has 89 amino acids (a.a.) and is folded into
two B-sheets with seven B-strands. Treating it as a rigid rod with
an [, of ~4 nm, its force-extension curve should follow eqn (1).
A large value of f; = 1000 pN is chosen to restrict its strain
change within 10% under force <100 pN. After unfolding, it
becomes a flexible peptide chain with a contour length of
~33 nm and its force-extension curve follows the WLC model
with a persistence length of A ~ 0.8 nm,** which can be
described using the Marko-Siggia formula (eqn (2)).”° Fig. 3A
shows the force-extension curves of the folded and
unfolded 127.

Under the constant force constraint described by eqn (5a),
the free energy landscape is calculated based on eqn (14) and
plotted in Fig. 3B for several different values of F. In the
calculations, an extension-dependent folding energy described
by eqn (9) with a native folding energy of po = 10 kgT (ref. 17)
and a decay constant of 4 = 0.4 nm is used. The resulting free

(B)

30 200f [~ 1PN
= —5pN
Jas}
—_ X 100} |7 10pN
g 20 ---Folded g —20pN
— — Caoil X 0
x w
10 [0}
e -100
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0 10 20 30 40 50 0 10 20 30
Force (pN) X (nm)
(©)
—~ 100—
:cn ," = P yrioigealX)
= 50 ." e
’>'<\ :: _GZOpN(x)
w 0 ,’
q 1
X 50
c
w
© -100
0 10 20 30
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Fig. 3 (A) The force extension curves of the titin 127 domain in the folded

(dashed line) and unfolded (solid line) states. (B) The free energy landscape
Gf(x) calculated at different values of F. The down triangles indicate the
global energy minimum. (C) An overlay of GF(x) (black line), ®fgeqlx) (blue
dashed line), and @ oealx) (red dashed line) calculated at F = 20 pN.
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energy landscape G"(x) shows two energy minima which are
separated by an energy barrier. The regions to the left and right
of the energy barrier, which are a few kgT below the barrier, are
dominated by the extension fluctuations of the folded and
unfolded structures, respectively. This can be seen by plotting
G"(x), ®1(x) — u(x) and P5(x) together (Fig. 3C). As a result, the
energy minima of G“(x) are basically the equilibrium extensions
of the folded state (n = 1) and the unfolded state (n = 2)
determined by ®;(xh ) = 0. Due to the rigid body nature, ¥} ¢

has a weak force dependence and is close to the [, at force
ksT
> ];— ~ 1 pN; however, due to the flexible chain elasticity of
0

the unfolded peptide, x5 .q has a strong force dependence and
shifts to the right at increasing forces.

The energy barrier corresponds to the maximum located at

I of G"(x). The “unfolding transition distance” can be

F

x

X=x
defined as: x = x| — ,vfeq, which is very small and has a length
scale close to /. This is the general outcome of the unfolding of
a rigid body which quickly loses its stability upon slight
deformation. In contrast, the ‘“folding transition distance”
defined as x = x — x ., is dominated by the extension of the
unfolded state and shows a strong dependence on force.
Further, the “unfolding energy barrier” defined as G* (x!) —
G (x1.¢q) is dominated by the folding energy, which has a weak
force dependence and is ~ fio; while the “folding energy barrier”
defined by G* (x!') — G (x2q) is dominated by the force response
of the unfolded peptide chain with a strong force dependence. The
critical force F, at which the folded and unfolded states have equal
probability is estimated by eqn (16) as F. ~ 5 pN.

It should be noted that in such a two-state model, the
physical meaning of the energy barrier is an extension state at
which the mean force applied to the bead from the folded state is
counter balanced by that from the unfolded state, weighted by

WO L) o)
- 12Y3 kpT

their energies exponentially, e and e , respec-
tively. It differs from the real ““transition state” that corresponds
to an ensemble of intermediate structural states. Furthermore,
in such a two-state description of the unfolding and folding
transitions, the transition rates purely depend on the bead
diffusion in the free energy landscape, without taking into
consideration the intrinsic time scale involved in the structural
transitions that often dominates the rate of transitions. In spite
of these limitations, the two-state model captures several generic
features of the mechanical unfolding and folding transitions of
rigid bodies, including a force-insensitive short unfolding transi-
tion distance, a force-sensitive folding transition distance, the
relative probability of the folded and unfolded states under a
given force constraint, etc.

Fig. 4A shows the average (black, left axis) and the variance
(red, right axis) of the extension as a function of force calcu-
lated by eqn (15). Increasing from 4 pN to 6 pN, the extension
increases quickly from that of the folded state to that of the
unfolded state. The variance shows a sharp rising profile during
the transition with a peak located at F, = 1 pN, indicating a
large extension fluctuation in this force range. Such a large

1158 | Integr. Biol., 2015, 7, 1154-1160

View Article Online

Paper
(A) (B)
30 60
« 2
=20 — W0e =
g Xavg [ g O
e e T Q
210 oo & 9
x N @
0 e ‘~~"‘—--—_-________ 0
0 10 20 0 5 10
Force (pN) Force (pN)
Fig. 4 (A) The average and the variance of 127 under a constant force

constraint of F. (B) The probabilities of the folded and unfolded states of
127 as a function of F.
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Fig. 5 (A) The free energy landscape G**(x) of 127 at a fixed R = 10 nm and
varying values of k. Down triangles indicate the global energy minima. (B)
The probabilities of the folded and unfolded states of 127 as a function of
the R at different values of «.

extension fluctuation is caused by the equilibrium fluctuation
between the two structural states. Fig. 4B shows the probabilities
of the folded and unfolded states as a function of F calculated by
eqn (16), indicating a switch from the folded state to the
unfolded state when force is increased over a narrow range from
4 pN to 6 pN.

Similar calculations can be done for the spring constraint of
a spring constant (x,R). Fig. 5A shows the free energy landscape
G*%(x) obtained at R = 10 nm and different values of x from
0.5 pN nm ™' to 50 pN nm™ . For x = 0.5 pN nm™ ', two energy
minima are observed, with the folded state being more stable,
as indicated by its lower level of energy compared to that of the
unfolded state. At x =5 pN nm ™', two energy minima are still
observed, but the folded state becomes less stable than the
unfolded state. At x = 50 pN nm™ ", the spring completely
dominates the fluctuation of the bead. The extension of the
molecule is nearly stretched to the equilibrium position of the
spring, and it is in an unfolded state since the extension is
much greater than the contour length of the folded state.
Fig. 5B shows the probabilities of structural states of the
molecule as a function of the spring position (R) for three
different values of «. In general, it shows that, compared to a
stiffer spring, a softer spring needs to move a longer distance to
unfold the molecule, with a less steep transition profile.

In typical AFM or optical tweezer experiments, the trap/
cantilever position is controlled. The extension of the molecule
indicated by the bead/cantilever-tip position is measured, and

This journal is © The Royal Society of Chemistry 2015
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Fig. 6 (A) Extension of 127 as a function of the spring position R, and (B)

force as a function of the average extension, calculated at different spring
constants «.

the force is a readout based on the calibrated spring constant of the
trap/cantilever stiffness. Fig. 6A shows the average extension of 127
as a function of R calculated by eqn (15) for three different values of
k. It shows that during unfolding, a larger extension jump can be
observed under a softer spring constraint than under a stiffer
spring constraint. Fig. 6B shows the force change during unfolding
as a function of the average extension, revealing that a larger force
drop under a stiffer spring constraint than under a softer spring
constraint. Importantly, both the magnitude of the unfolding force
and the overall force-extension profile show a significant depen-
dence on the spring stiffness. These results indicate that when a
molecule is stretched by a spring, both the molecule and the spring
should be considered as a combined thermodynamic system. The
interpretations of the observed force-extension relationship during
transitions must be based on the context of the spring constant
used in the experiments.

Summary and discussions

By describing the force-extension curve of the folded state as an
extensible rigid rod and that of the unfolded state as a flexible
chain, the joint probability function p*(n,x) has been derived
for mechanical force-dependent two-state structural transitions
of small protein domains and nucleic acid structures. The
extension fluctuation p*(x) and the probability of the structural
states pj are derived as functions of the constraint, which can
be directly related to experimental observations. Although we
dedicated the discussions to the mechanical unfolding of small
rigid-body structures, the theoretical framework is not limited
to such structures. For a non-rigid body structure, one just
needs to replace eqn (1) with the appropriate force-extension
curve for the structure.

Two commonly used external mechanical constraints are
discussed: one is the constant force constraint typically implemented
in magnetic tweezer experiments, and the other is the external
spring constraint typically implemented in AFM/optical tweezer
experiments. We have shown that different constraints lead to
different experimental observations during the mechanical unfold-
ing and folding of the molecules. In particular, in the case of the
external spring constraint, interpretation of experimental data
should consider the molecule and the spring as a combined
thermodynamic system.

This journal is © The Royal Society of Chemistry 2015
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All equations are derived based on equilibrium statistics. In
the derived free energy landscape, the difference in the free
energies of the folded and unfolded states determines their
relative probabilities under a constraint. The energy barrier in
the free energy landscape is mainly contributed by the folding
energy of the folded state, which does not provide a realistic
description of the actual transition state that typically corre-
sponds to an ensemble of intermediate structural states, which
are different for different molecules. With a slight modification
of the free energy landscape described in the paper, it is
possible to describe the kinetics of real experiments more
realistically, for example by changing the height of the energy
barrier treating it as a free parameter to match the barrier
height estimated in experiments.
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