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Identification of drug-specific pathways based on
gene expression data: application to drug induced
lung injury†
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Identification of signaling pathways that are functional in a specific biological context is a major challenge in

systems biology, and could be instrumental to the study of complex diseases and various aspects of drug

discovery. Recent approaches have attempted to combine gene expression data with prior knowledge of

protein connectivity in the form of a PPI network, and employ computational methods to identify subsets

of the protein–protein-interaction (PPI) network that are functional, based on the data at hand. However,

the use of undirected networks limits the mechanistic insight that can be drawn, since it does not allow

for following mechanistically signal transduction from one node to the next. To address this important

issue, we used a directed, signaling network as a scaffold to represent protein connectivity, and

implemented an Integer Linear Programming (ILP) formulation to model the rules of signal transduction

from one node to the next in the network. We then optimized the structure of the network to best fit the

gene expression data at hand. We illustrated the utility of ILP modeling with a case study of drug induced

lung injury. We identified the modes of action of 200 lung toxic drugs based on their gene expression

profiles and, subsequently, merged the drug specific pathways to construct a signaling network that

captured the mechanisms underlying Drug Induced Lung Disease (DILD). We further demonstrated the

predictive power and biological relevance of the DILD network by applying it to identify drugs with

relevant pharmacological mechanisms for treating lung injury.

Insight, innovation, integration
In this manuscript we introduce a novel approach for the identification of signaling pathways that are functional in a specific biological context, by leveraging gene
expression data and prior knowledge of protein connectivity. In more detail, we introduce a linear programming formulation to model signal transduction from
one node to the next in a Prior Knowledge Network (PKN), and by minimizing the mismatch between model predictions and experimental data, we are able to
identify subsets of the PKN that are most probably functional in the specific biological context. More specifically, we address the problem of identifying the modes
of action of drugs that have been reported to induce respiratory side effects, based on their gene expression profiles, and subsequently, merge the drug specific
pathways together to construct a signaling network that captures the signaling mechanisms underlying Drug Induced Lung Disease (DILD). Moreover, to
demonstrate the predictive power and biological relevance of the DILD network, we use it to suggest potential drug repositioning for treating lung injury.

1 Introduction

The identification and understanding of modes of drug action is at
the core of pharmacology-based pharmaceutical R&D. For the many
drugs that target signal transduction processes, this requires an
understanding of the mode of action at the signaling level and in
the specific tissue where the drug is to be used, along with other
tissues that may be subject to off-target effects. Understanding
this could have an enormous impact in many aspects of drug
development and public health.1 Ideally, one would have dedi-
cated (phospho)proteomic and chemoproteomic experiments,2
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where the binding targets of the drug of interest are identified,
and the amount and post-translational modifications of many
proteins are measured upon perturbation with the drug. However,
phospho- and chemo-proteomic data are still relatively hard to
generate and hence very few datasets exist. In contrast, such
data upon perturbation exist abundantly at the gene expression
level,3 and they are an invaluable resource for comparative
studies of drugs and cell lines, enabling the use of computational
modeling for predicting drug efficacy or identifying potential
drugs for repositioning.4 Thus, the development of novel
approaches that leverage gene expression datasets to identify
the modes of drug action is an important question in computa-
tional drug discovery.

Most computational methodologies for identifying modes
of drug action based on gene expression data use one of the
following two workflows: (i) first, differentially expressed genes
are identified upon perturbation with the interrogated drugs,
and subsequently, enrichment analysis is performed to identify
biological processes, signaling pathways, or other gene sets that
are highly enriched in the differentially expressed genes and
thus, are likely to be deregulated by the interrogated drugs. The
gene sets could be either GO terms or genes that are deregulated
upon perturbation with known, very specific stimulants.5

Because enrichment based strategies ignore the complex gene
interactions that may drive cellular response, hybrid methods
have also been proposed that take into account information
from pathway maps to improve their prediction.6 (ii) Other
approaches are primarily based on the incorporation of prior
knowledge of signaling networks or transcription regulation
in addition to the gene expression data.7–9 For example, in the
work by Ziemek et al.,8 the Selventa knowledge-base was used
that includes causal, condition specific relationships between
signaling proteins and gene expressions, and a Bayesian infer-
ence approach was used to identify subsets of this knowledge
base that are most probably active in the specific biological
context. Ziemek et al. were able to identify the key regulators that
govern gene expression, but they could only capture limited
mechanistic aspects of the intermediates in signal transduction,
i.e. how signal propagates from one protein to the next before
translation into the gene expression level via the transcription
factors (TFs). In another work by Chen et al.,10 a PPI network was
used to represent protein connectivity, and an enrichment
analysis method was implemented to infer the activity of TFs
and signaling proteins based on the observed gene expression
signatures. In similar fashion, Huang et al.9 used a PPI network
to represent protein connectivity, and implemented a Prize
Collecting Steiner Tree (PCST) algorithm to identify minimum
subtrees of the PPI network that connect differentially expressed
genes or proteins, discovering the backbone networks that are most
probably functional in the specific biological context. In more
detail, the PCST algorithm addresses the problem of connecting
into a Steiner arborescence tree as much of the differentially
expressed genes (or proteins) as possible, while minimizing the
number of edges in the tree. The PCST does not impose the
requirement that all differentially expressed genes/proteins are
included in the solution, but identifies a subset of those whose

connectivity is also strongly supported by the network, thus
offering robust predictions even when noisy data are used. Also,
the PCST can be formulated as an Integer Linear Programming
(ILP) problem, which can be solved efficiently allowing the
interrogation of genome-wide networks.

The use of PPI networks in general offers clear advantages
over strictly data driven methods. Firstly, these methods com-
bine gene expression data-sets with the wealth of published high
throughput interaction data, making model predictions more
biologically relevant. Secondly, the identification of network
topologies implicated in drug response is easier to interpret, as
it offers mechanistic insight into the mode of drug action.
Finally, the use of networks allows the generation of predictions
for signaling molecules that are not directly measured, for example
nearest neighbours of the measured genes/proteins. Nevertheless,
the use of PPI networks has its own shortcomings. PPIs are
undirected; thus, the direction of signal flow from one protein to
the next is not easily identifiable. While the original formulation
of PCST considered undirected networks, extensions have been
proposed11 to include directionality in the networks and to
generalize from a single tree that connects together all differen-
tially expressed genes (or proteins), to forests, thereby permitting
different, unconnected neighborhoods of the PPI network to be
functional at the same time. As more complexity is incorporated
in the formulation, a global solution becomes intractable, forcing
the use of heuristic methods in the optimization risking a sub-
optimal solution. Moreover, even these PCST extensions cannot
incorporate signed data and interactions (positive vs. negative
effects), while these effects are in fact key to defining the
mechanisms underlying signal transduction.

In this paper, a methodology is introduced for the identifi-
cation of the mode of drug action, based on gene expression
data and prior knowledge of protein connectivity in the form of
a large (10 956 proteins), directed signaling network. At the
heart of our method is an Integer Linear Programming (ILP)
formulation based on the one by Melas et al.,12 modified at key
points to address the complexity of large-scale signaling net-
works. The methodology combines gene expression data with a
Prior Knowledge Network (PKN) based on signed and directed
causal interactions, such as those that can be curated from the
literature, and it identifies subsets of the PKN that appear to be
functional based on the data at hand. We addressed the modeling
of signal transduction using rules that define signal propagation
from one node to the next in the network, and incorporated the
necessary intervention strategies to modify the network structure
to best fit the experimental data at hand. Our method resembles
the work by Tuncbag et al.11 with regards to the identification of
minimum subsets of the PKN that fit the experimental data.
However, by crafting the rules of signal transduction into our
custom ILP formulation, we were able to additionally capture the
valuable information contained in the sign of the interactions as
well as to distinguish between positive and negative changes in
the data (up- and down-regulations).

To illustrate the value of our approach, the identification of the
modes of action of drugs that are known to induce lung injury is
addressed. Drug induced lung injury is a major safety concern
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and more than 800 drugs are listed as potential inducers13 of
lung injury including asthma, fibrosis, or interstitial pneumonia.
Thus, understanding the molecular mechanisms underlying
Drug Induced Lung Disease (DILD) may have an impact in drug
development and in public health. In this work, the modes of
action of 200 drugs that are known to induce respiratory
problems were identified, in terms of signaling pathways that
start at the drug targets, go through the signaling level, and
terminate at the genomic level with the regulation of genes that
were differentially expressed upon perturbation with the toxic
drugs. Subsequently, the drug specific pathways were merged
together into a signaling network (i.e. DILD network) that
captures the signaling mechanisms underlying DILD. Moreover,
to demonstrate the predictive power of model predictions, our
findings are used to suggest drugs with relevant pharmacological
mechanisms for repositioning to treat DILD.

2 Results
2.1 Workflow

We propose a method to identify the mode of drug action based
on gene expression data and prior knowledge of drug targets,
protein connectivity and transcription regulation. The workflow
of the proposed method is shown in Fig. 1. First, pharmaco-
logical targets were identified from the STITCH database,14 and
differentially expressed genes upon perturbation with the inter-
rogated drugs were identified from the Connectivity Map.3

Subsequently, an algorithm based on the Integer Linear
Programming (ILP) formulation published in Melas et al.12

was used to identify functional interactions that model signal
transduction from the drug targets to the differentially expressed
genes. The identified pathways were functional subsets of a large
signaling network, and originate at the drug targets, span across
the signaling level, go through the affected transcription factors
and terminate at the genomic level with the regulation of the
differentially expressed genes (see also Fig. 2).

The Pneumotox database13 was used to extract the drugs that
were reported to cause lung injury. Pharmacological targets
were extracted from STITCH and their gene expression profiles
from the Connectivity Map, resulting in a list of 200 lung-toxic
drugs with known drug–target interactions and gene expression
profiles. Then, the Reactome Functional Interaction network15

was used to connect drug targets, transcription factors and gene
expressions as illustrated in Fig. 1. Subsequently, the proposed
ILP formulation identified a functional subset of the Reactome
network, connecting drug targets and genes that were differentially
expressed upon perturbation with the lung-toxic compounds.
In particular, the ILP constructed a signaling pathway per toxic
compound. At the end, the drug specific pathways were pooled
together into a signal transduction network that captured
the molecular mechanisms underlying DILD that we call the
DILD network.

Finally, to demonstrate the biological relevance of the
DILD network, it was leveraged to identify potential drugs for
repositioning that could be useful to reverse DILD’s phenotype.
To this end, all remaining drugs in cMAP that were not in our
DILD list were considered, and their targets were extracted from
STITCH. If drug targets of these presumed non-toxic drugs
overlapped with the DILD network, then their drug specific
pathways were computed using the ILP algorithm, and the drugs
were ranked based on how much their pathways disrupted the
DILD network. The presumed non-toxic drugs that significantly
disrupted the DILD network were considered candidates for
repositioning.

2.2 Extraction of lung-toxic drugs, their known targets and
identification of differentially expressed genes

2.2.1 Extraction of lung-toxic drugs. Lung toxic drugs were
obtained from the Pneumotox database.13 Pneumotox contains
892 chemicals reported to induce treatment-related lung injury,
200 of them are also included in the cMAP. To obtain a better
perspective on the kind of drugs included in this list, chEMBL
was used to extract their nominal pharmacological effects. In
Table 1 we include the most frequent nominal pharmacological
effects (any effect is encountered 3 times or more amongst the
toxic drugs).

As a positive control observation, DNA inhibitors are at
the top of the table. This is expected since DNA inhibitors are
often used as anti-neoplastic agents and are inherently toxic.
Cyclooxygenase (COX) inhibitors are also at the top of the table.
This is in good accordance with the literature where it has been
reported that a range of COX inhibitors and other non steroid
anti-inflammatory drugs (NSAIDs) (frequently used as analgesics)

Fig. 1 Workflow. Drugs that induce respiratory problems were extracted
from Pneumotox. Pharmacological targets were identified from STITCH and
their gene expression profiles from the Connectivity Map. Over- and under-
expressed genes were identified using the rank matrix of the Connectivity
Map. Then, the proposed ILP formulation was applied to identify signaling
pathways connecting drug targets and over- and under-expressed genes.
The drug specific signaling pathways were merged into a DILD network that
was subsequently used for suggesting potential drugs for repositioning to
treat DILD.

Integrative Biology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
M

ay
 2

01
5.

 D
ow

nl
oa

de
d 

on
 1

1/
20

/2
02

5 
7:

32
:1

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4ib00294f


This journal is©The Royal Society of Chemistry 2015 Integr. Biol., 2015, 7, 904--920 | 907

may cause respiratory problems.16 Beta-1 adrenergic receptor
antagonists are also suspected of inducing respiratory distress,
since beta adrenergic receptors are found to be desensitized
in lung injury.17 Finally, tubulin inhibitors may contribute to
lung injury via inducing oxidative stress.18 For the rest of the
pharmacological effects there is no clear mechanism that could
elucidate the etiology underlying Drug Induced Lung Disease.

2.2.2 Extraction of drug targets. Next, the known targets of
the toxic drugs were extracted from the STITCH database.
STITCH includes all known targets of drugs, both the nominal
pharmacological targets and other molecules with which they
may interact, based on direct experimental data, the available
literature, or computational predictions. The identified drug targets
were used to model the interactions between the interrogated

drugs and the cell’s signaling machinery, and are the potential
starting points of the mode of drug action. Of the 892 toxic
chemicals, only the ones that have known targets in STITCH
and also known gene expression signatures in the Connectivity
Map were processed further, thus resulting in a total of 200
compounds per drugs. The list is included in the ESI.†

2.2.3 Identification of over- and under-expressed genes.
Over- and under-expressed genes were identified using the rank
matrix of the Connectivity Map (cMAP) dataset. For each toxic
drug (present in Pneumotox), the top and bottom 1% of the
genes were extracted from the rank matrix. All the genes were
pooled together and the frequency with which they are over-
and under-expressed across all drugs was calculated. The 5%
most frequently over- and under-expressed genes were extracted

Table 1 Most frequent nominal pharmacological effects for the drugs in Pneumotox. The frequency of the corresponding modes of action across all the
drugs in cMAP is shown in the parenthesis

DNA inhibitor 27 (62) Cyclooxygenase 1,2 inhibitor 18 (31)
Sodium channel alpha subunit blocker 15 (47) Serotonin 2a (5-HT2a) receptor antagonist 11 (24)
GABA-A receptor; anion channel positive allosteric modulator 11 (15) Norepinephrine transporter inhibitor 10 (19)
Serotonin transporter inhibitor 9 (38) Glucocorticoid receptor agonist 9 (50)
Beta-1 adrenergic receptor antagonist 9 (15) Mu opioid receptor agonist 8 (8)
Bacterial penicillin-binding protein inhibitor 8 (36) Angiotensin-converting enzyme inhibitor 8 (8)
Bacterial 70S ribosome inhibitor 7 (33) Tubulin inhibitor 7 (12)
Peroxisome proliferator-activated receptor gamma agonist 7 (9) D2-like dopamine receptor antagonist 7 (17)
Beta-2 adrenergic receptor antagonist 7 (26) Progesterone receptor agonist 5 (12)
Voltage-gated L-type calcium channel blocker 5 (15) Type-1 angiotensin II receptor antagonist 5 (8)
RNA inhibitor 5 (6) Arachidonate 5-lipoxygenase inhibitor 4 (4)
Thymidylate synthase inhibitor 4 (4) Serotonin 2c (5-HT2c) receptor antagonist 4 (12)
Serotonin 1d (5-HT1d) receptor agonist 4 (4) Norepinephrine transporter releasing agent 4 (18)
HMG-CoA reductase inhibitor 4 (10) FK506-binding protein 1A inhibitor 4 (4)
Dopamine transporter inhibitor 4 (17) Dihydrofolate reductase inhibitor 4 (7)
Androgen receptor agonist 3 (8) Adrenergic receptor alpha-2 agonist 3 (7)
Vitamin K epoxide reductase complex subunit 1 isoform 1 inhibitor 3 (4) Ferriprotoporphyrin IX inhibitor 3 (6)
Cytochrome P450 51 inhibitor 3 (9) Bacterial dihydropteroate synthase inhibitor 3 (16)
Androgen receptor antagonist 3 (8)

Fig. 2 Identification of the mode of drug action in terms of drug induced signaling pathway alterations via the proposed ILP algorithm. First, a Prior
Knowledge Network (PKN) was constructed by merging prior knowledge of protein connectivity and transcription regulation. Then, the proposed ILP
algorithm was implemented to identify subsets of the PKN that appear to be functional based on the data at hand. The resulting pathways started at the
drug targets, spanned across the signaling level, went through the layer of transcription factors and terminated at the genomic level with the regulation of
the differentially expressed genes.
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as the most significantly over- and under-expressed genes upon
perturbation with the toxic compounds.

The differentially expressed genes were used as a readout of
the cellular response upon perturbation with the interrogated
drugs, and they were used as the endpoints of the identified
modes of drug action.

The lists of over-expressed and under-expressed genes are
included in the ESI.† Subsequently, Gene Ontology (GO) enrich-
ment analysis was performed to identify biological processes
that are potentially linked to the differential gene expressions.
Enriched terms with corrected p-value less than 0.05 are shown
in Tables S1 and S2 (ESI†). Terms with corrected p-value less than
0.001 are shown in bold. As shown in Table S1 (ESI†), the over-
expressed genes are mostly enriched in pro-apoptotic processes.
This is expected, as a big part of the lung toxic compounds are
chemotherapeutics or generally anti-neoplastic agents known to
be toxic. Moreover, terms related to blood vessel development
are present in Table S1 (ESI†). This is in good accordance with
the literature, where vascular development has been reported in
acute lung injury (ALI).19 The VEGF gene in particular is over-
expressed in 12% of the lung toxic drugs. On the other hand,
the GO terms corresponding to the under-expressed genes are
mostly related to cell cycle, nuclear division, mitosis etc. From
the physiological perspective, disruption of these processes by
toxic compounds could result in lung injury.

2.3 Identification of modes of drug action and construction of
DILD network

The ILP algorithm was employed to identify the modes of action
of the 200 lung-toxic drugs, based on their gene expression
signatures from the Connectivity Map and prior knowledge of
protein connectivity, drug targets and transcription regulation.
The proposed ILP algorithm identified for every drug its mode of
action in terms of a signaling pathway starting at the drug targets
(as these were extracted from STITCH), spanning across the
signaling level, going through the layer of transcription factors
and terminating at the gene expression level with the regulation of
the differentially expressed genes. The ILP algorithm identified
the minimum subset of the Prior Knowledge Network (PKN), that
achieved the desired targets - gene expression connectivity. In
this context, the drug targets correspond to the interface of the
drugs with the cell’s signaling machinery, and the differentially
expressed genes represent the cellular responses upon perturba-
tion with the interrogated drugs. Thus, the identified signaling
pathways constitute cue–signal–response models,20 capturing
cells responses to the toxic drugs. At the end, all drug specific
signaling pathways were pooled together to obtain a signaling
network that could best capture the molecular mechanisms
underlying drug induced lung injury i.e. DILD network. All inter-
actions in the DILD network were modeled using the same
mathematical formalism presented in Section 4.1, regardless of
the specific layer they belong to (e.g. drug–target interactions,
protein–protein interactions, or TF–gene interactions).

2.3.1 Illustrative example: discovering the mode of action
of imatinib. To best illustrate how the proposed ILP algorithm
works to identify the mode of drug action, a simple case study is

presented for imatinib. Imatinib is a tyrosine kinase inhibitor
used for the treatment of cancers, and is also known to induce
acute lung injury as one of its adverse effects.21 Its nominal
pharmacological targets are BCR-ABL, PDGFR and cKIT. Imatinib
has also been shown to interact with 296 proteins according to
STITCH. Moreover, its gene expression signature is included
in the Connectivity Map. In this paragraph, the proposed ILP
algorithm was used to identify the mode of action of imatinib in
terms of a signaling pathway that originated at the drug targets,
spanned across the protein level and terminated at the gene
expression level. The computed signaling pathway is shown Fig. 3.

As shown in Fig. 3, only 22 targets were conserved in the
solution, out of the 296 known targets for imatinib. The ILP, in an
attempt to minimize the size of the network, conserved only the
nodes that were required to propagate the signal from the drug
targets to the differentially expressed genes. In this specific case,
the observed gene expressions could be explained by using only
the 22 targets, thus the remaining drug targets were removed.

The transcription factors to be conserved in the imatinib
specific network were chosen in a similar way. The ILP conserved
only the transcription factors that are required to propagate the
signal to the differentially expressed genes. For example, NFKB1
was conserved with a positive sign (black asterisk in Fig. 3)
because there are 2 genes downstream of NFKB1, which appeared
to be over-expressed upon perturbation with imatinib (CFLAR and
PIK3CD). Since NFKB1 is not one of the targets of imatinib, the
ILP also conserved PIK3R1 (known to interact with imatinib) to
activate NFKB1 via the PIK3R1 - NFKB1 interaction. Moreover,
the NFKB1 - FOS interaction was conserved to activate FOS,
inducing the expression of ETV5 and TNRC6B genes. NFKB1
also activates RARA. RARA serves to express the NCOA2 gene,
that according to the Connectivity Map, is over-expressed upon
perturbation with imatinib. FOS also interacts with MTOR and
from there activates RELA facilitating the expression of PPARA
and MMP14 genes. Even though the reaction FOS - MTOR is
not necessary to activate MTOR, since MTOR is one of imatinib
targets, this reaction was present in the PKN. This is due to the
fact that our formulation minimized the number of nodes
included, not the number of interactions, and it retained all edges
that could not be disproven based on the experimental data.

Similar logic was applied to the down-regulated nodes in the
imatinib specific network. For example the transcription factor MYC
was conserved with a negative sign (red asterisk in Fig. 3), because 12
genes downstream of MYC appeared to be under-expressed upon
perturbation with imatinib. MYC is not one of imatinib targets, thus
signal has to originate from another target upstream of MYC, such
as MAPK14 (P38 protein). Down-regulation of MAPK14 also lead
to the down-regulation of STAT3, CREB1, MEF2A and JUN, all of
which are transcription factors and have downstream genes that are
downregulated upon perturbation with imatinib. There may be
some interactions that were redundant, for example the down-
regulation of MAPK14 from JAK1 and RAF1. However, because both
proteins were down-regulated by imatinib and there is an interaction
between them in the PKN, the ILP could not disprove the presence
of that reaction, it was thus conserved in the solution. The rest of the
nodes and interactions were justified in a similar way.
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2.3.2 Construction of the DILD network. All the drug
specific signaling pathways were pooled together to obtain a
signaling network that could presumably best capture the
molecular mechanisms underlying drug induced lung injury
i.e. the DILD network. The network includes a total of 2197
nodes and 6480 interactions (Fig. 4A). In Fig. 4B, an analytic
showing the significance of the included nodes is plotted.
The nodes of the network correspond to different coordinates
on the x-axis and the y-axis corresponds to the number of drug
specific pathways where each node is either up- or down-
regulated. Consistently up-regulated nodes at the protein level
were placed on the left of the figure, while down-regulated
nodes were placed on the right. We observe that even though
there is significant drug to drug variability in the signaling
pathways, there are a number of nodes that are consistently
up- or down-regulated. Thus, the signaling processes related to
these nodes may play a key role in drug induced lung injury.
The network modules consisting of the strongly up- and down-
regulated nodes (nodes present in 5 or more of the drug specific
pathways) were extracted from the DILD network and plotted
separately in Fig. 5 and 6. To establish the statistical significance
of model predictions we repeated the pathway construction

procedure for randomized gene expression data, drug–target
interactions and PKN connectivity. Results are shown in Section
2.5 and in more detail in the ESI.†

As shown in the consistently up-regulated network module of
Fig. 5, a number of proteins related to DNA damage, apoptotic
signaling, stress response and inflammation are present. For
example TP53, CASP3, BCL2, BAX, CASP6, BCL2L1, CASP8,
CASP9, BID, PARP1, CFLAR, GADD45A, FASLG, DDIT3, NFKB1,
ATF2, ATF4, TNFRSF10A, TNFRSF10B, TNFAIP3, RIPK2, HSPD1,
HSP90AA1, HSF1, HSPA6, IFNG, HIF1A and PTEN. Moreover,
proteins with a broad role in signaling including JUN, CREB
and FOS are present. The above findings are expected and
are in good accordance with the Gene Ontology enrichment
analysis applied on the differentially expressed genes, as dis-
cussed above, where the list of over-expressed genes was highly
enriched in biological processes related to cell death and apoptosis.
Here, the proposed ILP algorithm leveraged the differential
gene expressions and prior knowledge of protein connectivity
and transcription regulation to identify the signaling pathways
underlying the observed gene expression signatures. Since the
gene expression data revealed a strong correlation with biological
processes related to cell death and apoptosis, the signaling

Fig. 3 Mode of drug action of imatinib. Nodes in green correspond to drug targets, nodes in yellow correspond to transcription factors. The black rings
around the nodes indicate that the corresponding proteins are up-regulated and the red rings indicate that the corresponding proteins are down-
regulated. The differentially expressed genes upon perturbation with imatinib are not shown in the network for the sake of clarity, however, there are
differentially expressed genes downstream of all the transcription factors in the network and their differential expression has the same sign as the
regulation of the respective transcription factor.
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pathways that yield this response are DNA damage and apoptotic
signaling pathways as shown in Fig. 5. Pro-apoptotic and response
to DNA damage pathways are also known to be implicated in
various forms of lung injury.22 The agreement of the signaling
pathways of Fig. 5 with the biological processes related to the
differentially expressed genes (Table S2, ESI†), also validates that
the breaching of the signaling and gene expression levels via the
layer of transcription factors is accurate. Apart from the DNA
damage and apoptosis pathways, proteins related to calcium
signaling are present, such as FASLG, FOS, IL4 and JUN, which is
in agreement with the literature where hypercalcemic activity has
been observed in lung injury.23

Finally, in the network module of Fig. 5, some unrelated
proteins appear, such as the EP300 protein. EP300 is a transcrip-
tion factor and it affected the expression of 108 differentially
expressed genes in the DILD network. Moreover, it took part in
signaling and interacts with 170 proteins in the DILD network.
Thus, it appeared to have a central role in the signaling pathways
upon perturbation with the lung-toxic drugs. Since the ILP
algorithm was agnostic to the biological function of the included
proteins, and only uses the experimental data to identify subsets
of the PKN that are functional in the specific biological context,
proteins under-reported in the literature were expected to appear.
These may constitute novel findings or they may be an artifact
of the PKN structure, or the prior knowledge of transcription
regulation. For example, the 108 differentially expressed genes
connected to EP300 may also be expressed by another TF that is
not included in the PKN, thus the ILP is forced to use the EP300

protein to fit these gene expressions, even though this is not the
true mechanism. These advantages and pitfalls exist in all
unbiased approaches including the proposed ILP formulation.
In this context, EP300 is known to play a role in the WNT/
b-catenin pathway which is found to induce IL1B expression
and be implicated in interstitial pulmonary fibrosis, one of the
lung injury phenotypes.24 Moreover, we performed GO enrichment
analysis on the target genes of EP300, and found over-representation
of programmed cell death and other apoptotic processes. In
particular 42 genes related to apoptosis were regulated by EP300,
which implies its potential role in pro-apoptotic response and
consequently drug induced lung injury.

In Fig. 6, the network module of the consistently down-
regulated proteins is shown. A number of proteins related to
pro-growth and pro-survival pathways are present, such as
MYC, E2F1, E2F6, CDK1, RAF1, SRF, RPS6A3, and MAPK7. This
is in good accordance with the Gene Ontology enrichment analysis
performed on the differentially expressed genes, as discussed
above, where the list of under-expressed genes was highly
enriched in biosynthetic and metabolic processes, and also
processes affecting the cell cycle. Here, the signaling pathways
underlying these biological processes are shown, as these were
computed by the ILP algorithm based on the gene expression
data. The under-expression of pro-growth, pro-survival and
cell cycle pathways in lung injury has also been reported in
literature.25 Apart from the major pro-growth pathways, TOP2A
(DNA topoisomerase 2A) is also consistently down-regulated.
This is expected as a large number of the lung toxic drugs are

Fig. 4 DILD network and analytics. (A) DILD network. It includes a total of 2197 nodes and 6480 reactions. Yellow nodes represent differentially
expressed genes and grey nodes represent signaling proteins including drug targets and transcription factors. The size of the nodes corresponds to the
number of solutions where this node is active. Thus, most significant nodes are plotted bigger than the rest. (B) An analytic showing the significance of the
included nodes. The nodes of the network correspond to different coordinates of the x-axis and the y-axis corresponds to the number of drug specific
pathways where each node is either up- or down-regulated. Consistently up-regulated nodes are placed on the left of the figure, while down-regulated
nodes are placed on the right. There are a number of nodes that are consistently up- or down-regulated, and the signaling processes related to these
nodes may play a key role in drug induced lung injury. Results were compared against predictions from randomized gene expression data, drug–target
interactions and PKN connectivity (Section 2.5 and ESI†).

Integrative Biology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
M

ay
 2

01
5.

 D
ow

nl
oa

de
d 

on
 1

1/
20

/2
02

5 
7:

32
:1

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4ib00294f


This journal is©The Royal Society of Chemistry 2015 Integr. Biol., 2015, 7, 904--920 | 911

DNA inhibitors and target TOP2A. Finally, a number of proteins
related to female hormone signaling are present in the network
(ESR1, ESR2). This is in good accordance with the literature where
estradiol and other estrogen receptor agonists are found to amelio-
rate the symptoms of, and protect, against lung injury.26

A number of unrelated proteins are also present in Fig. 6,
such as MEF2A and GABPA. MEF2A mediates cellular functions
mostly in the skeletal and cardiac muscle development. However,
it is also found to play a diverse role in controlling cell growth
survival and apoptosis via the MAPK14 (P38) signaling pathway.27

In good accordance with the literature, in Fig. 6, MEF2A was
activated by MAPK14. Moreover, MEF2A regulated the expression
of 28 genes, and also participated in signaling by interacting with
19 other proteins. GABPA was also found to play a significant role
in the DILD network, regulating the expression of 40 genes and
interacting with 8 proteins.

2.4 Identification of candidate drugs for treating DILD

Here we attempt to demonstrate the predictive power of the
proposed ILP algorithm and the biological relevance of model
predictions, by leveraging the DILD network in Fig. 4 to identify
potential drugs for repositioning to treat DILD. To this end
we focused in the non-toxic drugs of the Connectivity Map
(a total of 1109 drugs). First, their targets were extracted from
STITCH and their gene expressions from cMAP. Then, drug

specific signaling pathways were computed for all drugs whose
targets overlapped with the DILD network. Finally, the drugs
were ranked according to how much their pathways disrupted
the DILD network. A drug was considered to disrupt the DILD
network if its signaling pathway upregulated proteins that were
down-regulated in the network or down-regulated proteins that
were upregulated in the network. The complete ranked list of
overlapping drugs is included in the ESI.† The top 40, most
highly ranked drugs are included in Table 2 together with their
indication and relevant information supporting their usability
for treating DILD (where that is available).

The drugs at the top of the list are in good accordance with
our previous predictions, are expected to strongly disrupt the
DILD network calculated above, and have also been shown to a
great extent to ameliorate the symptoms of lung injury. For
example, ciclosporin is an immunosuppressant drug widely used
in organ transplantation. It reduces the activity of immune
system by interfering with the activity of T cells. It is also effective
in rheumatoid arthritis and severe psoriasis, 2 auto-immune
disorders with strong inflammatory component. Moreover, it has
been shown to be an effective therapy for interstitial lung disease
of unknown aetiology.28 Its signaling pathway is shown in Fig. 7.
We observed proteins that were strongly upregulated in the
DILD network, and implicated in apoptotic and inflammatory
processes, were downregulated by ciclosporin and vice versa.

Fig. 5 Module of the DILD network including only the nodes that are up-regulated in five or more of the drug specific signaling pathways. Transcription
factors are plotted in yellow. Differentially expressed genes have been omitted from the figures for the sake of clarity. The size of the nodes corresponds
to the number of drug-specific pathways where the respective node is up-regulated. Directionality and sign of the interactions has been removed
for readability.
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For example, the proteins TP53, TRIM28, RELA, HIF1A, FOS and
JUN that were consistently up-regulated upon exposure to the
lung toxic drugs, they were down-regulated upon perturbation
with ciclosporin. Moreover, the proteins RPS6KA3 and SRF,
related to cell cycle and consistently down-regulated upon
perturbation with the toxic compounds, were up-regulated upon
perturbation with ciclosporin. In total, ciclosporin upregulated
13 proteins that were down-regulated in the DILD network:
CCNB2, ESR2, NFE2L2, NFYA, RAD21, RB1, REL, RPS6KA3,
SRF, TAF1, TFDP1, YBX1, YY1, and down-regulated 20 proteins
that were up-regulated in the DILD network: AURKA, BHLHE40,
BUB1B, CCNA2, CCNG2, CTBP2, FOS, HBP1, HIF1A, JUN,
POLR2E, RAD50, RELA, RUNX1, SMC3, STAT1, TCF12, TP53,
TP53BP1, and TRIM28. These results suggested that cyclosporine
could have a potential disease modifying action.

Apart from ciclosporin, the flavonols quercetin and genistein,
ranked third and sixth in the list, have strong anti-inflammatory
action and been shown to be beneficial in treating pulmonary

disease. The protective effect of flavonoids on lung injury has
been reported.46 Resveratrol (ranked 4th) is another plant extract that
has been shown to alleviate COPD injury in rats.30 Tretinoin, ranked
second in the list, is also an immunosuppressant, and was able to
ameliorate the symptoms of oxygen induced lung injury in the
newborn rat.47 However, it has also been reported in Medsfacts.com
to have caused traumatic lung injury in at least one patient out
of 957 reports of any other side effects of tretinoin. Of the 933
physicians that expressed their opinions on the report, 295
were highly suspicious of tretinoin as the cause of the incident.
Whether treatment effect or toxicity dominates could be attributed
to differences in dosing regimens and duration of use.

In addition to the immunosuppressants and other anti-
inflammatory drugs, estrogen diethylstilbestrol is also present
(ranked 7th). Even though diethylstilbestrol has not been shown
to treat DILD, it upregulated ESR1 and ESR2, that according
to our predictions were consistently down-regulated in DILD (see
Fig. 6). Moreover, estradiol and other estrogen receptor agonists

Fig. 6 Module of the DILD network including only the nodes that are down-regulated in five or more of the drug specific signaling pathways.
Transcription factors are plotted in yellow. Differentially expressed genes have been omitted from the figures for the sake of clarity. The size of the nodes
corresponds to the number of drug-specific pathways where the respective node is down-regulated.
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Table 2 Drugs from the Connectivity Map whose signaling pathways significantly disrupt the DILD network and constitute potential drug repositionings
for treating DILD. Their indication was extracted from Drugbank and Dailymed. The drugs are listed in decreasing order of significance. Candidate drugs
that match the predictions of the cMAP online query tool are shown in bold. The first column corresponds to the number of signaling nodes in the DILD
network whose activity is reversed by the corresponding drug

Score Drug name Indication and relevance to treating DILD

119 Ciclosporin Anti-inflammatory. For treatment of transplant (kidney, liver, and heart) rejection, rheumatoid arthritis, severe psoriasis.
Shown to be effective treatment for interstitial lung disease of unknown etiology28

115 Tretinoin Immunosuppressor. For the induction of remission in patients with acute promyelocytic leukemia (APL), French–
American–British (FAB) classification M3 (including the M3 variant); for the topical treatment of acne vulgaris, flat warts
and other skin conditions (psoriasis, ichthyosis congenita, ichthyosis vulgaris, lamellar ichthyosis, keratosis palmaris et
plantaris, epidermolytic hyperkeratosis, senile comedones, senile keratosis, keratosis follicularis (Darier’s disease), and
basal cell carcinomas); for palliative therapy to improve fine wrinkling, mottled hyperpigmentation, roughness
associated with photodamage.

108 Quercetin Flavonol. Has anti-inflammatory properties. Used to prevent the progression of obstructive pulmonary diseases.29

92 Resveratrol Experimental, being investigated for the treatment of Herpes labialis infections (cold sores). Has anti-inflammatory and
antioxidant effects. Has been shown to alleviate COPD lung injury in rats30

91 Paracetamol For temporary relief of fever, minor aches, and pains. Demonstrates weak anti-inflammatory action. Has been shown to
be potentially induce asthma in long term use31

88 Genistein Flavonoid. Has anti-inflammatory action. Currently being studied in clinical trials as a treatment for prostate cancer.
Reverses severe pulmonary hypertension and prevents right heart failure in rats32

78 Diethylstilbestrol Estrogen. For the treatment of hypertension, angina, and cluster headache prophylaxis.
78 Copper sulfate NA
76 Fulvestrant For the treatment of hormone receptor positive metastatic breast cancer in postmenopausal women with disease pro-

gression following anti-estrogen therapy.
73 Wortmannin Used in research. Has been shown to reduce immediate-type allergic response and late phase pulmonary inflammation

induced by allergen challenge in the ovalbumin-sensitised Brown Norway rat33

70 ly-294002 Potent inhibitor of phosphoinositide 3-kinases (PI3Ks). Has been shown to reduce allergic airway inflammation in rats.34

69 Melatonin Used orally for jet lag, insomnia, shift-work disorder, circadian rhythm disorders in the blind, and benzodiazepine and
nicotine withdrawal. Evidence indicates that melatonin is likely effective for treating circadian rhythm sleep disorders in
blind children and adults. May be effective for treating sleep-wake cycle disturbances in children and adolescents with
mental retardation, autism, and other central nervous system disorders. It may also improve secondary insomnia
associated with various sleep-wake cycle disturbances. Demonstrates anti-inflammatory activity in the CNS. Reduces
lung oxidative stress in patients with chronic obstructive pulmonary disease35

68 Celastrol Plant extract. Potent antioxidant and anti-inflammatory drug.
65 Cyclic adenosine

monophosphate
Experimental, targets: potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2, cAMP-
dependent protein kinase type I-alpha regulatory subunit, cAMP-dependent protein kinase type II-beta regulatory
subunit, adenylate cyclase, cyclic nucleotide-gated potassium channel mll3241, cAMP-activated global transcriptional
regulator CRP. Decreases pulmonary edema in experimental acid-induced lung injury36

63 sb-202190 Experimental, target: P38MAPK.
63 Dopamine For the correction of hemodynamic imbalances present in the shock syndrome due to myocardial infarction, trauma,

endotoxic septicemia, open-heart surgery, renal failure, and chronic cardiac decompensation as in congestive failure.
Has immunomodulatory action. Has been shown inhibit pulmonary edema through the VEGF–VEGFR2 axis in a murine
model of acute lung injury37

62 Dinoprostone Prostaglandin E2. Up-regulation of PGE2 expression protects against the development of fibrosis after lung injury.38

62 Acetylsalicylic acid Aspirin. For use in the temporary relief of various forms of pain, inflammation associated with various conditions
(including rheumatoid arthritis, juvenile rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, and
ankylosing spondylitis), and is also used to reduce the risk of death and/or nonfatal myocardial infarction in patients
with a previous infarction or unstable angina pectoris. Was found to improve outcome in animal models of acute lung
injury39

61 sb-203580 Experimental, target: P38MAPK.
61 Rottlerin Experimental, conductance potassium channel (BKCa++) opener. May cause pulmonary edema in vivo40

60 Sulfinpyrazone For the treatment of gout and gouty arthritis.
60 Staurosporine Experimental, targets: tyrosine-protein kinase Lck, serine/threonine-protein kinase pim-1, tyrosine-protein kinase ITK/

TSK, tyrosine-protein kinase SYK, MAP kinase-activated protein kinase 2, glycogen synthase kinase-3 beta, tyrosine-
protein kinase CSK, cyclin-dependent kinase 2, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma
isoform, 3-phosphoinositide-dependent protein kinase 1, protein kinase C theta type, protein kinase C theta type.

59 Nocodazole Experimental, target: hematopoietic prostaglandin D synthase.
59 Chrysin Plant extract. Suppresses inflammation. Attenuates allergic airway inflammation in mice.41

58 Pirinixic acid Experimental, under investigation for prevention of severe cardiac dysfunction, cardiomyopathy and heart failure as a
result of lipid accumulation within cardiac myocytes.

58 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Demonstrates anti-inflammatory action.
Attenuates acute lung injury induced by a combination of phospholipase A2 and trypsin42

58 Ketoconazole For the treatment of the following systemic fungal infections: candidiasis, chronic mucocutaneous candidiasis, oral
thrush, candiduria, blastomycosis, coccidioidomycosis, histoplasmosis, chromomycosis, and paracoccidioidomycosis.
Has been tested for early treatment of acute lung injury and acute respiratory distress syndrome in a randomized
controlled trial, but was ineffective.43

58 Kanamycin For treatment of infections where one or more of the following are the known or suspected pathogens: E. coli, Proteus
species (both indole-positive and indole-negative), E. aerogenes, K. pneumoniae, S. marcescens, and Acinetobacter species.

58 Arachidonic acid Experimental, targets: fatty acid-binding protein, prostaglandin G/H synthase 1.
57 Thioridazine For the treatment of schizophrenia and generalized anxiety disorder.
57 Nortriptyline For the treatment of depression, chronic pain, irritable bowel syndrome, sleep disorders, diabetic neuropathy, agitation

and insomnia, and migraine prophylaxis.
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are found to ameliorate the symptoms and protect against lung
injury,48 Implying diethylstilbestrol could be a novel finding of
this analysis.49 Similarly, dinoprostone (prostaglandin E2), ranked
16th in the list, significantly disrupted the DILD network, which is
in good accordance with finding of prostaglandin-endoperoxide
synthase 2 (also known as COX-2) being consistently down-
regulated in lung injury. In addition, dinoprostone has been
found to protect against lung fibrosis.38,50 Similar observations
could be made for other drugs in the list.

Next, we wanted to explore how our approach relates to data-
driven signature matching methods. Towards this end, we applied
the standard gene expression matching algorithm available on the
cMAP website (https://www.broadinstitute.org/cmap/) that scores
drugs based on their ‘‘connection’’ (i.e. a measure of consistency
based on a non parametric statistical method) with a user defined
signature. As a query signature we used the top 500 over- and
under-expressed genes upon perturbation with the lung toxic
drugs. Thus, the cMAP algorithm identified (i) drugs that were
predicted to exert effects similar to those of lung toxic drugs and
(ii) drugs whose transcriptional response was anti-correlated with
that of the toxic drugs, therefore were predicted as potential
candidates for repositioning to ameliorate the lung injury pheno-
type. The candidate drugs, as identified from the disease network,
that also match the cMAP predictions are shown in bold.

We observed that 15 of the 40 drugs in Table 2 (in bold fonts),
were also identified by gene expression matching to anti-correlate
with the lung toxic drugs and thus constituted candidates for
repositioning. Gene expression matching does not consider mecha-
nistic information on the mode of drug action, and only identifies
drugs that reverse the gene expression signature related to lung
toxicity. However, as seen in Table 2, not all drugs that disrupted the
DILD network also reversed gene expression, including ciclosporin,
the top candidate extracted from the DILD network.

2.5 Investigation of the statistical significance of the ILP
predictions

To establish the statistical significance of the disease network
and model predictions, the following analysis was performed.

First, GUIDE – a classification and regression trees algorithm –
was applied to calculate correlations between drug targets and
differentially expressed genes.51,52 The drug targets from STITCH
were used as predictors and the differentially expressed genes were
used as a response variable. GUIDE constructed regression trees
that correlate the drug targets to the expressed genes. Subsequently,
these correlations were compared with the ILP predictions.

In brief, of the 4478 drug targets in total present in the PKN,
the GUIDE algorithm identified 78 to be related to differential
gene expressions, with 71 being present in the optimized net-
work. The ILP algorithm conserved in the solution 1056 drug
targets (of the original 4478). If GUIDE and ILP are orthogonal,
the significance of the overlap can be calculated using the
hypergeometric cdf and equals to 2.0630 � 10�37 (highly
significant), see the ESI† for more details.

Furthermore, the performance of the ILP algorithm for
different values of model parameters was examined. The ILP
formulation incorporates two user defined parameters a and b
that determine the weight of the measurement-prediction
mismatch (parameter a) and the solution size (parameter b)
in the objective function. To demonstrate the effect of these
parameters on the ILP performance we repeated the pathway
construction procedure for 12 different a/b ratios, while
monitoring the solution size, the goodness of fit to the data
and the predicted signaling activities for the consistently
up- and down-regulated nodes. In brief, we observe that almost
all of the consistently up-/down-regulated nodes demonstrate
the same trend for all ratio values, demonstrating the robust-
ness and statistical significance of model predictions. Detailed
results are shown in the ESI.†

In addition, we randomized the gene expression data, drug
targets and PKN connectivity, repeated the pathway construc-
tion procedure, and compared our findings with the protein
activities calculated based on the original PKN and data.
Overall, when comparing the protein activities predicted from
the original data with those predicted across all these rando-
mized setups, we observed significant divergences from
expected values.

Table 2 (continued )

Score Drug name Indication and relevance to treating DILD

57 Cycloheximide Experimental, inhibitor of protein biosynthesis in eukaryotic organisms
56 Furosemide For the treatment of edema associated with congestive heart failure, cirrhosis of the liver, and renal disease, including

the nephrotic syndrome. Also for the treatment of hypertension alone or in combination with other antihypertensive
agents.

56 Clioquinol Withdrawn. Used as a topical antifungal treatment.
55 Zaprinast Unsuccessful clinical drug candidate that was a precursor to the chemically related PDE5 inhibitors, such as sildenafil,

which successfully reached the market.
55 Thiamazole For the treatment of hyperthyroidism, goiter, Graves disease and psoriasis. Has anti-inflammatory action.
55 Ouabain For the treatment of atrial fibrillation and flutter and heart failure.
55 Indometacin For moderate to severe rheumatoid arthritis including acute flares of chronic disease, ankylosing spondylitis,

osteoarthritis, acute painful shoulder (bursitis and/or tendinitis) and acute gouty arthritis. Has been shown to attenuate
lung injury in surfactant-deficient rabbits44

55 Chenodeoxycholic
acid

For patients with radiolucent stones in well-opacifying gallbladders, in whom selective surgery would be undertaken
except for the presence of increased surgical risk due to systemic disease or age. Chenodiol will not dissolve calcified
(radiopaque) or radiolucent bile pigment stones.

54 Kaempferol Experimental, target: UDP-glucuronosyltransferase 3A1. Has anti-inflammatory action. Has preventive and curative
effects in TH2-driven allergic airway disease45
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3 Conclusions

In this work, an approach is presented based on an ILP formula-
tion that combined available gene expression data with prior
knowledge of protein connectivity and transcription regulation,
in the form of a Prior Knowledge Network (PKN), to identify
subsets of the network that appeared to be functional based
on the data. As a case study to demonstrate the utility of this
approach, the identification of mode of action of drugs that
are known to induce lung injury was addressed. A signaling
network was constructed spanning across both the signaling
and gene expression levels, through a layer of transcription
factors, that elucidates the signaling mechanisms underlying drug
induced lung injury (DILD). Manual inspection of the DILD net-
work revealed that pathways related to DNA damage, inflamma-
tion and apoptosis were consistently upregulated, while pathways
related to cell cycle were down-regulated. This is in good
accordance with the GO enrichment analysis performed on
the differentially expressed genes upon perturbation with the
toxic compounds, which uncovered biological processes related

to cell death highly enriched in the over-expressed genes, and
processes related to cell cycle highly enriched in the under-
expressed genes. This supports that our method successfully
bridges the signaling and genomic levels through the layer of
transcription factors. Pathways related to DNA damage, inflam-
mation and apoptosis have also been reported in the literature
to be implicated in lung injury,22 while pathways related to cell
cycle have been reported to be under-expressed.25 Note that
Reactome, like any other pathway resource, is biased in favour of the
highly studied proteins. For example TP53 was connected to 153
signaling proteins and regulated the transcription of 281 genes.
Thus, the ILP will conserve it in the solution to branch out to as
many of the differentially expressed genes as possible while incor-
porating the smallest number of nodes. This implies that other
signaling proteins, possibly important in lung injury, may be missed
because the same connectivity was accomplished via hubs in
the network. Network rewiring (i.e. randomization preserving
node degrees) studies can be used to identify such artifacts.

Moreover, to establish the statistical significance of the ILP
predictions we: (i) implemented an independent classification

Fig. 7 Mode of drug action of ciclosporin. Nodes in green correspond to drug targets, nodes in yellow correspond to transcription factors. The black
rings around the nodes indicate that the corresponding proteins were up-regulated and the red rings indicate that the corresponding proteins were
down-regulated. The differentially expressed genes upon perturbation with ciclosporin are not shown in the network for the sake of clarity, however,
there are differentially expressed genes downstream of all the transcription factors in the network. The TF - target genes interactions were modeled
using the same mathematical formalism as the rest of the network assuming a positive sign (i.e. if a transcription factor was up-regulated then its target
genes were over-expressed, and if a transcription factor was down-regulated then its target genes were under-expressed). Negative TF - target genes
interactions (e.g. modeling gene suppression) have been removed from the PKN.
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and regression trees analysis using the GUIDE algorithm and
evaluated its overlap with our findings using the ILP; (ii)
repeated the pathway construction procedure for a wide range
of user defined parameters, to evaluate the robustness of our
analysis; and (iii) randomized the gene expression data, drug–
target interactions and PKN connectivity, repeated the pathway
construction procedure and compared our findings with the
protein activities calculated based on the original PKN and
data. Importantly, the network randomization strategy that we
used is actually a rewiring (i.e. it preserves the degrees of the
nodes, which indicates the level of characterisation of the
corresponding protein). Therefore, a highly studied protein,
which has a very high degree, will conserve its high degree in the
null model.59 In brief, the predictions using GUIDE significantly
overlapped with the ILP predictions, supporting the relevance of the
drug specific signaling pathways; the sensitivity analysis established
the robustness of our findings for a wide range of user defined
parameters; and the randomization studies uncovered the indi-
vidual contribution of the gene expression data, drug–target
interactions and PKN connectivity to the compound specific
pathways and protein activities.

Finally, to demonstrate its usability, the DILD network was
leveraged to identify suitable drugs that could be repositioned
to treat lung injury. To this end, drugs whose targets overlap
with the DILD network were considered, and their signaling
pathways were constructed using the ILP algorithm. The drugs
were ranked according to how much their pathways disrupted
the DILD network, which was presumed to indicate a potential
disease modifying action. We observed that most drugs at the
top of the list were good candidates for treating DILD. They
have strong anti-inflammatory action and many of them have
also been shown to ameliorate the symptoms and/or protect
against lung injury. Nevertheless, given that the cMAP gene
expression data we used as a starting point to our analysis are
not measured in the lung, and also the drug targets in STITCH
have been extracted from in vitro binding experiments, the
analysis presented herein serves an exploratory purpose and
subsequent, targeted, experiments should be performed to prove
the relevance of the DILD network or candidate drugs for treating
lung injury.

A key feature of our proposed method for reconstructing
signaling networks based on gene expression data, and funda-
mental for its predictive power, is working with directed, signed
signaling reactions, rather than undirected and unsigned PPIs,
along the ability of our ILP algorithm to efficiently handle this
information. When working with PPI networks, the lack of
directionality and sign of the interactions makes it difficult to
interpret the results. In most cases connectivity metrics are
employed such as node centrality, betweenness, communicability,
etc. to evaluate the significance of every node in the network.
However, these metrics fail to capture the mechanistic component
of signal flow. In this work, we crafted the very rules that define
signal transduction into an ILP, and also allowed the algorithm to
arbitrarily remove nodes from the network to best fit the experi-
mental data at hand. The ILP formulation not only offered the
required flexibility but also provided a global solution.

Overall, we have presented a novel pathway construction
algorithm for identifying functional/deregulated signaling path-
ways based on gene expression data and prior knowledge of protein
connectivity and transcription regulation. We demonstrated its
usefulness by addressing the challenging problem of identify-
ing the modes of action of drugs known to induce lung injury,
and validated the model predictions by suggesting potential
drugs for repositioning to treat DILD.

4 Methods
4.1 ILP formulation – basic definitions and core formulation

The proposed ILP formulation is based on the formulation by
Melas et al.,12 modified at key points to address the computa-
tional complexity of very large (tens of thousands of nodes)
signaling networks, and attempts to combine gene expression
data upon perturbation with the interrogated drugs with prior
knowledge of protein connectivity and transcription regulation,
and identify the interactions that appear to be functional based
on the data at hand. The resulting/optimized network originates at
the drug targets, spans across the signaling level, goes through the
layer of transcription factors and terminates at the gene expression
level at the deregulated genes. Of all the subsets of the Prior
Knowledge Network that achieve the desired targets - genes
connectivity, the ILP algorithm selects the one numbering the
fewest nodes. See Fig. 8 for an illustration of the pathway
construction procedure on a toy model.

Assuming a signaling network G defined as a set of reactions
i = 1,. . .,nr and a set of species (i.e. nodes) j = 1,. . .,ns. Each
reaction i is an ordered pair of species of the form Si - Ti, where
Si, Ti A {1,. . .,ns} are the source and target species respectively.
Moreover, the sign of i is denoted with si A {�1,1}, distinguish-
ing between activations (si = 1) and inhibitions (si =�1). We also
define a set of experiments k = 1,. . .,ne. Where in each experi-
ment a set of species are perturbed Ij,k A {�1,0,1} and a set
of species are measured mj,k A {�1,0,1}. Variables xj,k A {�1,0,1}
are introduced to denote the predicted activation state of species
j in experiment k.

We introduce variables u+
i,k A {0,1} and u�i,k A {0,1}; i = 1,. . .,nr;

k = 1,. . .,ne to denote the activity of reaction i in experiment k. If
u+ = 1 then reaction i is active and can potentially up-regulate its
target node; else if u� = 1 then reaction i is active and can
potentially down-regulate its target node. A reaction i: Si - Ti

is active and may up-regulate Ti (u+
i,k = 1), if xj,k = 1 and si = 1

or xj,k = �1 and si = �1; j = Si. On the other hand, a reaction i:
Si - Ti is active and may down-regulate Ti (u�i,k = 1), if xj,k = 1
and si = �1 or xj,k = �1 and si = 1; j = Si.

Moreover, we introduce variables x+
j,k A {0,1} and x�j,k A {0,1}

to denote the potential of node j being up (or down) regulated.
node j may be up-regulated (x+

j,k = 1) if (i: u+
i,k = 1 or Ij,k = 1.

On the other hand a node may be down-regulated (x�j,k = 1) if (i:
u�i,k = 1 or Ij,k = �1. The activation state that node j will ultimately
assume (xj,k) is the sum of x+ and x�. Thus, if x+

j,k = 1 and x�j,k = 0,
then xj,k = 1, else if x+

j,k = 0 and x�j,k = 1, then xj,k =�1, else if x+
j,k = 1

and x�j,k = 1, then xj,k = 1, else xj,k = 0.
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Aim of the formulation is to identify the minimum subset of
G that minimizes the mismatch between measurements and
model predictions, thus:

min
P

a|xj,k � mj,k| +
P

bx+
j,k +

P
bx�j,k (1)

where, a and b are user defined weights.
The rules of signal transduction discussed above can be

modelled as linear equality/inequality constraints as follows:

u+
i,k Z sixj,k; i A {1,. . .,nr}; j = Si; k = 1,. . .,ne (2a)

u�i,k Z �sixj,k; i A {1,. . .,nr}; j = Si; k = 1,. . .,ne (2b)

u+
i,k r 1 � u�i,k; i A {1,. . .,nr}; k = 1,. . .,ne (2c)

u+
i,k r sixj,k + u�i,k; i A {1,. . .,nr}; j = Si; k = 1,. . .,ne (2d)

u�i,k r �sixj,k + u+
i,k; i A {1,. . .,nr}; j = Si; k = 1,. . .,ne (2e)

xþj;k �
X

i:Ti¼j
uþi;k; i 2 f1; . . . ; nrg; k ¼ 1; . . . ; ne (2f)

x�j;k �
X

i:Ti¼j
u�i;k; i 2 f1; . . . ; nrg; k ¼ 1; . . . ; ne (2g)

xj,k = x+
j,k � x�j,k + Ij,k; j A {1,. . .,ns}; k = 1,. . .,ne (2h)

The objective function in 1, together with the constraints in
2 formulate an Integer Linear Program (ILP) solved using IBM
ILOG CPLEX. The main difference with the ILP formulation
published in ref. 12 lies in the eqn (2a–e) for calculating the
reaction activities u�i,k and u+

i,k. In the work by Melas et al.,

auxiliary variables d1i,k, d2i,k, d3i,k, and d4i,k were used to calculate
u�i,k and u+

i,k as a function of xj,k. Here a different, more efficient
formulation was developed that did not require the auxiliary
variables, resulting in a smaller overall number of variables
and constraints. A side-effect of this representation is that the
minimization of the network size is not enforced by minimizing
the number of edges though the yi variables, as it was performed
in the formulation by Melas et al., but enforced through the
minimization of active nodes using the x+

j,k and x�j,k variables. This
is a result of decoupling the u�i,k and u+

i,k variables from yi.

4.2 ILP formulation – removal of feedback loops from the
signaling network

Next, the removal of feedback loops from the signaling network
is addressed. Positive feedback loops break the inference of
pathway activities in our framework, as they allow for signal
flow to be generated without an external perturbation. For
example, for node j to be active (xj,k = 1), it either has to be
directly perturbed Ij,k = 1, or be activated by an upstream
reaction i, such that j = Ti and u+

i,k = 1. However, if n nodes
form a positive cycle (a cycle where all reactions are positive),
then one node will be able to activate the next all the way
around the cycle, without the need for an external perturbation
(or an incoming interaction transitively connected to a pertur-
bation). In the formulation by Melas et al.,12 positive feedback
cycles had been removed manually before the optimization
procedure. However, when very large signaling networks are
interrogated, manual curation is not feasible. To address the

Fig. 8 Illustrative example of the pathway construction procedure. (A) The ILP algorithm is presented with a measured gene expression profile and a PPI
network. (B) The algorithm leverages the connectivity between TFs and their target genes and identifies a subset of the TFs that caused the deregulation
of the measured genes. (C)–(F) The algorithm connects the deregulated TFs with a subset of the known drug targets, going through intermediate nodes if
required. Of all possible paths/solutions, the ILP selects the one with the minimum number of nodes.
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removal of feedback cycles in an automated way, we introduce
variables dj,k Z 0 to represent the distance of node j from a
perturbed node in experiment k. If node j is not connected to a
perturbed node, then dj,k = 0, else dj,k 4 0. For node j to be
active, dj,k 4 0 has to hold true. If dj,k = 0, then xj,k = 0. The
distance of node j has to be greater than all of its upstream
nodes at least by one (to enforce that the distance grows the
further away from the input nodes we move), unless, the
upstream reactions are not active (i.e. u+

i,k = u�i,k = 0). Finally,
the distance of any given node cannot be greater than the total
number of reactions in the signaling network. The above may be
formulated using linear constraints in the following manner:

x+
j,k r dj

x�j,k r dj

dTi
Z dSi

+ 1 � M + u+
i,k�M

dTi
Z dSi

+ 1 � M + u�i,k�M

dj r M (3)

The above constraints prohibit the ILP algorithm from
conserving a positive feedback loop in the solution and all
the included reactions to be active, unless there is an input
node in the loop. Assuming a loop like that is conserved, then
the distance dj,k would increase indefinitely in the loop, making
the ILP infeasible since dj,k is bound by M. Where M is a
sufficiently big number.

4.3 Construction of Prior Knowledge Network (PKN)

The Prior Knowledge Network (PKN) is used to represent prior
knowledge of protein connectivity and transcription regulation
and serves as a scaffold for the ILP algorithm presented above.
It was constructed by merging the Functional Interaction Network
(FIN) by Reactome15 and information on transcription regulation
in the form of set of transcription factor regulons (i.e. sets of
targeted genes) assembled from public available resources,
such as ChEA, Transfac, and Jaspar.10,53,54 All connections from
TFs to their target genes are modeled with a positive sign
(i.e. TF up-regulation leads to target gene over-expression and
TF down-regulation leads to target gene under-expression).
Interactions that model gene suppression or other types of
negative connections have been omitted from the PKN. Before
using the FIN other networks were considered including the
Human Signaling Network,55 Signalink,56 and the network by
Kirouac et al.57 The FIN was chosen because it offered the best
coverage of the transcription factors for which there is an
available regulon, while being the sparsest of all, facilitating
the performance of the ILP algorithm.

The FIN consists of 209 988 functional interactions between
10 956 proteins. The regulons implement 16 043 interactions
between 153 transcription factors and 12 376 target genes. Before
merging, undirected and unsigned interactions were removed,
as well as interactions that were predicted computationally
without experimental validation. We also removed interactions

between proteins that appear not to be expressed (or take part
in the signaling processes) in the lung tissue. To this end the lung
specific PPI network published by Guan et al.58 was leveraged.
In the work by Guan et al., the authors compiled tissue specific
PPI networks. Here we account for tissue specificity by including
in the PKN only the interactions whose both interacting proteins
are present in the lung specific PPI network. The resulting PKN
spans across the protein and genetic levels going through a layer
of transcription factors and includes a total of 64 801 reactions
between 2585 signaling proteins and 12 376 genes. All interactions
in the PKN are modelled using the same mathematical formalism
presented in Section 4.1, regardless of the specific layer they
belong to (e.g. drug–target interactions, protein–protein inter-
actions, or TF–gene interactions).

4.4 Gene expression matching using the cMAP online query
tool

The query tool on cMAP web site (https://www.broadinstitute.
org/cmap/) was used to identify drugs that anti-correlate with
the lung toxic gene expression signature and thus, constitute
candidates for repositioning. The top 500 over- and under-expressed
genes upon perturbation with the toxic drugs were used to construct
a query, that we uploaded in the cMAP web service. The cMAP
algorithm scored every drug in cMAP based on its correlation
with that search query. Drugs with positive score may potentially
induce lung injury, while drugs with negative score reverse the
lung toxic gene expression signature. See also ref. 3.

Disclaimer

The views expressed are those of the authors and do not necessarily
represent the position of, nor imply endorsement from, the US
Food and Drug Administration or the US government.

Code availability

The ILP code is available in the ESI.†
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