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We report here a study of light—-matter strong coupling involving three molecules with
very different photo-physical properties. In particular we analyze their emission
properties and show that the excitation spectra are very different from the static
absorption of the coupled systems. Furthermore we report the emission quantum yields
and excited state lifetimes, which are self-consistent. The above results raise a number
of fundamental questions that are discussed and these demonstrate the need for
further experiments and theoretical studies.

1. Introduction

One of the advantages of surface plasmon polaritons is their ability to concentrate
the electromagnetic field in a very small volume, which in turn can enhance
various phenomena and notably light-matter interactions. Therefore it is not
surprising that plasmonic structures and micro-cavities have been used inter-
changeably to provide confined EM fields to induce light-matter strong coupling
in molecular materials. Metallic cavities provide some of the strongest field
confinements and have the additional feature that both the Fabry-Perot and
plasmonic waveguide modes are present.”> When molecular materials are placed
in a high concentration in such confined fields, hybrid light-matter states, the so-
called polaritonic states P+ and P—, are formed with Rabi splittings in the range of
0.1 to 1 €V, as illustrated in Fig. 1. When the Rabi splitting is a fraction of the
transition energy (Awy), the perturbation of the coupled system is so strong that
the energies of the other states of the system are modified. This is the so-called
ultra-strong coupling regime where the ground state energy has been predicted to
shift® and this has indeed been observed experimentally.*® In addition, the hybrid
light-matter eigen states are in principle delocalized over the optical mode and,
upon excitation, quasi-bosonic exciton-polaritons are formed.
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Such features of a strongly coupled system are quite unique and therefore have
naturally generated much research activity from single atom-single photon
studies to coupling in inorganic semiconductors and organic dyes.®**

While early studies on organic materials focused on the J-aggregates of cyanine
dyes,*®*** due to their sharp and intense absorption peak, a greater variety of
molecules are currently being investigated under strong coupling, depending on
the scientific targets.**** For instance, the composite bosonic nature of exciton-
polaritons makes them of great interest for thresholdless lasing and other
collective effects such as Bose-Einstein condensation. However, such reports
remain elusive, being demonstrated only for a system incorporating an anthra-
cene single crystal,*® and more recently for fluorinated ladder polymers.**** We
have been more interested in how the molecular material properties of the
coupled system can be modified relative to the bare molecules. Therefore we have
chosen other molecules with specific functionalities, such as merocyanine, which
is capable of (photo-)switching between two isomers, to demonstrate the effect of
those functionalities on chemical reaction rates, work function, phase transi-
tions, and electronic transport.*** The observation of such effects belies the
notion that only a very small percentage of molecules are coupled for each class of
molecules. In fact, the stronger the Rabi splitting, the larger the fraction of
coupled molecules.’

Molecular materials are typically highly disordered and inhomogeneously
broadened and this has consequences on the strong coupling, both on the
properties of the polaritonic states and on the whole system, as pointed out by
Michetti and La Rocca.® In particular, the degree of delocalization of the
polaritonic states inside a cavity, together with the fraction of coupled molecules,
can be significantly affected. In addition, organic molecules used in strong
coupling have typically 100 to 200 normal vibrational modes that also have strong
consequences on their properties.>**%*

With vacuum Rabi splittings (AQgy) in the order of 1 eV, importantly, the
coupled system is no longer in the Markovian regime since 7Qgpy > kgT.” As a
consequence, the lifetimes of the polaritonic states P+ and P— cannot be pre-
dicted from the lifetimes of the constituents of the system, namely the lifetime of
the photon in the cavity and lifetime of the excited state. As we have pointed out
elsewhere,*” there are numerous examples of coupled systems that are longer
lived than their constituents, for instance in the case of molecular excimers and
exciplexes.

A large hQgy can be obtained by using a molecular transition with high
absorption cross-sections or transition dipole moments (d) and metallic cavities
with small mode volumes (v) since, in the absence of dissipation, the Rabi
splitting energy (AQ) between the two new hybrid light-matter states is given by:®

Qg = 2Ed\/np, + 1 = 2 /;—wvd\/nph 1 (1)
€0

where E is the electric field amplitude of the cavity, 4w the cavity resonance or
transition energy, ¢, the vacuum permittivity, v the mode volume and ny, the
number of photons in the cavity mode. As eqn (1) shows, even when n,;, goes to
zero, there remains a finite value for the Rabi splitting (7Qgy) due to the inter-
action with the vacuum field. This splitting is itself proportional to the square root

282 | Faraday Discuss., 2015, 178, 281-294 This journal is © The Royal Society of Chemistry 2015


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4fd00197d

Open Access Article. Published on 26 February 2015. Downloaded on 1/30/2026 6:41:17 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Paper Faraday Discussions

of the number of molecules in the cavityy/N, which implies that the hQgy is

. . N, .
proportional to the square root of the molecular concentration (\/;) in the

optical field.

Crucial for all these studies is a better understanding of the properties of the
polaritonic states (e.g. Fig. 1), their dynamics and how they are modified relative
to the bare molecules. A greater variety of molecules need to be characterized to
look for trends. We have undertaken such a study and, in this report, the pho-
tophysical properties of a subset of strongly coupled molecules with very different
bare features are compared using both static and fs time-resolved pump-probe
spectroscopy. The results raise fundamental questions that will be discussed.

In this paper the three different molecules that were investigated under strong
coupling are as follows:

1.1 TDBC

The first one is the well-known 1,1’-diethyl-3,3’-bis(4-sulfobutyl)-5,5',6,6'-tetra-
chlorobenzimidazolocarbocyanine (TDBC) in its J-aggregated form. J-aggregates
are themselves formed by transition dipole-dipole strong coupling of neigh-
boring molecules, where the symmetry of the aggregates is such that only the
transition from the ground state to the lower coupled state is allowed, as illus-
trated in Fig. 2b. The Stoke shift is characteristically very small (<10 meV).

The Rabi splitting is such that P— lies below the Frenkel excitonic state
involved in the coupling process (Fig. 2a). As a consequence, the energy level of
the lower polariton branch lies amongst the higher vibrational states of the
ground state manifold.*”” Thus, even if the polariton state is formed efficiently, it
will relax very efficiently by dissipating energy into this bath of non-radiative
states. This is despite the fact that polaritons, generated by excitation to P— or P+,
are expected to interact (scatter) very weakly with phonons due to their low
effective mass (being quasi-bosons). Recent measurements on TDBC (having
~180 normal vibration modes) show, indeed, that the non-radiative decay rate
constant ky; of P— is smaller than the corresponding k, of the bare molecule.*
Nevertheless, in both cases the non-radiative rate constants are in the order of
10" s~'. This dominates the decay kinetics of P—. It is also the source of the low

. kp~ . o
P— fluorescence quantum yield, &p~ = —5——p—» since the radiative rate
kbo + K
—— P+
— ,4"’ ~~~~
S, — <7 hQ, > ——
S~ — v
\\\ ‘P¢'
ho, hay
SO —— —t
0

Fig. 1 A schematic diagram of the coupling between a molecular transition (hwwm, and a
cavity mode (hwc) giving rise to new hybrid light—-matter eigen states P+ and P—. The
dispersive nature of these states are not shown.
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Fig. 2 Molecular structures of the three compounds (a) and the corresponding energy
diagrams for TDBC (b) and BDAB (c) upon coupling. The TDBC dipole—dipole coupling
gives rise to new states marked J and H, but for the J-aggregates only the J state is
observed in the absorption spectrum as the transition to H is forbidden. Fluorescein is
coupled schematically as in Fig. 1.

constant X, has an upper limit for a fully allowed transition in the order of 10° ~
10'® s, Vibrational relaxation within the excited states occurs on the 100 fs
timescale and is characterized by small spectral shifts or sliding during the
relaxation. This has also been seen for the P— of TDBC and it is important that
this is not confused with other possible excited decay pathways when observing
P— and P+ at very short time scales.*

1.2 BDAB

The second molecule is a so-called push-pull molecule, 5-(4-(dibutylamino)-
benzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (BDAB),> with an
unusually large Stokes shift (~560 meV). The strong coupling energy level
diagram for such molecular systems that undergo electronic energy re-distribu-
tion in the excited state, with the associated solvation shell re-distribution, ie.
systems featuring a large Stoke shift, is shown in Fig. 2c. The strong coupling in
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this case involves the transition from the molecular ground state to a higher
vibrational state of the excited state manifold (the Franck-Condon transition). As
a consequence, the lower P— polariton branch may lie above, or be isoenergetic
with, the relaxed excited state of the bare molecule (see for instance ref. 37). This
may have consequences on the dynamics and the decay processes of the coupled
system, as has already been shown by Térméi and co-workers.*”

1.3 Fluorescein

Fluorescein, as its name indicates, is a highly fluorescent dye in dilute solutions
with a & = 0.9 and a Stoke shift of ~110 meV. It is a representative of standard
organic dyes and will strongly couple to the cavity, as illustrated in Fig. 1.

2. Results

The strongly coupled samples were prepared by encasing polymer films con-
taining the dyes between two silver films to form an optical cavity (see Experi-
mental section for details). The thickness of the polymer film, and thus the final
separation between the Ag mirrors in the cavity, was chosen to give an optical
mode resonant with the absorption maximum of the dye/aggregate (at 590 nm for
TDBC, 470 nm for BDAB, and 510 nm for fluorescein). The Q-factors of these
cavities are low, typically ~10-20. Unless specified otherwise, the cavity thick-
nesses are tuned such that the Rabi splitting occurs at normal incidence (k;, = 0)
where the photon-exciton mixing is 50 : 50.

2.1 Transition probability to P—

We start by comparing in Fig. 3a—c the optical absorption and emission (fluo-
rescence) spectra of the Fabry-Perot cavities containing TDBC, fluorescein and
BDAB at normal incidence with their bare spectra. All the absorption spectra are
inhomogeneously broadened, even TDBC. The two new absorption peaks corre-
sponding to P+ and P— (blue solid curves in Fig. 3) have a full width half
maximum (FWHM) that is mainly determined by that of the cavity mode, as
expected.* It should be noted that for fluorescein the cavity induced splitting is
more complex, due to the double peaked absorption of the bare molecule, as seen
before for Rhodamine.*” The coupling strengths (AQgy) for these samples are,
respectively, 277, 554 and 720 meV for TDBC, BDAB and fluorescein and the
corresponding fractions of the transition energy (2Qgy/hw,) are 13, 24 and 27%.
These fractions, especially the latter two, are sufficiently high that the coupled
systems are in the ultra-strong coupling regime, which has consequences on their
properties as already discussed. Notice that the P— fluorescence peak of coupled
BDAB is at higher energy than that of the bare molecule in agreement with the
schematic illustration of Fig. 2c. Careful observation of the emission spectra of
the coupled systems shows that at least some fluorescence of the bare molecules
is always present in these cavities. In other words, some of the molecules are not
coupled to the cavity due to the disorder (energetic and orientational) in the
system.>'® This uncoupled emission does not disperse with angle and therefore
can be easily distinguished from the P— emission. The apparent Stoke shift of the
P— emission for all three molecules is extremely small or, depending on the
conditions of the sample, it sometimes even appears to be slightly blue shifted
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Fig. 3 Absorbance (solid lines) and emission (dotted lines) spectra of the bare molecules
(red) and the corresponding coupled systems (blue). The excitation wavelengths were
either 530 nm for TDBC or 450 nm for BDAB and fluorescein.

relative to absorption.* The blue shifted emission and its origin will be discussed
again further on, after the presentation of more results.

Next, we measured the excitation spectra or action spectra associated with the
P— emission. This is a standard technique used in molecular science to under-
stand the origin of the emission and associated processes and we first introduced
this for studying strong coupling in an earlier study.*® It consists of measuring the
emission or fluorescence intensity, Ir(1), at a given wavelength while scanning the
excitation wavelength through the absorption spectrum of the sample. Since Ix(4)
o« Ppoa(A)Io(A)c = Pelx(A), where g4(4) is the absorption cross section of the
molecule, ¢ is the molecular concentration and I,(2) is the incident light intensity,
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one would expect that when I, is normalized then Ix(2) will be proportional to the
light absorbed, I,(4). Therefore, by just plotting Ir at a given A while scanning the
normalized excitation, I,(4), the shape obtained should reflect the absorbance of
the states contributing to the emission process.

Fig. 4a, c and d show the excitation spectra of the three molecules recorded for
their P— emission and these are compared to their absorbance spectra. The first
striking feature is the relative contribution of P+ and P— to the emission of P—
(here all the excitation spectra have been normalized to the P+ absorbance peak).
It thus appears that the direct excitation of the P— peak contributes very little to
the P— emission, while when exciting to P+ or the uncoupled molecules it rapidly
relaxes to P—, where emission can occur. This relaxation to P— can occur via
energy transfer between the coupled and the uncoupled molecular reservoirs as
well as by rapid internal vibrational relaxation (IVR). The latter is a standard
feature of molecules, with their very large number of normal modes and their
overtones that provide a continuum of sublevels between the various states. It is
interesting to note that the ratio of P—/P+ excitation peaks is the smallest for
TDBC (~0.1) and the largest for BDAB (~0.5).

This raises the question of whether the direct excitation into the P— static
absorption peak actually populates P— or not. To answer this question we also
recorded the excitation spectrum of pump-probe experiments by looking at the

a b
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Fig. 4 Excitation or action spectra (blue dots) recorded at normal incidence for P—
emission for (a) TDBC (at 680 nm), (c) BDAB (at 540 nm) and (d) Fluorescein (at 576 nm)
and (b) for P— transient absorption of TDBC. These spectra are compared to the bare
molecule absorbance spectra (solid red lines) and the strongly coupled system absorbance
spectra (solid blue lines) of the same samples.
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intensity of the transient absorption spectrum of P—, proportional to the pop-
ulation of P—, as a function of laser pump wavelength. This was possible to do for
TDBC since our 150 fs-laser could be tuned to cover the static absorption peaks.
The resulting spectrum is plotted in Fig. 4b and it has very similar features to the
fluorescence excitation spectrum (Fig. 4a). Again, the direct excitation of P—
appears not to be allowed. Interestingly, the 2Qgy deduced from the excitation
spectra appears to be smaller than the static absorption spectrum indicates. This
is probably the origin of the blue-shifted emission relative to the static absorption
that is sometimes observed.

To try to understand the origin of these observations, the cavities were detuned
and the fluorescence excitation spectra were recorded. For fluorescein, the
detuning of the cavity to higher energies (ca. 60 meV) seems to enhance direct P—
excitation, as shown in Fig. 5a (red curve). This could be explained by the higher
exciton content of the P— branch. However, in the case of BDAB (Fig. 5b), the
reverse tendency is seen, ie. detuning to lower energies enhances the relative
contribution of P— to the excitation spectrum. Taken together with the results of
Fig. 4, it appears that the internal vibronic structure of the molecule plays an
important role and also possibly the excited state rearrangement involved in the
Stoke shift.
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Fig. 5 Excitation spectra (dotted lines) for BDAB and fluorescein for detuned cavities (red
and green curves) compared to the tuned cavities (blue curves) and compared to the
corresponding absorbance spectra of the coupled systems and the bare molecules (light
blue). The emission detection wavelengths for BDAB are 600 nm (red curve), 540 nm (blue
curve) and 525 nm (green curve). For fluorescein these are 556 nm (red curve), 570 nm
(green curve) and 576 nm (blue curve).
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2.2 Lifetime of P—

The transient spectra of the three strongly coupled systems are shown in Fig. 6,
together with their decay kinetics. The spectra do not evolve over the decay,
indicating that they are dominated by a single transient species. The decays are
not single exponentials due to the heterogeneities of the samples at the high
concentrations that were used to induce strong coupling. The angle dependence
of the decay was also measured for TDBC and was found to be invariant, indi-
cating that the lifetime is not dependent on probed k-vector. This indicates that
there is no bottle-neck along the P— branch shown in Fig. 6 for this sample. Such
decay bottle-necks have been seen in other conditions and samples for strongly
coupled TDBC.*

Table 1 below summarizes the dynamical data for the strongly coupled
molecules. It first compares the observed half-lives measured by transient
absorption with those of the 1/linewidth of the P— resonance and the experi-
mental radiative lifetimes, as well as the predicted ones derived from absorbance
peaks of P— using the Bowen and Wokes approximation.*® It is notable that these
two standard methods for estimating lifetimes give such very different values. The
measured and calculated quantum yields for TDBC and fluorescein are in very
good agreement, considering all the experimental uncertainty, while for BDAB the
experimental value is an order of magnitude higher. The latter is not surprising

0.03 T T T T
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AT/T,

1 L I 1 1 0.01 | 1 1 1 1 1 1 1
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Fig. 6 (a), (b) and (c) Transient pump—probe spectra with the corresponding decays as
inserts for BDAB and fluorescein. In the case of TDBC, the angular dependence of the
transient spectra is shown in (c) and the corresponding decays in (d). The insert in (d)
shows the dispersion of the static absorption of TDBC in the cavity. BDAB and fluorescein
were pumped at 400 nm and TDBC at 585 nm.
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Table 1
TBDC BDAB Fluorescein
1° half life 4.3 ps 3.5 ps 30 ps
(transient absorption)
Cavity lifetime 2 fs 5 fs 14 fs
(1/linewidth)
Radiative lifetime 0.2 ns (0.4 ns) 1 ns (0.1 ns) 3 ns (1.5 ns)
(predicted value)
Quantum yield 1x1072(2x107%) 4x10%(3.5x107%) 2x10%(1 x107?)

(predicted value)

considering the fact that the emission is not from the Franck-Condon transition
but due instead to an intra-molecular charge transfer state being at the origin of
the large Stoke shift of the bare molecule. Thus, the Bowen and Wokes approxi-
mation is not the best model for such a molecule.

3. Discussion and conclusions

Conspicuous from the above excitation spectral experiments is the fact that the
static absorption peak due to P— (in Fig. 3-5) does not readily lead to the
generation of P— emission or even to the P— transient absorption. We have shown
this excitation behaviour before for TDBC and it has since been confirmed by
others.> This finding is surprising since one would expect that the static
absorption peak of P— would lead directly to populating P— and subsequent
emission. This is an important issue since it is a standard assumption that the
emission in the spectral region of P— indeed comes from a corresponding state.

One could take a very naive view to explain the above results from a purely
classical interpretation. For instance, the shape of P— emission spectra can be
very easily reproduced by taking the emission of the bare molecules filtered by the
transmission properties of the cavity (as can be seen in Fig. 3). The excitation
spectrum would therefore be dominated by the spectral regions where the bare
molecule absorbs but enhanced by the modal properties of the cavity (as in Fig. 4).
This is similar to the treatment of strong coupling by Zhu et al. where it is not
necessary to assume the formation of hybrid light-matter states by vacuum Rabi
splitting.™ In this classical vision, the lifetimes of the P— measured by fluores-
cence or by transient absorption spectroscopy would be those of the bare mole-
cule perturbed by the strong interaction with the confined electromagnetic
environment of the cavity.

Nevertheless, the observation of novel and modified properties in strongly
coupled systems argues strongly for the quantum interpretation and the existence
of hybrid light-matter states. These include coherent emission over large
distances,” condensation of polariton,**** polariton lasing®® and modification of
such properties as chemical rates,* work-function®® and conductivity,* amongst
others. The significant P— emission quantum yields also argue against a simple
cavity filter effect for the fluorescence. Therefore there is a need to understand
why the direct excitation of P— is a very inefficient way of populating the state,
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despite the 50:50 photonic-exciton mixing for both P+ and P— in our
experiments.

One possibility is that the transition probability is very weak despite the strong
static absorption. This immediately raises the question of what is at the origin of
the static absorption. One unique characteristic of these organic coupled systems
is the large inhomogeneous broadening which, coupled to the cavity, could
generate dissipation without populating P—. This would leave indirect excitation
via higher energy states involving energy transfer and IVR as the most efficient
means of then populating the P— state. However, as we discussed previously,* the
recorded P— emission quantum efficiencies are only compatible with a lifetime in
the picosecond regime, as measured for P— both in fluorescence and transient
absorption. It is important to note that this is for a most favourable k, corre-
sponding to a highly allowed transition. If the transition to P— is only weakly
allowed, then ®% should be much smaller, unless the strongly coupled system
boosts the emission for an otherwise weakly allowed transition.

Another conundrum for us in these systems is also related to lifetimes. From
the FWHM of the P— and P+ absorption, principally determined by the Q-factor of
the cavity," one derives a lifetime of ~10 fs. If one integrates over the same
absorbance peak to derive the radiative lifetime, one obtains a lifetime three
orders of magnitude longer.*> These represent two very different approaches, one
optical and one molecular, to the same issue.

In the spirit of the Faraday discussions, we have shown here, through exper-
iments, some of the open questions related to light-matter strong coupling
involving molecular materials. Clearly more experiments and theory that can
handle such complex materials and the particularities associated with individual
molecular structures need to be developed to elucidate these strongly interacting
systems. Only then will the full potential of using a confined electromagnetic
environment to control material and molecular properties be realized.

4. Experimental

All the steady state measurements were performed in reflective cavities, in which
the Ag mirror deposited on the glass was 200 nm thick, and the top mirror was 30
nm thick. For pump-probe measurements, experiments were performed in
transmission with cavities in which both mirrors were 30 nm thick. The bottom
Ag film was sputtered on borosilicate glass, followed by spin-coating of the
molecules dispersed in a polymer to form a thin film, and then sputtering the
second Ag film on top. TDBC films were spin-cast from aqueous solution (Milli-Q)
containing 0.5% TDBC and 5% poly(vinyl) alcohol (PVA, M.W. 205 000) by weight.
Fluorescein films were cast from aqueous solutions of 1% Fluorescein disodium
salt and 2% PVA by weight. BDAB films were cast from toluene solutions of 0.5%
BDAB and 1% poly(methyl methacrylate) (PMMA, M.W. 120 000) by weight.
Toluene (Sigma Aldrich), PVA (FLUKA), PMMA (Sigma Aldrich), fluorescein
disodium salt (Exciton) and TDBC (Few Chemicals) were obtained commercially
and used without further purification. BDAB, 5-(4-(dibutylamino)benzylidene)-
1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione, was synthesized as follows. 4-
dibutylaminobenzaldehyde (196 mg, 840 pumol, 1.00 eq.) and 1,3-dimethyl-
pyrimidine-2,4,6(1H,3H,5H)-trione (131 mg, 840 umol, 1.00 eq.) were dissolved in
5 mL of ethanol. The resulting mixture was refluxed for 3 h. After cooling the
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precipitate was filtered off and washed with 10 mL of H,O, 10 mL of ethanol and
10 mL of n-pentane. The yellow solid was dried in vacuum to give the product in
quantitative yield (312 mg). 1H NMR (400 MHz, CDCI3, 6/ppm): 0.98 (t,] = 7.3 Hz,
6H), 1.45-1.32 (m, 4H), 1.69-1.57 (m, 4H), 3.44-3.37 (m, 10H), 6.66 (d, ] = 8.98 Hz,
2H), 8.36-8.41 (d, J = 9.23 Hz, 3H). ESI-MS: m/z: 360.3 (100%). HRMS (ESI, m/z):
calculated for C,;H,oN3;NaO; 394.210; found 394.210.

Steady-state transmission and reflection spectra were taken on a Shimadzu
UV3101 spectrometer. Steady-state fluorescence spectra were taken with a Horiba
Jobin Yvon-Spex Fluorolog-3 fluorimeter. Pump-probe experiments were carried
out with narrow band (linewidth = 6 nm), 150 fs-pulse tunable SpectraPhysics
laser system. The spectra were recorded using low-energy (<100 uJ cm~*) pumping
pulses to avoid spurious effects.
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