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Can meta-omics help to establish causality
between contaminant biotransformations and
genes or gene products?

David R. Johnson,a Damian E. Helbling,b Yujie Menc and Kathrin Fenner*cd

There is increasing interest in using meta-omics association studies to investigate contaminant biotransfor-

mations. The general strategy is to characterize the complete set of genes, transcripts, or enzymes from in

situ environmental communities and use the abundances of particular genes, transcripts, or enzymes to

establish associations with the communities' potential to biotransform one or more contaminants. The

associations can then be used to generate hypotheses about the underlying biological causes of particular

biotransformations. While meta-omics association studies are undoubtedly powerful, they have a tendency

to generate large numbers of non-causal associations, making it potentially difficult to identify the genes,

transcripts, or enzymes that cause or promote a particular biotransformation. In this perspective, we

describe general scenarios that could lead to pervasive non-causal associations or conceal causal associa-

tions. We next explore our own published data for evidence of pervasive non-causal associations. Finally,

we evaluate whether causal associations could be identified despite the discussed limitations. Analysis of

our own published data suggests that, despite their limitations, meta-omics association studies might still

be useful for improving our understanding and predicting the contaminant biotransformation capacities of

microbial communities.
t cause or affect particular
nge, but meta-omics associa-
ssed in detail (e.g., accuracy
anuscript, we describe gen-
ause particular contaminant
nally synthesize our findings
in the face of their inherent
Why use meta-omics association studies?

Biotransformation mediated by environmental microbial
communities is one of the most efficient mechanisms to
reduce environmental exposure to chemical contaminants.1,2

Our ability to predict the potential of a microbial community
to biotransform specific chemical contaminants is there-
fore important not only for chemical risk assessment3 but
also for environmental engineering applications such as soil
bioremediation, wastewater treatment, and drinking water
production.4,5 Establishing the relationships between particu-
lar contaminant biotransformations and the genes or gene
products (i.e., transcripts or enzymes) that cause or promote
those biotransformations is important for understanding and
predicting the biotransformation capacity of a complex
microbial community.6,7

Conventionally, establishing causal relationships between
contaminant biotransformations and genes or gene products
has been achieved by characterizing microorganisms in pure
or enrichment cultures where the contaminant of concern
serves as a growth substrate and the responsible genes or
gene products could be directly enriched and characterized.8–10

An important limitation of this approach is that it is suscepti-
ble to culturing biases and can lead to the enrichment of
oyal Society of Chemistry 2015
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microorganisms, genes, or gene products that are environ-
mentally irrelevant.11 A second limitation is that the
approach is often not appropriate for co-metabolic contami-
nant biotransformations, which are likely important biotrans-
formation mechanisms for trace organic contaminants.12,13

The main problem is that co-metabolic biotransformations
do not support growth, thus making it challenging to directly
enrich the responsible microorganisms, genes, and gene
products. This problem also affects other recent methodolog-
ical advances in the field of contaminant biotransformation
research, such as stable isotope probing (SIP) or micro-
autoradiography combined with fluorescence in situ hybridi-
zation (MAR-FISH). These methods rely on the incorporation
of isotope-labelled compounds into new biomass14,15, and
are therefore not likely to be helpful for identifying the bio-
logical determinants of co-metabolic biotransformations.

Given these limitations along with the increasing accessi-
bility of high-throughput sequencing and mass spectrometry
techniques, there is growing interest in using molecular data
generated via meta-omics methodologies (i.e., methodologies
that attempt to characterize the complete set of genes, tran-
scripts, or enzymes of a community) to elucidate causal asso-
ciations with biotransformations.16–20 The general strategy is
to isolate and characterize aggregate DNA, RNA, or proteins
from in situ environmental communities and use the abun-
dances of genes or gene products to establish associations
that reflect the communities' potential for biotransforming
one or more contaminants (referred to here as a meta-omics
association study). In this context, we use the term “associa-
tion” to refer to a statistical relationship between two vari-
ables, which may be described quantitatively (e.g., a linear or
monotonic relationship) or qualitatively (e.g., a co-occurrence
relationship). The associations can then be used to generate
hypotheses about possible causal relationships between con-
taminant biotransformations and particular genes or gene
products. Important advantages of meta-omics association
studies are that they avoid culturing biases, do not require
that the contaminants of interest be used as growth sub-
strates, and may help to identify the responsible organisms.
Overarching challenge

While powerful, an important limitation of meta-omics asso-
ciation studies is that they typically invoke the principle of
“guilt by association”. The principle can be illustrated as fol-
lows: consider a meta-omics association study that tests for
associations between the rate of a particular contaminant
biotransformation and the abundance of a particular gene or
gene product. If a positive association is observed, then it
generates the hypothesis that the associated gene or gene
product causes or promotes that biotransformation. Further
experiments are then required to explicitly test the validity of
that hypothesis. While the principle of “guilt by association” is
undoubtedly useful for particular types of investigations,21,22

we believe there are significant challenges when applying the
principle to meta-omics association studies with microbial
This journal is © The Royal Society of Chemistry 2015
communities. Below we discuss three potential limitations of
the principle. We note that we do not consider limitations of
a technical nature, such as inaccurate annotations of enzyme
functions or insufficient sequencing depth. While these techni-
cal limitations may mask genuine associations or generate
false associations, they have been discussed in detail else-
where23. We instead focus on limitations that we believe are
valid regardless of the quality or completeness of the meta-
ome dataset, and are therefore likely to persist regardless of
future technological advances.
Limitation 1: an association may reflect a genuine but
non-causal relationship

A meta-omics association study could, in principle, gener-
ate large numbers of associations that are genuine (i.e., they
are not Type I or false positive errors) but nevertheless do not
emerge from causal relationships between specific genes or
gene products and a particular contaminant biotransforma-
tion (we refer to these as genuine but non-causal associa-
tions). While genuine but non-causal associations are of
value for certain types of ecological questions (e.g. assessing
co-occurrence patterns and generating hypotheses about
potential interactions), they are unlikely to help identify the
genes or gene products that cause or promote a particular
biotransformation. Instead, their presence could make it
exceedingly difficult to experimentally validate which of the
associated genes or gene products actually cause or promote
the biotransformation of interest. Below we describe three
general scenarios that could lead to the generation of genu-
ine but non-causal positive associations (Fig. 1). We note that
we do not discuss general scenarios that could generate gen-
uine but non-causal negative associations. While negative
associations are of value, they are unlikely to generate mean-
ingful hypotheses about the genes or gene products that cause
or promote a particular biotransformation. Thus, unless
specifically stated, we use the term association to refer to a
positive association for the remainder of this manuscript.

One general scenario is “intracellular hitchhiking”
(Fig. 1A). Consider a microbial strain that carries a gene or
gene product (designated as G1) that causes or promotes a
particular contaminant biotransformation (Fig. 1A). Because
G1 causes or promotes that biotransformation, we might
expect a causal association between the abundance of G1 and
the rate of that particular biotransformation (Fig. 1D; the
relationship is depicted as linear for simplicity, but could be
of any monotonic form). However, the same strain that
carries G1 likely carries many other genes or gene products
(designated as G2 to Gn) that cause or promote entirely
unrelated functions. For example, G2 might be an enzyme
that biotransforms a different substrate but continues to be
synthesized even when that substrate is not present within
the cell's local environment (i.e., the enzyme is constitutively
expressed).24–26 The consequence is that, even though causal
relationships do not exist between G2 to Gn and the biotrans-
formation of interest, the co-occurrence of G2 to Gn and G1
Environ. Sci.: Water Res. Technol., 2015, 1, 272–278 | 273
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Fig. 1 Possible scenarios that could generate genuine but non-causal positive associations. G1 is a gene or gene product that causes or promotes
a particular biotransformation of interest while G2–Gn are genes or gene products that perform unrelated functions. There are at least three plausi-
ble scenarios whereby the abundances of G2–Gn could associate with the rate of that particular biotransformation, including (A) intracellular
hitchhiking, (B) intercellular facilitation, and (C) habitat co-occurrence. (D) Each of these three plausible scenarios could generate genuine but non-
causal positive associations. While we use linear positive associations for illustrative purposes, any monotonic positive association could occur.
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within the same cell could generate large numbers of genu-
ine but non-causal associations (Fig. 1D; the relationships
are again depicted as linear for simplicity, but could be of
any monotonic form). Considering that a single microbial
strain typically carries several thousand genes and gene prod-
ucts, the size of G2 to Gn could be exceedingly large and
“intracellular hitchhiking” could result in far more genuine
but non-causal associations than causal associations.

A second general scenario is “intercellular facilitation”
(Fig. 1B). Consider again a microbial strain that carries G1

that causes or promotes a particular contaminant biotrans-
formation (Fig. 1B). We might again expect an association
between the abundance of G1 and the rate of that particular
biotransformation (Fig. 1D). However, the same strain that
carries G1 might perform another function that positively
affects the growth of a second microbial strain. For example,
the strain that carries G1 might secrete a metabolite that pro-
motes the growth of the second strain.27,28 If the second
strain carries other genes or gene products (designated as G2

to Gn) that do not affect the biotransformation of interest,
the abundances of G2 to Gn might nevertheless associate with
the rate of that biotransformation even though they do not
cause or promote that biotransformation (Fig. 1D). The result
is again a potentially large number of genuine but non-causal
associations. Moreover, for every additional “intercellular
facilitation”, there is a new set of genuine but non-causal
associations that could emerge by “intracellular hitchhiking”,
thus leading to potentially large numbers of genuine but
non-causal associations.

A third general scenario is “habitat co-occurrence”
(Fig. 1C). Consider two different microbial strains that co-
274 | Environ. Sci.: Water Res. Technol., 2015, 1, 272–278
occur together in a particular habitat but do not otherwise
interact with each other. For example, the two strains might
be particularly well adapted to a specific environment such
as plant root surfaces, arctic lakes, or hot springs. One strain
carries gene or gene product G1 that causes or promotes a
particular contaminant biotransformation while the other
strain carries genes or gene products G2 to Gn that do not
cause or promote that biotransformation. The consequence
of habitat co-occurrence is that, while only G1 causes or pro-
motes that biotransformation, genuine but non-causal associ-
ations could occur between the abundances of G2 to Gn and
the rate of that biotransformation. This scenario is especially
likely when meta-omics association studies are conducted
across one or more environmental gradients, which is often
the case.29 Moreover, for every additional co-occurring strain
there are again new sets of possible genuine but non-causal
associations that could emerge by “intracellular hitchhiking”
and “intercellular facilitation”, thus leading to even larger
numbers of genuine but non-causal associations.

While the above arguments may appear pessimistic, we
presented these arguments as if only one microbial strain
carries G1, and therefore only one strain is responsible for a
particular contaminant biotransformation. This may not be
the typical case, and instead a large number of different
strains might carry G1 and contribute to that particular con-
taminant biotransformation. If G1 were widely distributed
among different strains (i.e., if there were many strains that
carry G1), then this could prevent the emergence of some
genuine but non-causal associations. For example, consider
intracellular hitchhiking. If many strains carry G1, but carry
somewhat different compositions of G2 to Gn, then this could
This journal is © The Royal Society of Chemistry 2015
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Fig. 2 Distribution of correlation coefficients for the associations
between atenolol biotransformation rate constants and transcript
abundances. Frequency distribution of Spearman rank correlation
coefficients (A) between transcript abundances and the measured
atenolol biotransformation rate constants among the ten activated
sludge communities sourced; and (B) between transcript abundances
and the randomly scrambled atenolol biotransformation rate
constants. Transcript abundances were obtained from the meta-
transcriptome association study described in the text.
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weaken or prevent the emergence of genuine but non-causal
associations with any particular member of G2 to Gn. There-
fore, it remains unclear, and most likely depends on the
functions examined, how pervasive genuine but non-causal
associations may be when using meta-omics association studies.

To test for evidence of pervasive non-causal associations,
we examined data from our own recent research on contami-
nant biotransformations by activated sludge communities.
We performed a meta-transcriptome association study where
we used readily available sequencing methodologies to quan-
tify the associations between the abundances of 5200 differ-
ent transcripts and the biotransformation rate constants for
atenolol among ten different wastewater treatment plant
(WWTP) communities. All of the original data have been pub-
lished elsewhere29–31 and are publically available (MG-RAST
project number 6015 using the SEED subsystems database
and an e-value cutoff of 10−5). We reasoned that, if the three
general scenarios described for Limitation 1 are pervasive,
then the distribution of significant associations should be
skewed towards positive associations (i.e., all three of the
general scenarios generate genuine but non-causal positive
associations). In contrast, if the three general scenarios
described for Limitation 1 are no more pervasive than scenar-
ios that could generate negative associations, then the distri-
bution of significant associations should be distributed about
zero (i.e., there should be an approximately equal number of
positive and negative associations). Indeed, we observed data
that is consistent with the former expectation. The distribu-
tion of correlation coefficients with the biotransformation rate
constants for atenolol showed a clear bias towards positive
values (Fig. 2A) and the mean value of 0.16 was significantly
greater than zero (P < 10−16; one-tailed, one-sample student's
t-test). Moreover, when we randomized the biotransformation
rate constants of atenolol across the ten WWTPs and re-
calculated the correlation coefficients, the distribution of cor-
relation coefficients was centered about zero (Fig. 2B) and the
mean was not significantly different from zero (P > 0.05;
two-tailed, one-sample student's t-test). These outcomes there-
fore provide support that the three general scenarios
described for Limitation 1 are of potential concern and may
indeed generate significant numbers of genuine but non-
causal associations.

Limitation 2: a causal relationship may not result in an
association

Another typical assumption of the “guilt by association” prin-
ciple is that a causal relationship between a gene or gene
product and a biotransformation must lead to a positive asso-
ciation between the abundance of that gene or gene product
and the rate of that biotransformation. However, this need
not necessarily be true. Below we identify three general sce-
narios whereby a causal relationship between a gene or gene
product and a biotransformation might not result in a posi-
tive association (Fig. 3).

One general scenario is uncontrolled biological variation
(Fig. 3A). As an illustrative example, consider a situation where
This journal is © The Royal Society of Chemistry 2015
there are two variants of the enzyme G1 (designated G1a and
G1b) that catalyze a particular contaminant biotransformation,
but each variant is expressed preferentially in different micro-
bial communities (Fig. 3A). If the catalytic activities of G1a

and G1b were identical, then we would expect an association
between the total abundance of G1 (i.e., the sum of G1a and
G1b) and the rate of that particular biotransformation among
the different microbial communities (Fig. 3B; the relation-
ships are depicted as linear for simplicity, but could be of
any monotonic form). However, if the catalytic activity of G1a

were greater than that of G1b, then the association between
the total abundance of G1 and the rate of that particular bio-
transformation may weaken or, in an extreme case, disappear
(Fig. 3B; although community B expresses large numbers of
G1b, it has a low biotransformation rate because of the poor
catalytic activity of G1b). Such a scenario is biologically plau-
sible, as different variants of the same class of enzymes can
have surprisingly different catalytic activities.32

A second general scenario is that the abundance of the
catalytic enzyme does not determine the rate of a particular
contaminant biotransformation (Fig. 3C). Instead, other fac-
tors may determine the rate of that particular biotransforma-
tion. For example, the rate might be determined by the accu-
mulation of metabolic intermediates within the cell that
repress the activity of the catalytic enzyme (i.e., product inhi-
bition).24 In this case, the rate might be determined by the
abundance of downstream enzymes that consume the
Environ. Sci.: Water Res. Technol., 2015, 1, 272–278 | 275
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Fig. 3 Possible scenarios that could prevent a causal association from emerging. G1 is a gene or gene product that catalyzes a particular
biotransformation of interest. There are at least two plausible scenarios whereby the abundance of G1 might not associate with the rate of that
particular biotransformation. (A) Uncontrolled biological variation, such as differences in the catalytic activities of different enzyme variants (G1a

and G1b), could affect the association. (B) The association may be positive or may disappear completely depending on the relative catalytic
activities of the different variants of G1. While we use linear associations for illustrative purposes, any monotonic association could occur. (C) The
catalytic enzyme might not determine the rate of a particular biotransformation. In these scenarios, the shaded elements indicate potential
alternative determinants of the rate of a particular biotransformation. (D) This would result in no association.
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intermediates (Fig. 3C, enzyme G2). Alternatively, the rate
might be determined by the availability of co-factors required
for enzyme activity33 or by the transport of the contaminant
into the cell.34 For all of these cases, the abundance of the
genes or gene products for the catalytic enzyme may not asso-
ciate with the rate of that particular biotransformation
(Fig. 3D), regardless of the fact that the catalytic enzyme
causes that particular biotransformation.

Finally, a third general scenario is that proportional rela-
tionships might not exist between different levels of genetic
information processing, enzyme synthesis, and enzyme activ-
ity. A wide range of transcriptional, translational, and post-
translational regulation mechanisms are known that may
prevent the number of genes, transcripts, or enzymes from
associating with enzyme activities.35 In other words, two
communities with identical abundances of a particular
gene or enzyme might nevertheless have substantially differ-
ent enzyme activities. In extreme cases, these regulatory
mechanisms could completely prevent an association from
276 | Environ. Sci.: Water Res. Technol., 2015, 1, 272–278
emerging between the abundances of genes or gene products
and enzyme activities.
Limitation 3: multiple comparisons

In our view, a single aspect of meta-omics exemplifies both
an important potential and a major peril of meta-omics
association studies; meta-omics methodologies can quantify
the abundances of many thousands of different genes and
gene products in parallel. The potential is that we can test
for associations between the abundances of an unprece-
dented number of genes or gene products and the rate of a
particular contaminant biotransformation, thus enabling
highly comprehensive explorations when there are no a priori
expectations of the responsible genes or gene products. For
example, using our own data, we could test whether each of
the approximately 5200 different transcripts associates with
the biotransformation rate constants for atenolol. The peril,
however, is that we create an enormous multiple hypothesis
This journal is © The Royal Society of Chemistry 2015
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Fig. 4 Associations between the rarified abundances of urease transcripts
and the biotransformation rate constants of atenolol. Each data point
is for one individual wastewater treatment plant community. Open
squares are for the urease alpha subunit and the filled squares are for
the urease beta subunit. The first-order biotransformation rate con-
stants were normalized to total suspended solids (TSS).
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testing problem. Multiple hypothesis testing occurs when
one uses the same dataset (in this case a metatranscriptome
dataset) to test more than one hypothesis. Consider a sce-
nario where we want to test for associations between the
abundances of individual genes or gene products and the
rate of a particular biotransformation at a significance level
of 0.05. If we test for associations with 20 different genes or
gene products, then we would expect one false association
(20 tests × 0.05 significance level). However, if we test for
associations with 5200 individual genes or gene products, then
we would expect 260 false associations (5200 tests × 0.05 sig-
nificance level). Thus, the number of false associations could
far exceed the number of genuine associations. How then do
we separate false associations from genuine associations?

The conventional approach to address this problem is to
adjust the required significance level for multiple hypothesis
testing. The simplest (but among the least powerful) method
is the Bonferroni correction, which controls the family-wise
error rate.36 As an illustrative example, assume that we want
to test each individual hypothesis at a significance level of
0.05. In order to maintain this individual significance level
after multiple hypothesis testing, we would define an effec-
tive required significance level as the desired significance
level for an individual hypothesis test divided by the number
of hypotheses tested. Thus, if the desired significance level
for an individual hypothesis test is 0.05, then the effective
required significance level is 0.05/5200 or 9.6 × 10−6.

Unfortunately, most meta-omics association studies with
microbial communities do not analyze sufficient numbers of
independent samples (designated as n) to obtain P-values
that are equal to or smaller than this value. As a concrete
example, we measured the correlation coefficients between
the abundances of each of the 5200 transcripts from our pre-
vious study and the rate of ammonia removal (available for
nine of the ten activated sludge communities37). In this case,
we had prior knowledge that the abundance of ammonia
monooxygenase transcripts causally associated with the rate
of ammonia removal.30 Given this prior knowledge, we asked
the following question: for the association between the num-
ber of ammonia monooxygenase transcripts and the rate of
ammonia removal, how many independent activated sludge
metatranscriptomes (n) would we have had to sequence in
order for the correlation coefficient to be significant after
accounting for multiple hypothesis testing? We can readily
estimate this because the P-value solely depends on the
magnitude of the correlation coefficient and n. We specified
the desired P-value at 9.6 × 10−6 and measured the magni-
tude of the correlation coefficient (rho = 0.78, unpublished
data), thus leaving n as the only unknown variable. We
found that n = 24, which means that we would have had
to sequence at least 24 activated sludge metatranscriptomes
for the correlation coefficient, and thus the known causal asso-
ciation, to be statistically significant. While sequencing the
metatranscriptomes of 24 activated sludge communities is
within the capabilities of some environmental microbiology lab-
oratories, it far exceeds the amount of sequencing that is
This journal is © The Royal Society of Chemistry 2015
typically generated for most studies in the field. If this level of
sequencing were not accessible, then studies must rely more
heavily on careful experimental design, sample selection, and
data processing to maximize the accuracy of quantifications,
and thus generate stronger associations.
A future perspective for meta-omics association studies?

All of the above limitations may theoretically impede the use
of meta-omics associations studies to identify causal relation-
ships between micropollutant biotransformations and genes
or gene products. We therefore queried our own data with
atenolol biotransformation to investigate whether, despite
these limitations, we could observe patterns that pointed
towards causal relationships. In our experiments, WWTP
communities quantitatively transformed atenolol into ateno-
lol acid via primary amide hydrolysis.30 When sorting the cor-
relation coefficients between transcript abundances and aten-
olol biotransformation rate constants by their significance
level (i.e., their P-values), we found a cluster of highly signifi-
cant associations with gene transcripts encoding different
urease subunits as well as transcripts encoding other parts of
the urea cycle (i.e., urea ABC transporters, urea carboxylases,
and urea carboxylase-related transporters/permeases). In
total, we found 13 urea cycle-related transcripts among 281
transcripts that had significant associations (P < 0.05, with-
out correcting for multiple hypothesis testing). In contrast,
we only found seven urea cycle-related transcripts in the
remaining 4952 transcripts that did not have significant asso-
ciations. Urease catalyzes the hydrolysis of urea (a primary
amide) to ammonium and CO2. It is therefore plausible that
urease might also catalyze the reaction of atenolol to atenolol
acid. Indeed, we found positive and monotonic associations
between the atenolol biotransformation rate constants and
the gene transcripts encoding the alpha and gamma subunits
Environ. Sci.: Water Res. Technol., 2015, 1, 272–278 | 277
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of urease (Fig. 4; Spearman rank correlation tests, P < 0.007).
However, the final establishment of causality would require
further experiments targeting the specific genes or gene prod-
ucts through, e.g., loss-of-function genetic manipulations or
characterizations of purified enzymes.

In summary, our own data indicate that, despite the above
limitations, meta-omics association studies might indeed
allow us to uncover candidate genes or gene products that are
likely to cause or promote specific micropollutant biotransfor-
mations. If combined with rational approaches to limit the
number of candidate genes, e.g., based on a comparison of
reaction similarity with known enzymatic reactions38,39 to limit
the number of hypotheses that are tested, we believe that
meta-omics association studies are a promising approach to
understand and predict variability in contaminant biotransfor-
mation performance among different microbial communities.
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