Issue 2, 2012

Silver nanoparticle based label-free colorimetric immunosensor for rapid detection of neurogenin 1

Abstract

Neurogenin 1 (ngn1), with the functions of controlling the differentiation of neurons, determining specific neuronal subtype, and inhibiting glial differentiation, is quantitatively detected for the first time. By using specifically modified silver nanoparticles (AgNP) as the signaling element, a label-free, rapid and sensitive colorimetric immunoassay for the synthetic peptide fragment of ngn1 (amino acid sequence: AQDDEQERRRRRGRTR) is reported. The detection procedure is based on an anti-aggregation mechanism, by which ngn1 inhibits the aggregation of the probe in the presence of salt (NaClO4). The anti-ngn1 antibody conjugated AgNP (denoted as AgNP-Ab) is negatively charged, and mono-binding of the like-charged ngn1 to the probe will increase the surface charge density, hence enhancing the interparticular electrostatic repulsion. Along with the increase of ngn1 concentration, the color of the solution varies from red to yellow, thereby developing a feasible approach for the detection of ngn1. Using a UV/vis spectrophotometer, this assay exhibits a linear response range of two orders of magnitude, from 50 to 800 ng mL−1, and a detection limit of 30 ng mL−1. On the basis of these qualities, the antibody-conjugated AgNP may become a useful tool for point-of-care diagnosis of ngn1 and such a method offers a new insight on the detection of the analogous antigen fragment as well.

Graphical abstract: Silver nanoparticle based label-free colorimetric immunosensor for rapid detection of neurogenin 1

Article information

Article type
Paper
Submitted
19 Sep 2011
Accepted
25 Oct 2011
First published
24 Nov 2011

Analyst, 2012,137, 496-501

Silver nanoparticle based label-free colorimetric immunosensor for rapid detection of neurogenin 1

Y. Yuan, J. Zhang, H. Zhang and X. Yang, Analyst, 2012, 137, 496 DOI: 10.1039/C1AN15875A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements