Dalton Transactions

PAPER

Cite this: *Dalton Trans.*, 2015, **44**, 14359

Mono- and di-cationic hydrido boron compounds †‡

Rajendra S. Ghadwal,*^{a,b} Christian J. Schürmann,^b Diego M. Andrada^c and Gernot Frenking^c

Brønsted acid HNTf₂ (Tf = SO₂CF₃) mediated dehydrogenative hydride abstraction from (L¹)BH₃ (**3**) and (L²)BH₃ (**4**) (L¹ = IPrCH₂ = 1,3-(2,6-di-isopropylphenyl)imidazol-2-methylidene (**1**); L² = SIPrCH₂ = 1,3-(2,6-di-isopropylphenyl)imidazol-2-methylidene (**1**); L² = SIPrCH₂ = 1,3-(2,6-di-isopropylphenyl)imidazolidin-2-methylidiene (**2**)) affords thermally stable hydride bridged monocationic hydrido boron compounds [{(L¹)BH₂}₂(μ -H)](NTf₂) (**5**) and [{(L²)BH₂}₂(μ -H)](NTf₂) (**6**). Furthermore, hydride abstraction yields di-cationic hydrido boron compounds [{(L¹)BH}₂(μ -H)₂](NTf₂)₂ (**7**) and [{(L²)-BH}₂(μ -H)₂](NTf₂)₂ (**8**). Unique cationic boron compounds with CH₂BH₂(μ -H)BH₂CH₂ (**5** and **6**) and CH₂BH(μ -H)₂BHCH₂ (**7** and **8**) moieties feature a 3c-2e bond and have been fully characterized. Interesting electronic and structural features of compounds **5–8** are analysed using spectroscopic, crystallographic, and computational methods.

Received 12th June 2015, Accepted 25th June 2015 DOI: 10.1039/c5dt02237a

www.rsc.org/dalton

Introduction

Investigation of thermally stable exotic main group compounds with elusive chemical and electronic properties has been a subject of considerable research interest.¹ Boron compounds play an important role in organic synthesis and materials science.² The search for new boron compounds with unique bonding motifs and electronic structures has been a major focus in molecular main group chemistry.³ A variety of mono-cationic boron compounds such as borinium $[R_2B]^+$, borenium $[(L)R_2B]^+$, and boronium $[(L)_2R_2B]^+$ species (L = a)neutral ligand) have been isolated and characterized.^{2c,4} Recent studies have demonstrated a remarkable activity of borenium compounds in Lewis acid catalysis as well as in the functionalization of small molecules.^{2c,5} Interestingly, so far only a few di-cationic boron compounds, in particular with a hydride ligand, have been isolated and adequately characterized (Scheme 1).4c,6

^bInstitut für Anorganische Chemie der Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany Cowley et al. reported the first hydrido boron di-cation (A)

stabilized by a pyridine ligand (Scheme 1).^{6f} A direct B-B coup-

ling reaction of a mono-cationic species to afford a di-cationic

boron compound (B) stabilized by a cyclic guanidine ligand

View Article Online

^aInstitut für Anorganische Chemie, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany. E-mail: rghadwal@uni-bielefeld.de

^cFachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany

[†]This paper is dedicated to Professor Manfred Scheer on the occasion of his 60th birthday.

[‡]Electronic supplementary information (ESI) available: Crystallographic data and computational details. CCDC 1401734 (4), 1060035 (5), 1060034 (8) and 1060033 (9). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5dt02237a

Scheme 2 Synthesis of NHO-borane compounds 3 and 4.

N-heterocyclic carbenes (NHCs). Curran *et al.* employed an NHC and isolated a hydride-bridged boron di-cation (C).^{6b} A carbodicarbene stabilized hydrido boron di-cation (D) has been reported very recently by Ong and co-workers.^{6a}

While the flanking substituents at the imidazole nitrogen atoms of an NHC are well endowed to encapsulate a reactive species to be stabilized, but they may prevent its accessibility for further reactions.^{3n,13} Moreover, NHC-coordinated main group species sometimes do not exhibit the expected reactivity owing to the diminished electrophilicity. This is due to the strong NHC-element interaction. To circumvent this situation and to expand the scope of reactive main group species to functionalize organic substrates, we became interested in the new class of carbon-donor ligands.¹⁴ N-Heterocyclic olefins (NHOs) and their borane adducts were already known as early as in 1993,¹⁵ interest in this class of ligands incited us very recently.¹⁶ NHOs (1 and 2, Scheme 2) are strong nucleophiles but rather weak electron donors (Lewis bases) than NHCs.¹⁷ Therefore, NHOs readily react with a NHC-stabilized dichlorosilvlene (IPr)SiCl₂ to furnish silvl-functionalized NHOs and liberate free IPr (IPr = 1,3-(2,6-di-isopropylphenyl)imidazol-2ylidene).¹⁸ Similarly, KC₈ reduction of (NHO)BRX₂ (R = I or Ph; X = Cl or I) compounds led to the insertion of a borylene into a C-N bond to yield boryl-functionalized NHOs.^{14b} Herein, we report on a very facile route to NHO-stabilized mono- and dicationic hydrido boron compounds featuring [CH₂BH₂(µ-H)- BH_2CH_2] and $[CH_2BH(\mu-H)_2BHCH_2]$ bonding motifs. Synthesis, characterization, reactivity, structure, and computational analysis of these compounds are presented.

Results and discussion

The reaction of an NHO $(L^1 \text{ or } L^2)$ with $(\text{THF})\text{BH}_3$ quantitatively yields $(L^1)\text{BH}_3$ (3) and $(L^2)\text{BH}_3$ (4) as white solids $(L^1 = \text{IPrCH}_2 (1) \text{ and } L^2 = \text{SIPrCH}_2 (2)$; $\text{IPrCH}_2 = 1,3$ -(2,6-di-isopropylphenyl)-imidazol-2-methylidene and $\text{SIPrCH}_2 = 1,3$ -(2,6-di-isopropylphenyl)imidazolidin-2-methylidiene) (Scheme 2). Treatment of compounds 3 and 4 with 0.5 eq. of bis(trifluoromethane)sulfonimide (HNTf_2) readily affords mono-cationic hydrido boron compounds $[\{(L^1)\text{BH}_2\}_2(\mu-\text{H})](\text{NTf}_2)$ (5) and $[\{(L^2)\text{BH}_2\}_2(\mu-\text{H})](\text{NTf}_2)$ (6) in a high yield (Scheme 3).

Compounds 3–6 have been characterized by ¹H, ¹¹B and ¹³C NMR as well as IR spectroscopic studies. The exocyclic methylene (CH_2) group each in 3 and 4 appears as a broad signal in

Scheme 3 Synthesis of mono- and di-cationic hydrido boron compounds 5-8.

the ¹H NMR spectrum at δ 1.60 and δ 1.41 ppm, respectively. Each of compounds 5 (δ -15.4) and 6 (δ -16.4) exhibits a broad ¹¹B NMR signal, which is shifted towards downfield (*ca.* 14 ppm) when compared with the respective starting compound 3 (δ -29.9) or 4 (δ -29.5). Moreover, the ¹¹B NMR chemical shift, each for 5 and 6, is *ca.* 10 ppm downfield compared to NHC-analogues.^{6b} This may be due to the lower basicity of L¹ and L² ligands than that of NHCs. Nevertheless, compounds 5 and 6 are stable both in solution (CH₂Cl₂, CHCl₃, C₆H₅F, and 1,2-Cl₂C₆H₄) and solid phases at room temperature under an inert gas (Ar or N₂) atmosphere.

Suitable single crystals for X-ray diffraction study were obtained by a slow diffusion of n-hexane into a saturated dichloromethane solution of 5 at room temperature. The solidstate structure of 5 revealed the formation of a hydride bridged mono-cationic boron compound (Fig. 1). The B-(µ-H)-B bond is apparently derived from a 3c-2e (three-center-two-electrons) interaction. The C(0)-B(0) bond length of 1.630 Å in 5 is slightly shorter than that of 4 (1.68 Å). The C(0)-C(1) bond lengths of 4 (1.452 Å) and 5 (1.467) are comparable with $C(sp^2)$ – $C(sp^3)$ single bond distances. All hydrogen atoms near the boron atom were located on difference Fourier maps and refined isotropically as independent atoms. Due to experimental restrictions, all B-H distances are underestimated. The electron density of hydrogen is always shifted towards the bonding partner and due to the lack of core electrons, a shortened B-H bond length is obtained in the IAM refinement.¹⁹

In order to shed light into the electronic structures, we carried out DFT calculations (M06-2X/def2-SVP)²⁰ for **5** and **6**. The optimized bond lengths and angles of **5** are in good agreement with the experimental values (Fig. 1). A comparison of the calculated structures of **5** and **6** indicates (Fig. S2 in the ESI⁺₊) very similar geometries for the H₂B–H–BH₂ moiety. Compound **6** presents a slightly longer B–µH bond length and more acute $C_{(carbene)}$ –C–B angles than those in **5**. Based on the natural population analysis²¹ (Table 1) the boron fragment B₂H₅ is negatively charged by –0.23 e and –0.20 e for **5** and **6**,

Fig. 1 (a) Molecular structure of compound 5. Hydrogen atoms except those on the $H_2B-H-BH_2$ moiety, isopropyl groups, and the anionic part have been omitted for clarity. Thermal ellipsoids are represented at the 50% probability level. Boron bound hydrogen atoms were refined without restraints. Selected experimental and theoretical [M06-2X/def2-SVP] bond lengths [Å] and the bond angle [°]: B0-C0 1.630(2) [1.654], B0-H5B 1.260(11) [1.304], B0-H0BA 1.12(2) [1.211], B0-H0BB 1.09(2) [1.212], C0-C1 1.467(2) [1.465], B30-C30 1.633(2) [1.647], B30-H5B 1.27(2) [1.313], B30-H3BA 1.10(2) [1.213], B30-H3BB 1.10(12) [1.217], C30-C31 1.468(2) [1.468], C1-C0-B0 111.1(2) [109.3], C31-C30-B30 110.2(1) [107.7]. (b) Optimized structure (M06-2X/def2-SVP) of compound 5.

Table 1 NPA charges (Q) and Wiberg Bond Order (WBO) values of compounds 5-9 at M06-2X/def2-TZVPP

Compound	$Q(\mathbf{B})$	$Q(\mu H)$	$Q(\mathbf{C})$	$Q(C_{carb})$	$Q(\mathbf{N})$	WBO(B-µH)	WBO(C-B)	WBO(B-B)	WBO(C-C _{carb})
5	-0.10	+0.05	-0.73	+0.57	-0.35	0.49	0.83	0.29	1.08
6	-0.10	+0.03	-0.75	+0.69	-0.42	0.50	0.81	0.29	1.10
7	+0.11	+0.13	-0.78	+0.53	-0.33	0.46	0.91	0.64	1.05
8	+0.11	+0.13	-0.80	+0.66	-0.39	0.46	0.90	0.65	1.05
9	-0.08	—	-0.74	+0.69	-0.42	—	0.78	—	1.11

respectively. Additionally, natural bond orbital (NBO)²² analysis reveals the presence of a 3c-2e bond (Tables S2 and S3[‡]) B- μ H-B where 47% is at the H atom and roughly 26% on each of the boron atoms. NBO results also point out that the ligands bind boron by C-B σ -bonds which are polarized toward the carbon end (~70% at C).

The reaction of **3** and **4** with HNTf₂ in a 1:1 molar ratio cleanly yields di-cationic hydrido boron compounds **7** and **8** (Scheme 3) as white solids. Compounds **7** and **8** are rather poorly soluble in CH₂Cl₂ and 1,2-Cl₂C₆H₄ but are freely dissolved in acetonitrile. The ¹¹B NMR spectrum of each of **7** (-19.89) and **8** (-19.78) exhibits a broad resonance, which is *ca.* 10 ppm downfield compared to that of **3** and **4**. The molecular structure of **8** is shown in Fig. 2. The BH₂BH₂ core features two 3c-2e bonds with the B…B distance of 1.755 Å. This is actually similar to B…B distances in cationic (NHC)BH₂^{6b} as well as in neutral RBH₂ dimers.²³ Similarly, the B…B distance in **8** is consistent with that of the parent B₂H₆ determined by electron diffraction (1.77 Å)²⁴ or X-ray methods (1.78–1.79 Å).²⁵

The exact location of the B–H hydrogen is uncertain due to the experimental restrictions. Nevertheless, DFT(M06-2X/def2-SVP) optimized structures present a reasonable agreement with the experimental structure (Fig. 2). The theoretically predicted B-H bond lengths are longer than the experimental values, which is a feature commonly observed between solidstate and theoretical structures which refer to isolated molecules.²⁶ The experimentally observed B-B distances are well represented by DFT calculations. The short B...B distances possibly indicate a weak bond. In fact, the B-B Wiberg Bond Indices (WBO in Table 1) are 0.64 au and 0.65 au for compounds 7 and 8, respectively. The increase in the bond order comes from the significantly shorter B-B distances in the dications. In this case, NBO calculations revealed the occurrence of two B-H-B 3c-2e bonds in the HB(µ-H)2BH moiety where 43% is located at the H bridges and ~28% at each boron atom (Tables S4 and S5[‡]). The NHO ligands have a C–B σ -bond where the polarization towards carbon is slightly lower (65% for 7 and 8) than that in 5 and 6. The calculated charge distribution for the latter di-cationic species suggests that a positive charge of roughly +1.5 e resides at the NHO ligands. The somewhat counter intuitive charge at the boron atom can be rationalized in terms of the donor-acceptor bonding model²⁷ which has successfully been used to explain the structure of boron compounds^{3m,28} and to predict new boron molecules with unusual bonding situations.3k,30,29 Compounds 5-8 may be formally considered as complexes where a charged central

Fig. 2 (a) Molecular structure of compound **8**. Hydrogen atoms except those on the HBHHBH moiety, isopropyl groups, and the anionic part have been omitted for clarity. Thermal ellipsoids are represented at the 50% probability level. Boron bound hydrogen atoms were refined without restraints. Selected experimental and theoretical [M06-2X/def2-SVP] bond lengths [Å] and the bond angle [°]: B1–C2 1.601(4) [1.593], B1–B1#1 1.755(7) [1.762], B1–H1 1.07(3)) [1.196], B1–H2 1.28(3) [1.330], C2–C3 1.488(3) [1.479], C2–B1–B1#1 123.6(3) [123.5], C3–C2–B1 118.6(2) [115.7]. (b) Optimized structure (M06-2X/def2-SVP) of compound **8**.

Scheme 4 Reaction of 8 with L² to boronium ion 9.

boron fragment ($B_2H_5^+$ in the mono-cations and $B_2H_4^{2+}$ in the di-cations) serves as an acceptor and the NHOs serve as donors, NHO $\rightarrow B_2H_n^{\ q} \leftarrow$ NHO. The strong charge donation leads to negative charges at boron in the cations 5 and 6 and to rather small positive charges in the di-cations 7 and 8. A negative partial charge was previously found at the BH_2^+ fragment in the cations (L $\rightarrow BH_2 \leftarrow L_1^{+}$.^{3m}

Treatment of 8 with two equivalents of the NHO (L²) leads to the clean formation of a boronium compound $[(L^2)_2BH_2]$ - $[NTf_2]$ (9) (Scheme 4). The ¹¹B NMR spectrum of 9 shows a broad signal at δ –23.8 ppm. While hydrogen atoms of the BH₂ group could not be located, the ¹H NMR spectrum of compound 9 exhibits a remarkably up-field signal (δ 0.34 ppm) for methylene (CH_2BH_2) protons, which has been confirmed by a ¹H-¹³C-HSQC (heteronuclear single quantum coherence) experiment. Colourless crystals of 9 were obtained from a solution of dichloromethane/*n*-hexane (4 : 1) at room temperature. The molecular structure of 9 features a CH₂BH₂CH₂ moiety with the C-B-C angle of 109.22° (Fig. 3). The C-B bond distance of 1.69 Å is comparable to that of 8.

Compounds **3–9** exhibit characteristic absorption bands for the terminal ν (B–H) stretching vibrations from 2230 to 2463 cm⁻¹. IR absorption bands in the 1561–1594 cm⁻¹ region may be assigned for the bridging ν (B–H) vibrations.³⁰

Fig. 3 Molecular structure of compound **9**. Hydrogen atoms except those on the BH₂ moiety, isopropyl groups as well as the anionic part have been omitted for clarity. Thermal ellipsoids are represented at the 50% probability level. Boron bound hydrogen atoms were refined without restraints. Selected experimental and theoretical [M06-2X/def2-SVP] bond lengths [Å] and the bond angle [°]: B1–C2 1.689(3) [1.693], B1–C32 1.690(3) [1.694], B1–H1 1.12(2) [1.226], B1–H2 1.12(2) [1.226], C2–C3 1.456(3) [1.455], C32–C33 1.459(3) [1.455], C2–B1–C32 109.2(2) [109.2], C3–C2–B1 111.9(2) [107.8], C33–C32–B1 110.5(2) [107.6].

Experimental

All syntheses and manipulations were carried out under an inert atmosphere of dry argon or nitrogen gas using Schlenk line techniques and a glove box. CD_2Cl_2 , CH_2Cl_2 , $o-Cl_2C_6D_4$ and $o-Cl_2C_6H_4$ (over CaH_2), C_6D_6 and THF (over K-benzophenone ketyl) were dried and distilled under a dry argon atmosphere prior to use. All other solvents were dried and purified

by using a MBRAUN solvent purification system (MB SPS 800). ¹H, ¹¹B and ¹³C NMR spectra were recorded using a Bruker Avance III 300 or a Bruker Avance DRX 500 spectrometer. ESI mass spectra were recorded with a Bruker micrOTOF or a Bruker maXis spectrometer. Melting points were measured with a Büchi Melting Point B-540 apparatus. Elemental analyses were performed at the Institute for Inorganic Chemistry, Universität Göttingen. (THF)BH₃ (Aldrich) and HNTf₂ (Aldrich) were used without further purification. SIPrCH₂ (L¹) (1) and IPrCH₂ (L²) (2) were prepared by adopting the reported methods.^{14b,31}

Synthesis and characterization of compounds 3-9

 $(L^1)BH_3$ (3). A 1 M THF solution of $(THF)BH_3$ (3.6 mL, 3.60 mmol) was added to an *n*-hexane solution of L^{1} (1) (1.44 g, 3.57 mmol) at room (25 °C) temperature. The resulting white slurry was stirred for 4 h. Filtration through a glass frit afforded a white solid, which was washed with 20 mL n-hexane and dried under vacuum to yield 3 (1.34 g, 90%). Colorless crystals of 2 were grown from a 20 mL CH_2Cl_2/n -hexane (1:1) solution. Mp.: 201 °C. MS (ESI, m/z [M]): 415.33 [M - H]⁺, 416.33 $[M]^+$. Elemental analysis for C₂₈H₄₁N₂B (416): C 80.75, H 9.92, N 6.73; found C 80.44, H 9.85, N 6.68. IR (cm⁻¹): 2960, 2871, 2322, 2258, 2230, 1560. ¹H NMR (300 MHz, CD₂Cl₂, 25 °C): δ 1.16 (d, 12H, J = 6.8 Hz, HCMe₂); 1.36 (d, 12H, J =6.8 Hz, HCMe₂); 1.60 (br, 2H, CCH₂); 2.70 (sept, 4H, J = 6.8 Hz, $HCMe_2$; 6.98 (s, 2H, NCH); 7.36 (d, 4H, I = 7.9 Hz, $m-C_6H_3$); 7.56 (t, 2H, J = 7.7 Hz, p-C₆ H_3). ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 25 °C): δ 16.55 (CCH₂); 22.97, 26.02 (HCMe₂); 29.49 (HCMe₂); 121.55 (NCH); 125.13 $(m-C_6H_3)$; 131.50, 131.98 $(p-C_6H_3)$; $o-C_6H_3$; 146.66 (*ipso-C*₆H₃); 165.41 (*C*CH₂) ppm. B{¹H}NMR (96 MHz, CD_2Cl_2 , 25 °C): δ –29.89 ppm. ¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ –29.89 (q, J_{B-H} = 85.43 Hz) ppm.

Synthesis of $(L^2)BH_3$ (4). Compound 4 was prepared by adopting a similar method as described for 3 using L^2 (2) (1.37 g, 3.38 mmol) and (THF)BH₃ (3.4 mL, 3.4 mmol) as colorless crystals (1.20 g, 84%). Mp.: 202 °C. MS (ESI, m/z [M]): 417.34 $[M - H]^+$, 418.34 $[M]^+$. Elemental analysis for C₂₈H₄₃N₂B (418): C 80.36, H 10.36, N 6.69; found C 79.98, H 9.96, N 6.67. IR (cm⁻¹): 2924, 2854, 2347, 2273, 2239, 1531. ¹H NMR (300 MHz, CD_2Cl_2 , 25 °C): δ 1.29 (d, 12H, J = 6.9 Hz, HCMe₂); 1.34 (br, 2H, CCH₂); 1.41 (d, 12H, J = 6.7 Hz, HCMe₂); 3.22 (sept, 4H, J = 6.8 Hz, $HCMe_2$); 4.07 (s, 4H, NCH_2); 7.32 (d, 4H, J = 7.5 Hz, m-C₆ H_3); 7.46 (t, 2H, J = 7.7 Hz, p-C₆ H_3). ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 25 °C): δ 18.46 (CCH₂); 23.72, 26.37 $(HCMe_2)$; 29.39 $(HCMe_2)$; 51.71 (NCH_2) ; 125.39 $(m-C_6H_3)$; 130.56, 132.60 (*p*-C₆H₃, *o*-C₆H₃); 147.60 (*ipso*-C₆H₃); 183.07 (CCH₂) ppm. $^{11}B{^1H}$ NMR (96 MHz, CD₂Cl₂, 25 °C): δ –29.51 ppm. ¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ –29.51 $(q, J_{B-H} = 88.28 \text{ Hz}) \text{ ppm.}$

 $[{(L^1)BH_2}_2(\mu_2-H)]NTf_2$ (5). To a 50 mL Schlenk flask containing 3 (0.50 g, 1.2 mmol) and HNTf₂ (0.17 g, 0.6 mmol) was added 10 mL of *o*-dichlorobenzene at room temperature. Effervescence indicated the formation of a gas (apparently H₂). Further stirring at room temperature for 2 h afforded a colorless clear solution, which was combined with 20 mL of *n*-hexane. A white residue was separated out, which was washed with 5 mL of *n*-hexane and dried under vacuum to obtain compound 5 as a white solid (0.40 g, 60%). Mp.: 210 °C. MS (ESI, *m*/*z* [M]): 831.66 [M*]⁺ (M* = cationic unit). Elemental analysis for C₅₈H₈₁N₅B₂F₆O₄S₂ (1112): C 62.64, H 7.34, N 6.30; found C 62.33, H 7.21, N 6.18. IR (cm⁻¹): 2924, 2854, 2463, 2412, 2067, 1565. ¹H NMR (300 MHz, CD₂Cl₂, 25 °C): δ 1.13 (*pseudo*-t, 24H, HC*Me*₂); 1.53 (br, 2H, CC*H*₂); 2.31 (sept, 4H, *J* = 6.8 Hz, *H*CMe₂); 7.08 (s, 2H, NC*H*); 7.29 (d, 4H, *J* = 7.8 Hz, *m*-C₆H₃); 7.55 (t, 2H, *J* = 7.8 Hz, *p*-C₆H₃). ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 25 °C): δ 15.08 (CCH₂); 22.86, 25.78 (HC*Me*₂); 29.47 (HCMe₂); 122.91 (NCH); 125.27 (*m*-C₆H₃); 130.84, 132.13 (*p*-C₆H₃, *o*-C₆H₃); 146.03 (*ipso*-C₆H₃); 158.67 (CCH₂) ppm. ¹¹B{¹H} NMR (96 MHz, CD₂Cl₂, 25 °C): δ -15.43 ppm. ¹⁹F (282 MHz, CD₂Cl₂, 25 °C) = δ -79.52 ppm.

 $[{(L²)BH₂}_2(\mu_2-H)]NTf_2$ (6). Compound 6 was prepared by adopting a similar method as discussed for compound 5 using 4 (0.26 g, 0.62 mmol) and HNTf2 (0.08 g, 0.31 mmol) as a white solid (0.19 g, 55%). Mp.: 211 °C. MS (ESI, m/z [M]): 835.70 $[M^*]^+$ (M^{*} = cationic unit). Elemental analysis for C₅₈H₈₅N₅B₂F₆O₄S₂ (1116): C 62.42, H 7.68, N 6.28; found C 61.77, H 7.51, N 6.16. IR (cm⁻¹): 2932, 2844, 2459, 2420, 2053, 1560. ¹H NMR (300 MHz, CD₂Cl₂, 25 °C): δ 1.17 (d, 12H, J = 6.8 Hz, HCMe₂); 1.20 (br, 2H, CCH₂); 1.24 (d, 12H, J =6.8 Hz, HCMe₂); 2.84 (sept, 4H, J = 6.8 Hz, HCMe₂); 4.05 (s, 4H, NCH₂); 7.23 (d, 4H, J = 7.8 Hz, m-C₆H₃); 7.41 (t, 2H, J = 7.7 Hz, *p*-C₆ H_3). ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 25 °C): δ 16.56 (CCH₂); 23.63, 26.22 (HCMe₂); 29.39 (HCMe₂); 52.08 (NCH₂); 125.57, 126.30 $(m-C_6H_3)$; 131.34, 131.27, 132.52 $(p-C_6H_3)$ o-C₆H₃); 147.88, 147.12 (*ipso-C*₆H₃); 178.33 (CCH₂) ppm. ¹¹B ${}^{1}H$ NMR (96 MHz, CD₂Cl₂, 25 °C): δ -16.38 ppm. ${}^{19}F$ $(282 \text{ MHz}, \text{CD}_2\text{Cl}_2, 25 \text{ °C}) = \delta - 79.53 \text{ ppm}.$

 $[{(L^1)BH_2}_2](NTf_2)_2$ (7). To a 50 mL Schlenk flask containing 3 (0.66 g, 1.57 mmol) and HNTf₂ (0.44 g, 1.57 mmol) was added 20 mL of fluorobenzene at room temperature. Further stirring at room temperature for 4 h afforded a white suspension, which was combined with 10 mL of n-hexane. A white solid was separated out, which was washed with 5 mL of n-hexane and dried under vacuum to obtain compound 7 (0.82 g, 74%). Mp.: 202 °C. Elemental analysis for C₆₀H₈₀N₆B₂F₁₂O₈S₄ (1391): C 51.80, H 5.80, N 6.04; found C 51.10, H 5.62, N 5.75. IR (cm⁻¹): 2920, 2854, 2723, 2600, 2369, 1589, 1561. ¹H NMR (300 MHz, CD₃CN, 25 °C): δ 1.20 (d, 12H, J = 6.8 Hz, HCMe₂); 1.33 (d, 12H, J = 6.8 Hz, HCMe₂); 1.78 (br, 2H, CCH₂); 2.44 (sept, 4H, J = 6.8 Hz, HCMe₂); 7.50 (d, 4H, J = 7.9 Hz, m-C₆ H_3); 7.53 (s, 2H, NCH); 7.65 (t, 2H, J = 7.3 Hz, $p-C_6H_3$). ¹³C{¹H} NMR (75 MHz, CD₃CN, 25 °C): δ 15.49 (CCH₂); 22.71, 25.54 (HCMe₂); 29.95 (HCMe₂); 125.87 (NCH); 126.30 $(m-C_6H_3)$; 131.33, 132.81 $(p-C_6H_3, o-C_6H_3)$; 146.78 $(ipso-C_6H_3)$; 157.03 (CCH₂) ppm. ¹¹B{¹H} NMR (160 MHz, CD₃CN, 25 °C): δ -19.89 ppm. ¹⁹F (282 MHz, CD₃CN, 25 °C) = δ -80.16 ppm.

 $[{(L^2)BH_2}_2](NTf_2)_2$ (8). Under similar experimental conditions as described for 7, treatment of 4 (0.27 g, 0.64 mmol) with HNTf_2 (0.18 g, 0.64 mmol) afforded compound 8 as a white solid (0.39 g, 86%). Mp.: 197 °C. MS (ESI, *m*/*z* [M]): 834.68, 833.68 [M*]⁺ (M* = cationic unit). Elemental analysis

Dalton Transactions

for C₆₀H₈₄N₆B₂F₁₂O₈S₄ (1395): C 51.65, H 6.07, N 6.02; found C 51.22, H 5.85, N 5.95. IR (cm⁻¹): 2924, 2836, 2724, 2584, 2365, 1594, 1564. ¹H NMR (300 MHz, CD₃CN, 25 °C): δ 1.31 (d, 12H, *J* = 6.8 Hz, HC*Me*₂); 1.36 (d, 12H, *J* = 6.8 Hz, HC*Me*₂); 1.44 (br, 2H, CC*H*₂); 3.06 (sept, 4H, *J* = 6.8 Hz, *H*CMe₂); 4.21 (s, 4H, NC*H*₂); 7.41 (d, 4H, *J* = 7.8 Hz, *m*-C₆*H*₃); 7.52 (t, 2H, *J* = 7.7 Hz, *p*-C₆*H*₃). ¹³C{¹H} NMR (75 MHz, CD₃CN, 25 °C): δ 16.82 (CC*H*₂); 23.54, 26.24 (HC*Me*₂); 29.70 (HCMe₂); 52.65 (NCH₂); 126.19, 126.59 (*m*-C₆H₃); 131.33, 131.94, 132.61 (*p*-C₆H₃, *o*-C₆H₃); 147.41, 147.88 (*ipso*-C₆H₃); 177.31 (CCH₂) ppm. ¹¹B {¹H} NMR (96 MHz, CD₂Cl₂, 25 °C): δ -19.78 ppm. ¹⁹F (282 MHz, CD₃CN, 25 °C) = δ -80.13 ppm.

[{(L²)₂BH₂}](NTf₂)₂ (9). To a 50 mL fluorobenzene solution of 8 (2.50 g, 1.79 mmol) was added L² (1.45 g, 3.58 mmol) at room temperature and stirred for 4 h. Removal of the volatiles under vacuum afforded an off-white solid. The residue was dissolved in 20 mL of dichloromethane and 10 mL of *n*-hexane was added. The resulting solution was stored at 3 °C for two days to yield a colorless crystalline solid of compound 9 (2.70 g, 68%). Mp.: 273 °C. MS (ESI, *m*/*z* [M]): 821.67, 822.67, 820.67 [M*]⁺ (M* = cationic unit). Elemental analysis for C₅₈H₈₂N₅BF₆O₄S₂ (1102): C 63.20, H 7.50, N 6.35; found C 63.01, H 7.31, N 6.19. IR (cm⁻¹): 2922, 2853, 2724, 2586, 1711, 1595, 1566. ¹H NMR (300 MHz, CD₂Cl₂, 25 °C): δ 0.35 (br, 2H, CCH₂); 0.98 (d, 12H, *J* = 6.7 Hz, HCMe₂); 1.15 (d, 12H, *J* = 6.8 Hz, HCMe₂); 2.76 (sept, 4H, *J* = 6.8 Hz, *H*CMe₂); 3.96 (s, 4H, NCH₂); 7.14 (d, 4H, J = 7.9 Hz, m-C₆H₃); 7.34 (t, 2H, J = 7.7 Hz, p-C₆H₃). ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 25 °C): δ 22.53 (CCH₂); 23.46, 26.56 (HCMe₂); 29.49 (HCMe₂); 51.58 (NCH₂); 125.62 (m-C₆H₃); 131.06, 131.74 (p-C₆H₃, o-C₆H₃); 147.30 (*ipso*-C₆H₃); 181.15 (CCH₂) ppm. ¹¹B{¹H} NMR (96 MHz, CD₂Cl₂, 25 °C): δ -24.03 ppm. ¹⁹F (282 MHz, CD₂Cl₂, 25 °C) = δ -79.55 ppm.

Crystallographic details

Suitable single crystals were selected from the mother liquor under Schlenk conditions and covered with perfluorinated polyether oil on a microscope slide, which was cooled under a nitrogen gas flow using the X-Temp2 device.32 The diffraction data of compounds 5, 8 and 9 were collected at 100 K on a Bruker D8 three circle diffractometer, equipped with a SMART APEX II CCD detector and an INCOATEC microfocus source (Ag K_{α} radiation) with INCOATEC Quazar mirror optics (Table 2). The diffraction data of compound 4 were collected at 100 K on a Bruker D8 three-circle diffractometer, equipped with a SMART APEX II CCD detector and an INCOATEC microfocus source (Mo K_{α} radiation) with INCOATEC Quazar mirror optics. The data were integrated with SAINT³³ and a multi-scan absorption correction with SADABS³⁴ was applied. The structure solution was performed with SHELXT³⁵ and structure refinement was performed with SHELXL,³⁶ using the graphical user interface SHELXLE.37 All non-hydrogen atoms were

Table 2	Crystallographic and	structure refinement data	of compounds 4, 5, 8 and 9
	Crystattographic and	structure remiteriterit data	

Compound	4	5	8	9
CCDC number	1401734	1060035	1060034	1060033
Empirical formula	$C_{28}H_{43}BN_2$	$C_{58}H_{81}B_2F_6N_5O_4S_2$	C _{60.66} H _{85.32} B ₂ Cl _{1.32} F ₁₂ N ₆ O ₈ S ₄	C ₆₇ H _{89,50} BF _{7,50} N ₅ O ₄ S ₂
Formula weight [g mol ⁻¹]	418.45	1112.01	1451.24	1246.36
Temperature [K]	100(2)	100(2)	100(2)	100(2)
Wavelength [Å]	0.71073	0.56086	0.56086	0.56086
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, P1	Triclinic, <i>P</i> 1	Triclinic, <i>P</i> 1
Unit cell dimensions [Å]	a = 11.624(2)	a = 10.754(2)	a = 12.306(2)	a = 13.061(3)
	b = 15.921(3)	b = 16.407(2)	b = 12.691(2)	b = 15.613(4)
	c = 14.028(2)	c = 18.510(2)	c = 13.389(2)	c = 16.727(4)
α [°]	90	83.78(2)	95.14(2)	96.88(2)
β[°]	99.23(2)	73.47(2)	101.53(2)	101.45(2)
γ [°]	90	83.41(2)	118.07(2)	98.29(2)
Volume [Å ³]	2562.5(8)	3100.4(4)	1766.6(6)	3269.2(14)
Z	4	2	1	2
Absorption coefficient [mm ⁻¹]	0.062	0.085	0.146	0.088
F(000)	920	1184	760	1326
Crystal size [mm ³]	$0.100\times0.100\times0.100$	$0.195 \times 0.194 \times 0.104$	$0.317 \times 0.301 \times 0.110$	$0.180 \times 0.153 \times 0.079$
Theta range for data collection [°]	1.775 to 27.887	1.289 to 22.073	2.508 to 20.125	1.739 to 19.601
Reflections collected/unique	23 574/6095	238 549/15 500	52 767/6769	161 683/11 676
R _{int}	0.0369	0.0605	0.0554	0.0810
Completeness	99.9	100.0	99.8	99.6
Max. and min. transmission	0.7456 and 0.7110	0.7447 and 0.7196	0.4251 and 0.3948	0.7444 and 0.6314
Data/restraints/parameters	6095/3/300	15 500/513/768	6769/1636/863	11 676/111/808
Goodness-of-fit on F^2	1.039	1.024	1.044	1.044
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0446,$	$R_1 = 0.0383,$	$R_1 = 0.0745,$	$R_1 = 0.0544,$
	$wR_2 = 0.1078$	$wR_2 = 0.0901$	$wR_2 = 0.2054$	$wR_2 = 0.1442$
R indices (all data)	$R_1 = 0.0631,$	$R_1 = 0.0550,$	$R_1 = 0.0956,$	$R_1 = 0.0737,$
	$wR_2 = 0.1167$	$wR_2 = 0.0999$	$wR_2 = 0.2259$	$wR_2 = 0.1589$
Largest diff. peak and hole $(e A^{-3})$	0.280 and -0.214	0.334 and -0.440	0.785 and -0.449	0.746 and -0.565

refined with anisotropic displacement parameters. All hydrogen atoms, except those bound to boron atoms, were assigned to ideal positions and refined using a riding model with U_{iso} constrained to 1.2 (1.5) times the U_{eq} value of the parent carbon atom. The positions of boron bound hydrogen atoms were found by difference Fourier analysis and the positions were refined.

Computational details

The geometries of compounds **5–9** have been optimized using the functional M06-2X^{20a} combined with the def2-SVP basis set.^{20b} Stationary points were located with the Berny algorithm³⁸ using redundant coordinates. Analytical Hessians were computed to determinate the nature of the stationary points.³⁹ All geometry optimizations were performed using the Gaussian 09 suite of programs.⁴⁰ The NBO^{21,22,41} analyses have been carried out with the GENNBO 5.9⁴² program at the M06-2X/ def2-TZVPP level of theory.

Conclusions

In conclusion, mono-cationic $[\{(L^1)BH_2\}_2(\mu-H)](NTf_2)$ (5) and $[\{(L^2)BH_2\}_2(\mu-H)](NTf_2)$ (6) and di-cationic $[\{(L^1)BH\}_2(\mu-H)_2](NTf_2)_2$ (7) and $[\{(L^2)BH\}_2(\mu-H)_2](NTf_2)_2$ (8) hydrido boron compounds are readily accessible by a hydride abstraction reaction of 3 and 4 with a commercially available Brønsted acid. Structure and bonding of these compounds featuring $CH_2BH_2(\mu-H)$ -BH₂CH₂ (5 and 6) and $CH_2BH(\mu-H)_2BHCH_2$ (7 and 8) scaffolds have been analysed using experimental and theoretical methods. The NHO ligand forms a C–B σ -bond, where the polarization towards carbon is slightly lower (65% for 7 and 8) than that for 5 and 6. NBO calculations revealed the occurrence of two B–H–B 3c–2e bonds in the HB(μ -H)₂BH moiety where 43% is located at the H bridges and ~28% at each boron atom.

Crystallographic data of compounds 4, 5, 8 and 9 have been deposited with the Cambridge Crystallographic Data Centre.

Acknowledgements

We are thankful to the Deutsche Forschungsgemeinschaft (DFG) (GH 129/4-1) for financial support.

Notes and references

- (a) B. D. Rekken, T. M. Brown, J. C. Fettinger, H. M. Tuononen and P. P. Power, *J. Am. Chem. Soc.*, 2012, 134, 6504–6507; (b) P. P. Power, *Nature*, 2010, 463, 171–177; (c) R. C. Fischer and P. P. Power, *Chem. Rev.*, 2010, 110, 3877–3923.
- 2 (a) A. J. Lennox and G. C. Lloyd-Jones, *Chem. Soc. Rev.*, 2014, 43, 412–443; (b) T. Banu, K. Sen, D. Ghosh, T. Debnath and A. K. Das, *RSC Adv.*, 2014, 4, 1352–1361; (c) T. S. De Vries, A. Prokofjevs and E. Vedejs, *Chem. Rev.*,

2012, **112**, 4246–4282; (*d*) M. Yamashita and K. Nozaki, in *Synthesis and Application of Organoboron Compounds*, ed. E. Fernández and A. Whiting, Springer International Publishing, 2015, vol. 49, ch. 1, pp. 1–37; (*e*) Y. Segawa, M. Yamashita and K. Nozaki, *Science*, 2006, **314**, 113–115; (*f*) *Contemporary Boron Chemistry*, ed. M. G. Davidson, K. Wade, T. B. Marder and A. K. Hughes, The Royal Society of Chemistry, Cambridge, UK, 2000.

- 3 (a) H. Braunschweig, W. C. Ewing, K. Geetharani and M. Schafer, Angew. Chem., Int. Ed., 2015, 54, 1662-1665; (b) P. Q. Huang and C. H. Lai, Comput. Theor. Chem., 2015, 1051, 17-23; (c) R. Koppe and H. Schnockel, Chem. Sci., 2015, 6, 1199-1205; (d) F. Dahcheh, D. W. Stephan and G. Bertrand, Chem. - Eur. J., 2015, 21, 199-204; D. A. Ruiz, M. Melaimi and G. Bertrand, (e) Chem. Commun., 2014, 50, 7837-7839; (f) P. Bissinger, Braunschweig, A. Damme, I. Krummenacher, H. A. K. Phukan, K. Radacki and S. Sugawara, Angew. Chem., 2014, 53, 7360-7363; (g) P. Bissinger, Int. Ed., H. Braunschweig, A. Damme, T. Kupfer, I. Krummenacher and A. Vargas, Angew. Chem., Int. Ed., 2014, 53, 5689-5693; (h) T. B. Tai and M. T. Nguyen, Angew. Chem., Int. Ed., 2013, 52, 4554-4557; (i) D. A. Ruiz, G. Ung, M. Melaimi and G. Bertrand, Angew. Chem., Int. Ed., 2013, 52, 7590-7592; (*j*) H. Braunschweig, T. Herbst, K. Radacki, C. W. Tate and Vargas, Chem. Commun., 2013, 49, 1702-1704; A. (k) H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki and A. Vargas, Science, 2012, 336, 1420-1422; (l) G. Frenking and N. Holzmann, Science, 2012, 336, 1394-1395; (m) M. A. Celik, R. Sure, S. Klein, R. Kinjo, G. Bertrand and G. Frenking, Chem. - Eur. J., 2012, 18, 5676-5692; (n) H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki and A. Vargas, Science, 2012, 336, 1420-1422; (o) R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking and G. Bertrand, Science, 2011, 333, 610-613; (p) Z. Liu, J. Chem. Phys., 2010, 132; (q) H. Braunschweig, C. W. Chiu, K. Radacki and T. Kupfer, Angew. Chem., Int. Ed., 2010, 49, 2041–2044; (r) S. H. Ueng, A. Solovyev, X. Yuan, S. J. Geib, L. Fensterbank, E. Lacote, M. Malacria, M. Newcomb, J. C. Walton and D. P. Curran, J. Am. Chem. Soc., 2009, 131, 11256-11262; (s) H. Braunschweig, Angew. Chem., Int. Ed., 2007, 46, 1946-1948.
- 4 (a) Y. Shoji, N. Tanaka, K. Mikami, M. Uchiyama and T. Fukushima, Nat. Chem., 2014, 6, 498–503; (b) C. Reus and M. Wagner, Nat. Chem., 2014, 6, 466–467; (c) S. Litters, E. Kaifer, M. Enders and H. J. Himmel, Nat. Chem., 2013, 5, 1029–1034; (d) C. I. Someya, S. Inoue, C. Prasang, E. Irran and M. Driess, Chem. Commun., 2011, 47, 6599–6601; (e) D. P. Curran, A. Solovyev, M. Makhlouf Brahmi, L. Fensterbank, M. Malacria and E. Lacote, Angew. Chem., Int. Ed., 2011, 50, 10294–10317; (f) W. E. Piers, S. C. Bourke and K. D. Conroy, Angew. Chem., Int. Ed., 2005, 44, 5016– 5036; (g) A. Prokofjevs and E. Vedejs, J. Am. Chem. Soc., 2011, 133, 20056–20059; (h) B. Inés, M. Patil, J. Carreras, R. Goddard, W. Thiel and M. Alcarazo, Angew. Chem., Int. Ed., 2011, 50, 8400–8403; (i) J.-H. Tsai, S.-T. Lin,

R. B.-G. Yang, G. P. A. Yap and T.-G. Ong, *Organometallics*, 2010, **29**, 4004–4006; (*j*) C. Bonnier, W. E. Piers, M. Parvez and T. S. Sorensen, *Chem. Commun.*, 2008, 4593–4595.

- 5 (a) J. M. Farrell, R. T. Posaratnanathan and D. W. Stephan, *Chem. Sci.*, 2015, 6, 2010–2015; (b) M. Ingleson, in *Synthesis* and Application of Organoboron Compounds, ed. E. Fernández and A. Whiting, Springer International Publishing, 2015, vol. 49, ch. 2, pp. 39–71; (c) Z. X. Wang, L. L. Zhao, G. Lu, H. X. Li and F. Huang, in *Frustrated Lewis Pairs I:* Uncovering and Understanding, 2013, vol. 332, pp. 231–266; (d) A. Prokofjevs, A. Boussonniere, L. Li, H. Bonin, E. Lacote, D. P. Curran and E. Vedejs, *J. Am. Chem. Soc.*, 2012, 134, 12281–12288; (e) Y. Y. Xu, Z. Li, M. Borzov and W. L. Nie, *Prog. Chem.*, 2012, 24, 1526–1532.
- 6 (a) W. C. Chen, C. Y. Lee, B. C. Lin, Y. C. Hsu, J. S. Shen, C. P. Hsu, G. P. Yap and T. G. Ong, J. Am. Chem. Soc., 2014, 136, 914–917; (b) A. Prokofjevs, J. W. Kampf, A. Solovyev, D. P. Curran and E. Vedejs, J. Am. Chem. Soc., 2013, 135, 15686–15689; (c) H. Braunschweig, M. Kaupp, C. Lambert, D. Nowak, K. Radacki, S. Schinzel and K. Uttinger, Inorg. Chem., 2008, 47, 7456–7458; (d) D. Vidovic, M. Findlater and A. H. Cowley, J. Am. Chem. Soc., 2007, 129, 8436–8437; (e) R. Dinda, O. Ciobanu, H. Wadepohl, O. Hubner, R. Acharyya and H. J. Himmel, Angew. Chem., Int. Ed., 2007, 46, 9110–9113; (f) I. Vargas-Baca, M. Findlater, A. Powell, K. V. Vasudevan and A. H. Cowley, Dalton Trans., 2008, 6421–6426.
- 7 (a) M. Soleilhavoup and G. Bertrand, Acc. Chem. Res., 2015, 48, 256–266; (b) F. Dahcheh, D. Martin, D. W. Stephan and G. Bertrand, Angew. Chem., Int. Ed., 2014, 53, 13159-13163; (c) Y. Wang and G. H. Robinson, Inorg. Chem., 2014, 53, 11815–11832; (d) J. Bohnke, H. Braunschweig, W. C. Ewing, C. Horl, T. Kramer, I. Krummenacher, J. Mies and A. Vargas, Angew. Chem., Int. Ed., 2014, 53, 9082-9085; (e) R. S. Ghadwal, R. Azhakar and H. W. Roesky, Acc. Chem. Res., 2013, 46, 444-456; (f) Y. Xiong, S. L. Yao, S. Inoue, J. D. Epping and M. Driess, Angew. Chem., Int. Ed., 2013, 52, 7147-7150; (g) Y. Xiong, S. L. Yao and M. Driess, Z. Naturforsch., B: Chem. Sci., 2013, 68, 445-452; (h) C. D. Martin, M. Soleilhavoup and G. Bertrand, Chem. Sci., 2013, 4, 3020-3030; (i) T. Rovis and S. P. Nolan, Synlett, 2013, 1188–1189; (*j*) D. Martin, M. Soleilhavoup and G. Bertrand, Chem. Sci., 2011, 2, 389-399; (k) Y. Xiong, S. Yao and M. Driess, J. Am. Chem. Soc., 2009, 131, 7562-7563; (l) P. de Fremont, N. Marion and S. P. Nolan, Coord. Chem. Rev., 2009, 253, 862-892; (m) C. A. Dyker and G. Bertrand, Science, 2008, 321, 1050-1051; (n) S. Diez-Gonzalez and S. P. Nolan, Coord. Chem. Rev., 2007, 251, 874-883; (o) R. S. Ghadwal, R. Azhakar, H. W. Roesky, K. Pröpper, B. Dittrich, C. Goedecke and G. Frenking, Chem. Commun., 2012, 48, 8186-8188; (p) R. S. Ghadwal, H. W. Roesky, C. Schulzke and M. Granitzka, Organometallics, 2010, 29, 6329-6333; (q) R. S. Ghadwal, S. S. Sen, H. W. Roesky, M. Granitzka, D. Kratzert, S. Merkel and D. Stalke, Angew. Chem., Int. Ed., 2010, 49, 3952-3955;

- (*r*) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn and D. Stalke, *Angew. Chem., Int. Ed.*, 2009, **48**, 5683–5686.
- 8 (a) J. C. Walton, M. M. Brahmi, J. Monot, L. Fensterbank, M. Malacria, D. P. Curran and E. Lacote, *J. Am. Chem. Soc.*, 2011, 133, 10312–10321; (b) J. C. Walton, M. M. Brahmi, L. Fensterbank, E. Lacote, M. Malacria, Q. Chu, S. H. Ueng, A. Solovyev and D. P. Curran, *J. Am. Chem. Soc.*, 2010, 132, 2350–2358; (c) S. H. Ueng, M. M. Brahmi, E. Derat, L. Fensterbank, E. Lacote, M. Malacria and D. P. Curran, *J. Am. Chem. Soc.*, 2008, 130, 10082–10083.
- 9 (a) P. Eisenberger, B. P. Bestvater, E. C. Keske and C. M. Crudden, Angew. Chem., Int. Ed., 2015, 54, 2467– 2471; (b) T. Matsumoto and F. P. Gabbaï, Organometallics, 2009, 28, 4252–4253.
- 10 (a) J. Monot, A. Solovyev, H. Bonin-Dubarle, E. Derat, D. P. Curran, M. Robert, L. Fensterbank, M. Malacria and E. Lacote, *Angew. Chem., Int. Ed.*, 2010, 49, 9166–9169; (b) H. Braunschweig, C. W. Chiu, K. Radacki and T. Kupfer, *Angew. Chem., Int. Ed.*, 2010, 49, 2041–2044.
- 11 L. Kong, Y. Li, R. Ganguly, D. Vidovic and R. Kinjo, *Angew. Chem., Int. Ed.*, 2014, **53**, 9280–9283.
- 12 (a) H. Braunschweig and C. Horl, Chem. Commun., 2014, 50, 10983–10985; (b) P. Bissinger, H. Braunschweig, A. Damme, T. Kupfer and A. Vargas, Angew. Chem., Int. Ed., 2012, 51, 9931–9934; (c) Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie, R. B. King, H. F. Schaefer III, P. v. R. Schleyer and G. H. Robinson, J. Am. Chem. Soc., 2007, 129, 12412–12413.
- 13 Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. v. R. Schleyer and G. H. Robinson, *Science*, 2008, **321**, 1069–1071.
- 14 (a) R. S. Ghadwal, S. O. Reichmann and R. Herbst-Irmer, *Chem. – Eur. J.*, 2015, 21, 4247–4251; (b) R. S. Ghadwal, C. J. Schürmann, F. Engelhardt and C. Steinmetzger, *Eur. J. Inorg. Chem.*, 2014, 2014, 4921–4926.
- 15 (a) N. Kuhn, H. Bohnen, J. Kreutzberg, D. Blaser and R. Boese, *Chem. Commun.*, 1993, 1136–1137; (b) N. Kuhn, H. Bohnen, G. Henkel and J. Kreutzberg, *Z. Naturforsch., B: Chem. Sci.*, 1996, 51, 1267–1278.
- 16 (a) E. Rivard, Dalton Trans., 2014, 43, 8577–8586;
 (b) S. Kronig, P. G. Jones and M. Tamm, Eur. J. Inorg. Chem., 2013, 2013, 2301–2314;
 (c) C. J. Berger, G. He, C. Merten, R. McDonald, M. J. Ferguson and E. Rivard, Inorg. Chem., 2014, 53, 1475–1486;
 (d) Y. Wang, M. Y. Abraham, R. J. Gilliard, Jr., D. R. Sexton, P. Wei and G. H. Robinson, Organometallics, 2013, 32, 6639–6642;
 (e) A. C. Malcolm, K. J. Sabourin, R. McDonald, M. J. Ferguson and E. Rivard, Inorg. Chem., 2012, 51, 12905–12916.
- 17 (a) B. Maji, M. Breugst and H. Mayr, Angew. Chem., Int. Ed., 2011, 50, 6915–6919; (b) B. Maji and H. Mayr, Angew. Chem., Int. Ed., 2012, 51, 10408–10412; (c) B. Maji, M. Horn and H. Mayr, Angew. Chem., Int. Ed., 2012, 51, 6231–6235.
- 18 R. S. Ghadwal, S. O. Reichmann, F. Engelhardt, D. M. Andrada and G. Frenking, *Chem. Commun.*, 2013, 49, 9440–9442.

- 19 A. O. Madsen, H. O. Sorensen, C. Flensburg, R. F. Stewart and S. Larsen, *Acta Crystallogr., Sect. A: Fundam. Crystallogr.*, 2004, **60**, 550–561.
- 20 (a) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, 120, 215–241; (b) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297–3305.
- 21 A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735-746.
- 22 (a) A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, 88, 899–926; (b) A. E. Reed and F. Weinhold, *J. Chem. Phys.*, 1985, 83, 1736–1740.
- 23 (a) R. J. Wehmschulte, A. A. Diaz and M. A. Khan, Organometallics, 2003, 22, 83–92; (b) U. D. Eckensberger, M. Weber, J. Wildt, M. Bolte, H.-W. Lerner and M. Wagner, Organometallics, 2010, 29, 5301–5309; (c) Y. Shoji, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka and K. Tamao, J. Am. Chem. Soc., 2010, 132, 8258–8260.
- 24 K. Hedberg and V. Schomaker, J. Am. Chem. Soc., 1951, 73, 1482–1487.
- 25 H. W. Smith and W. N. Lipscomb, J. Chem. Phys., 1965, 43, 1060–1064.
- 26 V. Jonas, G. Frenking and M. T. Reetz, J. Am. Chem. Soc., 1994, 116, 8741–8753.
- 27 G. Frenking, Angew. Chem., Int. Ed., 2014, 53, 6040-6046.
- 28 N. Holzmann, M. Hermann and G. Frenking, *Chem. Sci.*, 2015, **6**, 4089–4094.
- 29 (a) N. Holzmann, A. Stasch, C. Jones and G. Frenking, *Chem. – Eur. J.*, 2011, 17, 13517–13525; (b) G. Frenking, *Nature*, 2015, 522, 297–298; (c) H. Braunschweig, R. D. Dewhurst, F. Hupp, M. Nutz, K. Radacki, C. W. Tate, A. Vargas and Q. Ye, *Nature*, 2015, 522, 327–330.
- 30 O. Thomas, Organoborane Chemistry, Academic Press Inc. (London) Ltd, New York, 1975.
- 31 S. M. I. Al-Rafia, A. C. Malcolm, S. K. Liew, M. J. Ferguson, R. McDonald and E. Rivard, *Chem. Commun.*, 2011, 47, 6987–6989.
- 32 (a) D. Stalke, *Chem. Soc. Rev.*, 1998, 27, 171–178;
 (b) T. Kottke and D. Stalke, *J. Appl. Crystallogr.*, 1993, 26, 615–619.

- 33 Bruker AXS Inc., Bruker Apex CCD, SAINT v8.30C, Bruker AXS Inst. Inc., Madison, WI, USA, 2013.
- 34 L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, J. Appl. Crystallogr., 2015, 48, 3–10.
- 35 G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2015, 71, 3–8.
- 36 G. M. Sheldrick, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2015, 71, 3–8.
- 37 C. B. Huebschle, G. M. Sheldrick and B. Dittrich, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2011, 67, C592.
- 38 C. Y. Peng, P. Y. Ayala, H. B. Schlegel and M. J. Frisch, J. Comput. Chem., 1996, 17, 49–56.
- 39 J. W. McIver and A. Komornicki, J. Am. Chem. Soc., 1972, 94, 2625–2633.
- 40 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazvev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009.
- 41 J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211–7218.
- 42 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales and F. Weinhold, *GENNBO 5.9 ver*, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2009.

This journal is © The Royal Society of Chemistry 2015