Issue 44, 2007

How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?

Abstract

A plausible model for the structure of non-graphitizing carbon is one which consists of curved, fullerene-like fragments grouped together in a random arrangement. Although this model was proposed several years ago, there have been no attempts to calculate the properties of such a structure. Here, we determine the density, pore size distribution and adsorption properties of a model porous carbon constructed from fullerene-like elements. Using the method proposed recently by Bhattacharya and Gubbins (BG), which was tested in this study for ideal and defective carbon slits, the pore size distributions (PSDs) of the initial model and two related carbon models are calculated. The obtained PSD curves show that two structures are micro-mesoporous (with different ratio of micro/mesopores) and the third is strictly microporous. Using the grand canonical Monte Carlo (GCMC) method, adsorption isotherms of Ar (87 K) are simulated for all the structures. Finally PSD curves are calculated using the Horvath–Kawazoe, non-local density functional theory (NLDFT), Nguyen and Do, and Barrett–Joyner–Halenda (BJH) approaches, and compared with those predicted by the BG method. This is the first study in which different methods of calculation of PSDs for carbons from adsorption data can be really verified, since absolute (i.e. true) PSDs are obtained using the BG method. This is also the first study reporting the results of computer simulations of adsorption on fullerene-like carbon models.

Graphical abstract: How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?

Supplementary files

Article information

Article type
Paper
Submitted
11 Jul 2007
Accepted
20 Sep 2007
First published
02 Oct 2007

Phys. Chem. Chem. Phys., 2007,9, 5919-5927

How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?

A. P. Terzyk, S. Furmaniak, P. J. F. Harris, P. A. Gauden, J. Włoch, P. Kowalczyk and G. Rychlicki, Phys. Chem. Chem. Phys., 2007, 9, 5919 DOI: 10.1039/B710552E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements