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Treatment of anhydrous FeX, (X = Cl, Br, |) with one equivalent of bis(diphenylphosphino)ethane (dppe) in
refluxing THF afforded analytically pure white (X = Cl), light green (X = Br), and yellow (X = I) [FeXx>(dppe)l,
(X = CL I; Br, II; I, lI). Complexes I-lll are excellent synthons from which to prepare a range of cyclopenta-
dienyl derivatives. Specifically, treatment of I-Ill with alkali metal salts of CsHs (Cp, series 1), CsMes
(Cp*, series 2), CsH4SiMes (Cp', series 3), CsHs(SiMes), (Cp”, series 4), and CsHz(Bu'), (Cp", series 5)
afforded [Fe(Cp")(Cl)(dppe)] 1CI-5CL, [Fe(Cp")(Br)(dppe)] 1Br—5Br, and [Fe(Cp®)(I)(dppe)] 11-5I (Cp’ = Cp,
Cp*, Cp', Cp", or Cp"). Dissolution of 11-5I in acetonitrile, or treatment of 1Cl-5Cl with Me3Sil in aceto-
nitrile (no halide exchange reactions were observed in other solvents) afforded the separated ion pair
complexes [Fe(Cp")(NCMe)(dppe)lll] 1SIP=5SIP. Attempts to reduce 1Cl-5CL, 1Br—5Br, and 1I1-5I with a
variety of reductants (Li-Cs, KCg, Na/Hg) were unsuccessful. Treatment of 1Cl-5Cl with LiAlH4 gave the
hydride derivatives [Fe(Cp")(H)(dppe)] 1H-5H. This report provides a systematic account of reliable
methods of preparing these complexes which may find utility in molecular wire and metal-metal bond
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chemistries. The complexes reported herein have been characterised by X-ray diffraction, NMR, IR,
UV/Vis, and Mossbauer spectroscopies, cyclic voltammetry, density functional theory calculations, and
elemental analyses, which have enabled us to elucidate the electronic structure of the complexes and

www.rsc.org/dalton probe the variation of iron redox properties as a function of varying the cyclopentadienyl or halide ligand.

Introduction

One of the most popular and widely used organometallic tran-
sition metal anions in the literature is [FeCp(CO),]” (Fp)."
The Fp~ anion has been used extensively in nucleophilic dis-
placement reactions and in the preparation of metal-metal
bonds.> Regarding the latter point, although the nucleophili-
city of the Fp anion should favour M-Fe bond formation, there
is a significant possibility of iso-carbonyl bond formation with
early, electropositive and oxophilic metals,® an area which we
have been investigating in recent years.” One approach to
avoid iso-carbonyl bridges is to employ cyclopentadienyl iron
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fragments that are supported by two monodentate or one
bidentate phosphine ligand[s]. This approach has enabled the
isolation of a range of novel linkages and has also been
implemented in rare earth-ruthenium chemistry.?

Recently, we reported four uranium-ruthenium bonds
using the ruthenium analogue of Fp.® As part of that study we
found that the corresponding uranium-iron (Fp) linkages
could not be isolated. We reasoned that substitution of the
carbonyl groups with phosphines might increase the steric
protection and thus stability of uranium-iron linkages which
would necessitate the preparation of the corresponding iron
precursors. Since substitution of the carbonyl groups in situ is
not feasible, it would be necessary to start with a cyclopenta-
dienyl-phosphine ligand set before constructing the uranium-
iron bond.

Two methods of preparing uranium-iron bonds could be
envisaged, either reductive cleavage of a Fe-Fe species, as has
been accomplished with cobalt, or protonolysis of a uranium
alkyl or amide with an iron hydride.* One approach to iron
cyclopentadienyl ligand derivatives would be to prepare the
relevant iron cyclopentadienyl dicarbonyl halide or hydride
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then substitute the carbonyl with phosphines, but it is known
that this approach can be complicated by the formation of
mono-substituted complexes,” or the formation of chelated
derivatives with the retention of one CO ligand and expulsion
of the halide ligand from the primary coordination sphere of
iron.® We therefore decided to prepare phosphine chelated
iron(un) halides, introduce the cyclopentadienyl ligand, then
either reduce or substitute the halide with hydride. This meth-
odology has been shown to work in a few cases,” but the data
in the literature are fragmented and sometimes incomplete. In
particular, solid state structures are often missing but would
provide valuable benchmarking for previously reported spectro-
scopic and computational studies. Given the importance of
cyclopentadienyl iron bis(diphenylphosphino)ethane (dppe)
fragments in assembling molecular wires® as well as represent-
ing synthons to iron-metal bonds it would be desirable to
draw together a cohesive and comprehensive description of a
reliable general methodology for the preparation of a range of
well characterised and understood functionalised iron cyclo-
pentadienyl dppe derivatives where the steric and electronic
properties can be systematically varied.

Here, we report the synthesis of three iron(u) halide dppe
complexes, and their utility in preparing a range of cyclopenta-
dienyl derivatives. We describe attempts to reduce these cyclo-
pentadienyl dppe halide complexes to the corresponding
diiron derivatives, and also the synthesis of hydride congeners.
In all, we describe the synthesis of twenty five iron cyclopenta-
dienyl dppe complexes as either halide, separated ion pair, or
hydride derivatives which has enabled us, through a structural
and spectroscopic benchmarking study, to provide reliable syn-
thetic methods and a detailed understanding of the electronic
structure of these compounds. This report thus constitutes a
cohesive account of compounds which could find extensive
utility in molecular wire and metal-metal bond chemistries.
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Results and discussion
Synthesis of iron(u) halide dppe adducts

We began by preparing dppe adducts of iron(un) halides
from the reaction between anhydrous FeX, (X = Cl, Br, I) and
one equivalent of dppe in refluxing THF, Scheme 1. Following
filtration, removal of solvent, washing with toluene, and
drying, analytically pure white (X = Cl), light green (X = Br),
and yellow (X = I) solids were obtained in ~95% yield in each
case. It is notable that although these simple coordination
complexes [FeX,(dppe)], (X = Cl, I; Br, II; I, III) are often men-
tioned in the literature,” detailed descriptions of their syn-
thesis and characterisation are scant and the structure of II is
unknown. In all three cases we were able to determine the
solid state structures by X-ray crystallography (Fig. 1). The solid
state structures of I and III were determined from crystals
grown from THF, for I, an infinite polymer is observed in the
solid state with tetrahedral iron centres and bridging dppe
ligands whereas in III a dimer is formed containing two tetra-
hedral iron centres which are each bridged by two dppe ligands.
In contrast, the bromide compound II could be isolated as
the polymeric (II) or dimeric (IIa) forms from THF/hexane
or toluene solutions, respectively. Langer and co-workers have
recently independently found that I co-crystallises with
[FeCl,(dppe),] from a chloroform/acetone mixture in a poly-
meric chain similar to our findings, and also solely if the reac-
tion is completed in the correct stoichiometry, with similar
bond lengths and angles to those found in I.” Pohl et al. eluci-
dated the solid state structure of [Fe,I,(dppe),] from toluene
solution and also found it to be dimeric in nature, with
similar bond lengths and angles to those found in III which
crystallised from THF solvent,” suggesting that the isolation of
polymeric or dimeric forms of I-III is due to the halide and
not solvent effects.

b
FeX, + dppe — 2 s [{FeXo(dppe)}s] — 2 [Fe(CpH(X)(dppe)]

X=CLI X=CL Cp,1C1 X=Br, Cp, 1Br
=Br, Il =(Cl, Cp*,2C1 = Br, Cp*, 2Br
=111 ~ClL Cp,3Cl  =Br, Cp, 3Br

=Cl, Cp", 4C1 = Br, Cp", 4Br
=Cl, Cp", 5C1 =Br, Cp", 5Br

X=1,Cp, 11
=1, Cp*, 21
=1, Cp, 31
=1, Cp", 41
=1, Cp", 51

Scheme 1 Synthesis of I, I, Ill, 1C1-5Cl, 1Br—5Br, 11-5I. Reagents and conditions: (a) THF, 4; (b) LiCp/NaCp/KCp', toluene, —78 °C, —LiCl/KCI/Nal/

KCU/KBr/KI.
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Fig. 1 Solid state asymmetric unit structures of (a) | (polymer), (b) Il (polymer), (c) lla (dimer), (d) Il (dimer) with ellipsoids set at 40% probability.
Hydrogen atoms and minor disorder components are omitted for clarity. Selected bond lengths (A) and angles (°): (a) Fe1-Cl1 2.2416(16), Fe1-CI2
2.2403(15), Fel-P1 2.4422(16), Fel—-P2 2.4849(16), Cl1-Fel-Cl2 127.14(6), Cl1-Fel-P1 104.65(6), Cl1-Fel-P2 100.74(6), Cl2-Fel-P1 100.80(6),
Cl2—-Fel-P2 111.50(6), P1-Fel-P2 111.80(5); (b) Fel—-Brl 2.368(8), Fel-Br2 2.370(9), Fel-P1 2.468(12), Fel-P2 2.454(13), Br1-Fel-Br2 121.22(3),
Brl-Fel-P1 100.24(4), Brl—Fel-P2 114.25(4), Br2—Fel-P1 108.10(4), Br2—Fel-P2 105.65(4), P1-Fel-P2 107.54(4); (c) Fel-Brl 2.375(2), Fel-Br2
2.372(2), Fel-P1 2.429(4), Fel-P2 2.464(4), Br1-Fel-Br2 119.38(9), Brl-Fel-P1 108.77(12), Br1-Fel-P2 107.56(12), Br2—Fel-P1 108.65(13), Br2—
Fel-P2 111.71(12), P1-Fel-P2 98.77(12); (d) Fel-11 2.5856(9), Fel-12 2.5659(9), Fel—P1 2.4748(18), Fel-P2 2.4963(18), I1-Fel-12 116.98(3), I1-Fel—
P1106.75(4), I1-Fel-P2 110.21(4), 12—-Fel1-P1 113.32(5), 12—-Fel-P2 109.30(4), P1-Fel-P2 99.81(5).

Synthesis and characterisation of halide and separated ion
pair complexes

With the synthesis of I-III in-hand we first targeted cyclopenta-
dienyl derivatives using CsHs (Cp, series 1), CsMes (Cp*, series
2), CsH,SiMe; (Cp/, series 3), CsH;(SiMes), (Cp”, series 4), and
CsH;(Bu), (Cp", series 5) since this selection provides a wide
variation of steric and electronic (c-donor, n-acceptor) pro-
perties. Thus, treatment of I-III with one equivalent of the rele-
vant lithium/sodium/potassium (Cp) or potassium (Cp*'’"/®)
cyclopentadienyl reagent in toluene at —78 °C afforded, after
filtration and removal of toluene, generally black solids,
Scheme 1. Recrystallisation from toluene or dichloromethane
layered with hexane (1Cl) afforded the target complexes
[Fe(Cp)(Cl)(dppe)] (1C1), [Fe(Cp*)(CI)(dppe)] (2C1), [Fe(Cp')(Cl)-
(dppe)] (3C1), [Fe(Cp")(Cl)(dppe)] (4C1), [Fe(Cp™)(Cl)(dppe)]
(5C1), [Fe(Cp)(Br)(dppe)] (1Br), [Fe(Cp*)(Br)(dppe)] (2Br), [Fe-
(Cp')(Br)(dppe)] (3BY), [Fe(Cp")(Br)(dppe)] (4Br), [Fe(Cp™)(Br)-

This journal is © The Royal Society of Chemistry 2015

(dppe)] (5Br), [Fe(Cp)(1)(dppe)] (11), [Fe(Cp~)(1)(dppe)] (21),
[Fe(Cp')(1)(dppe)] (31), [Fe(Cp")(1)(dppe)] (41), and [Fe(Cpt)(1)
(dppe)] (51), in crystalline yields of ca. 50-70%. We note that
apart from some minor decomposition, the bulk products are
fairly pure (ca. 90%) and that the crystalline yields principally
reflect the solubility of the cyclopentadienyl derivatives.
During this work we noted that the temperature of the initial
salt elimination reaction is important since the formation of
ferrocenes and free dppe from ligand scrambling is a compet-
ing side reaction which becomes a major by-product at room
temperature. However, ferrocenes formation is suppressed and
indeed essentially eliminated if reactions are initially conducted
at —78 °C. Compound 1I can also be prepared from [Fe-
(CO),(Cp)], with treatment with iodine followed by addition of
dppe in refluxing toluene, however in lower yields of 48% com-
pared to the above method in which yields of 11 reach 67%.""
Halide exchange in iron cyclopentadienyl phosphine deriva-
tives has previously been effected by mixing complexes such as

Dalton Trans., 2015, 44, 14159-14177 | 14161
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2Cl with, for example, KI,'> whereas the approach outlined
above gives direct access to chloride, bromide, and iodide
derivatives. In an attempt to ascertain whether any other
methods have applicability here, we screened the reactivity of
the chlorides with trimethylsilyl iodide. Interestingly, although
1Cl-5Cl are inert with respect to halide exchange in THF,
toluene, and dichloromethane, in acetonitrile spontaneous
displacement of the chloride ligand by acetonitrile and facile
halide exchange occurs to afford the separated ion pair (SIP)
complexes [Fe(Cp)(NCMe)(dppe)][I] (1SIP), [Fe(Cp*)(NCMe)-
(dppe)|1] (2S1P), [Fe(Cp)(NCMe)(dppe)][1] (3SIP), [Fe(Cp")-
(NCMe)(dppe)][1] (4SIP), and [Fe(Cp™)(NCMe)(dppe)][1] (5SIP)
as red powders following work-up (Scheme 2). Recrystallisation
of these powders from acetonitrile afforded 1SIP-5SIP in crys-
talline yields of typically 65-75%, although 3SIP is a notable
outlier (36% crystalline yield). Since SIPs form readily we did
not investigate this avenue further with the bromides, but it is
germane to note that complexes 1SIP-5SIP represent valuable
precursors to a range of separated ion pair species such as
known PFg-derivatives.

We investigated the reduction of 1Cl-5Cl, 1Br-5Br, and
1I-5I with a variety of reductants (Li-Cs, KCg, Na/Hg), but in all
cases either no reaction occurred, or on extended stirring
decomposition was observed. This might be attributed to the
iron centres being electron rich, and more so than in Fp
because of less effective back-bonding to dppe compared to
two CO ligands. This would also be consistent with the relative
ease of oxidising these complexes (see below). We therefore
focussed on preparing the hydrides.

Synthesis of hydride complexes

With the aforementioned halide complexes in hand we exam-
ined their conversion to the corresponding hydrides. Accord-
ingly, treatment of the chloride series 1Cl-5Cl1 with 5
equivalents of lithium aluminium hydride in THF afforded,
after removal of solvent, extraction into hexane, filtration and
removal of solvent, the hydride complexes [Fe(Cp)(H)(dppe)]
(1H), [Fe(Cp*)(H)(dppe)] (2H), [Fe(Cp')(H)(dppe)] (3H), [Fe(Cp")-
(H)(dppe)] (4H), and [Fe(Cp")(H)(dppe)] (5H) as orange solids
that are approximately 90% pure, Scheme 2. Recrystallisation
of 1H-5H from hexane afforded orange crystalline materials in
yields typically ranging from 41 to 73%, but, as was the case
for the SIP complex 3SIP, the crystalline yield of the Cp’ and
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Cp” derivatives 3H and 4H are notably low (35 and 41%,
respectively). It should be noted that 3H and 4H are far less
stable than the other three hydride derivatives and decompose
in solution over a few hours, which is, in part, reflected in
their crystalline yields. Complexes 1H and 2H have been pre-
viously reported, however, in the preparation of 1H an excess
of NaBH, was reacted with the chloroform adduct of 1Cl
giving only a 50% yield"? and 2H was reported to have been
synthesised by the same method outlined above or alterna-
tively by reacting I with Cp*H in a colloidal dispersion of
potassium metal in THF; a reaction which reportedly proceeds
via the formation of a “Fe(dppe)” intermediate followed by
oxidative addition of Cp*H."*

Solid state structures

The solid-state structures of 1Cl, 3Cl-5Cl, 1Br, 3Br-5Br, 2I-51
were determined by single-crystal X-ray diffraction studies and
are illustrated in Fig. 2-4, respectively, and key metrical data
are presented in Table 1. The structures of 2CI** and 1I'® were
determined previously and the experimental data obtained of
crystals of 2Br were of insufficient quality to determine mean-
ingful metrical parameters. Each complex displays a piano-
stool geometry, and in comparison to the ideal bond angle
of a classical tetrahedral geometry of 109.5°, the X1-Fe1-P1,
X1-Fel-P2, P1-Fel-P2 angles span the ranges 86.03(4)-
93.12(2), 84.18(4)-92.12(10) and 80.78(5)-86.22(3)° in 1CI-5Cl,
1Br-5Br and 1I-5I respectively, due in part to the restrictive
bite angle of the dppe ligand but mainly due to the large size
of the various substituted Cp ligands forcing the other ligands
closer together. This results in large Ct-Fel-X1, Ct-Fel-P1,
Ct-Fe1-P2 angles ranging 118.97(9)-123.9(9), 126.37(7)-
132.6(11) and 124.8(2)-132.98(13)° respectively. The Fel-Ct
bond lengths span the narrow range of 1.699(3)-1.743(12) A in
all of the complexes, which compares well to the Fe—Cpcentroid
average distance of 1.740 A in complexes containing both dppe
and Cp ligands.'® The Fe-P bond distances span the narrow
range of 2.184(2)-2.2580(9) A, which compares to Fe-P bond
distances in complexes containing both Cp and dppe ligands
in the range 2.1168(19)-2.3105(14) A.'® The Fe-Cl, Fe-Br,
Fe-1 distances of 2.294(2)-2.346(1), 2.2464(6)-2.481(3) and
2.643(1)-2.661(2) A respectively increase as expected according
to increasing ion size in the order I > Br > CIL. Although a range
of different substituted Cp ligands have been studied and

a) b)
[Fe(Cph)(NCMe)(dppe)][1] <«—— [Fe(CpT)(Cl)(dppe)] — [Fe(CpT)(H)(dppe)]

Cp' = Cp, 1SIP
= Cp*, 2SIP
=Cp, 3SIP
=Cp", 4SIP
= Cp", 5SIP

Cp'=Cp, 1H
=Cp*, 2H
=Cp', 3H
=Cp", 4H
=Cp", SH

Scheme 2 Synthesis of 1SIP-5SIP, 1H-5H. Reagents and conditions: (a) TMSI, MeCN, —TMSCL; (b) excess LiAlH4, THF, —LiCL.

14162 | Dalton Trans., 2015, 44, 14159-14177
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Fig. 2 Solid state structures of (a) 1Cl, (b) 3Cl, (c) 4Cl, (d) 5Cl with ellipsoids set at 40% probability. Hydrogen atoms are omitted for clarity.

Fig. 3 Solid state structures of (a) 1Br, (b) 3Br, (c) 4Br, (d) 5Br with ellipsoids set at 40% probability. Hydrogen atoms are omitted for clarity.

characterised the difference in their steric properties appears
to have no major effect on the bond angles and lengths of the
other ligands.

The solid-state structures of 1SIP-5SIP were determined by
single-crystal X-ray diffraction studies and are illustrated in
Fig. 5 with key bond distances listed in Table 1. The geo-
metries of these complexes are similar to those featured in the
halide complexes except that an acetonitrile, not a halide,
ligand is coordinated to the iron centres. The Fel-Ct bond

This journal is © The Royal Society of Chemistry 2015

lengths range 1.709(4)-1.732(4) A and are comparable to those
found in 1I-5I (1.707(3)-1.743(12) A) and the Fe-P bond
lengths range from 2.1986(12)-2.247(2) A and are comparable
to those found in 1I-5I (2.188(1)-2.2580(9) A. The Fe-N bond
lengths range from 1.892(7)-1.908(4) A and are comparable to
those found in the literature with complexes containing dppe
and Cp ligands (1.881(5)-1.909(8) A).*® The Ct-Fe-N and
Ct-Fe-P angles range 120.8(15)-123.4(10) and 124.27(13)-
132.27(12)° respectively, and are comparable with the Ct-Fe-I

Dalton Trans., 2015, 44, 14159-14177 | 14163
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Fig. 4 Solid state structures of (a) 2I, (b) 3l, (c) 41, (d) 51 with ellipsoids set at 40% probability. Hydrogen atoms are omitted for clarity.

Table 1 Selected bond lengths (A) for the new crystal structures 1Cl,
3Cl-5Cl, 1Br, 3Br-5Br, 21-5I, 1SIP-5SIP and 1H-5H?

Compound Fe-Ct Fe-X Fel-P1 Fel-P2
1cl 1.699(3) 2.3317(9) 2.1963(10) 2.1846(10)
3Cl 1.716(5) 2.3298(16) 2.1980(16) 2.1881(15)
4acl 1.704(7) 2.294(2) 2.184(2) 2.194(2)
5Cl 1.739(4) 2.3423(10) 2.2107(11) 2.2358(10)
1Br 1.699(5) 2.4647(6) 2.1909(10) 2.1958(10)
3Br 1.709(18) 2.481(3) 2.1909(5) 2.2059(5)
4Br 1.720(5) 2.464(8) 2.201(13) 2.210(13)
5Br 1.734(4) 2.476(8) 2.2273(13) 2.2578(13)
21 1.743(12) 2.661(2) 2.221(3) 2.208(3)
31 1.712(2) 2.6478(4) 2.1874(7) 2.1956(7)
a1 1.728(2) 2.6464(4) 2.2018(7) 2.2116(7)
51 1.734(3) 2.6603(5) 2.2266(10) 2.2580(9)
1SIP 1.713(3) 1.900(2) 2.2188(7) 2.2194(7)
2SIP 1.732(4) 1.896(3) 2.2034(13) 2.2214(11)
3SIP 1.709(4) 1.908(4) 2.1986(12) 2.1940(12)
4SIP 1.730(2) 1.9063(19) 2.2392(7) 2.2429(7)
5SIP 1.727(7) 1.892(7) 2.240(2) 2.247(2)
1H 1.702(4) 1.60(4) 2.1455(1) 2.1292(10)
2H 1.712(7) 1.56(7) 2.1255(18) 2.1448(19)
3H 1.698(3) 1.50(4) 2.1404(9) 2.1196(9)
4H 1.701(5) 1.39(2) 2.1333(13) 2.1302(13)
5H 1.707(8) 1.52(14) 2.142(2) 2.153(2)

“Ct = centroid of the cyclopentadienyl ring; X = Cl, Br, I, acetonitrile N
or H.

and Ct-Fe-P bond angles of 118.97(7)-123.78(7), 126.37(7)-
133.93(4)° respectively found in 1I-5I. The N-Fe-P and P1-Fe-
P2 bond angles of 88.79(10)-93.24(12) and 85.48(4)-86.47(4)°
respectively lie within the range shown for the I-Fe-P and P1-
Fe-P2 angles in 1I-5I (88.82(2)-93.12(2), 80.85(3)-86.22(3)°
respectively).

14164 | Dalton Trans., 2015, 44, 1415914177

Although complexes 1H and 2H were synthesised previously
their solid-state structures were not reported and hence the
solid-state structures of 1H-5H were also determined by
single-crystal X-ray diffraction studies and are illustrated in
Fig. 6 with pertinent bond lengths compiled in Table 1. In
each instance the hydride atom was located in the difference
map and was allowed to refine freely. In each complex the Fe"
centre adopts a classical piano stool geometry. The Fe-H bond
distances in 1H-5H span the range 1.39(2)-1.60(4) A. There are
only two other examples of terminal iron hydride bonds
with bidentate phosphine and cyclopentadienyl ligands with
which to compare these values; [Fe(Cp*)(H),(dppe)][BF4]
has Fe-Hpyarige distances of 1.48 and 1.50 A" and [Fe(Cp*)-
(H),(dippe)|[BPh,], where dippe = 1,2-bis(diisopropylphos-
phino)ethane, has Fe-Hpyqrige distances of 1.41(5) and 1.35(6)
A.*® The Fe-H bond distance in 4H of 1.39(2) A, is significantly
shorter than those in the rest of the series; however, it is
not outside the limited range reported for Fe-Hyyqrige bonds
in complexes containing the dppe ligand (1.28(8)-
1.65(9) A).171973°

Electrochemical investigations

Cyclic voltammetric studies were performed on 1CI-5Cl, 1Br-
5Br, 1I-5I and 1H-5H as THF solutions containing 0.5 M of
electrolyte, [NBu",][BF,], in the potential range from —2.55 to
1.2 Vvs. Fc'/Fe. The results of these studies are summarised in
Table 2 and plotted in Fig. 7. THF was chosen as the solvent as
it provides good solubility for all of the complexes and
remains relatively inert with respect to nucleophilic attack on
electrogenerated cations.

The potentials obtained from cyclic voltammetric studies
are consistent with results of square wave voltammetry (+0.01V,

This journal is © The Royal Society of Chemistry 2015
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Fig. 5 Solid state structures of (a) 1SIP, (b) 2SIP, (c) 3SIP, (d) 4SIP, (e) 5SIP with ellipsoids set at 40% probability. Hydrogen atoms are omitted for

clarity.

except 4H, see below) for the process designated OX and in
all cases the potentials are quoted against an appropriate
internal standard (see Table S1}). For OX, analysis of the
current response in a range of scan rates between 0.02 and
0.3 V s™" suggest that this process is, in general, electro-
chemically reversible under these conditions, 4H being an
notable exception. At slow scan rates (<0.1 V s™'), the cyclic
voltammogram of 4H has no reduction wave associated with
this oxidation suggesting that the electrogenerated cation is
unstable. This was confirmed at faster scan rates (1 V s™%),
corresponding to shorter timescales, when OX appeared as a
redox couple. Data for [Fe(Cp*)(X)(dppe)] (X = Cl, Br, I, and H)
have been reported previously wherein this process was
assigned as a one electron oxidation to give the corresponding

This journal is © The Royal Society of Chemistry 2015

cationic species, [Fe(Cp*)(X)(dppe)].*>® Our results are consistent
with these, albeit with a small difference in reported poten-
tials, therefore we assign OX for the series of compounds 1Cl-
5Cl, 1Br-5Br, 1I-5I and 1H-5H as a one-electron oxidation of
Fe(u) to Fe(ur) corresponding to a [Fe(Cp")(X)(dppe)]"”® couple.
The negative values of these potentials, particularly noticeable
when referenced against the Fe(m)/Fe(i1) couple of ferrocene,
are evidence of an electron rich Fe centre, where the loss of an
electron is facile. The trend in OX for [Fe(Cp")(X)(dppe)] (X =
H, Cl, Br and I) always follows H < Cl < Br < I, and it is worthy
of note that the difference between OX for [Fe(Cp")(Cl)(dppe)]”°
and [Fe(Cp")(Br)(dppe)]” and between [Fe(Cp')(Br)(dppe)]”°
and [Fe(Cp")(I)(dppe)]™ is +0.04 V and that this difference is
independent of the substitutents on the cyclopentadienyl ring.

Dalton Trans., 2015, 44, 14159-14177 | 14165
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Fig. 6 Solid state structures of (a) 1H, (b) 2H, (c) 3H, (d) 4H, (e) 5H with ellipsoids set at 40% probability. All hydrogen atoms except those for the

hydride atoms are omitted for clarity.

This trend does not extend to the hydrides, where differences
between potentials for [Fe(Cp')(H)(dppe)]”® and [Fe(Cp')(Cl)-
(dppe)]”° vary between +0.05 (Cp’) and +0.12 (Cp*).

The trend in OX for each halide series appears to be inver-
sely correlated with the electronegativity of the halide thus
making the chlorides easiest to oxidise and indicating an
increase in electron density on the iron centre relative to the
corresponding bromides and iodides. This has been rational-
ised by the involvement of n-based orbitals in the bonding of
the halide to the iron centre (see DFT calculations below) thus
allowing donation of electron density from the halide to the
metal centre. The hydrides should have no contribution from
n-bonding so the relatively negative values for OX in [Fe(Cp')-
(H)(dppe)] compounds reflect the purely c-bonded nature of
the hydrides. The trend in OX for [Fe(Cp')(Cl)(dppe)], [Fe(Cp')-

(Br)(dppe)] and [Fe(Cp")(1)(dppe)] (Cp' = Cp, Cp*, Cp', Cp’,

14166 | Dalton Trans., 2015, 44, 14159-14177

Cp") follow the series Cp* < Cp™ < Cp’ < Cp” < Cp and com-
pounds containing Cp* are —0.05 V easier to oxidise than com-
pounds containing Cp", Cp" compounds are —0.09 V easier to
oxidise than compounds containing Cp’, Cp' compounds are
—0.01 V easier to oxidise than compounds containing Cp”, and
Cp” compounds are —0.02 V easier to oxidise than compounds
containing Cp. Hence compounds containing Cp*, with five
electron donating methyl groups are easiest to oxidise whilst
compounds containing Cp are most difficult. The latter result
is unexpected since TMS is electron withdrawing®’ relative to
hydrogen (in Cp) and would be expected to reduce the electron
density at iron, thus making oxidation more difficult (hence
occurring at a higher potential). However, the difference in OX
between [Fe(Cp')(X)(dppe)] and [Fe(Cp”)(X)(dppe)] (X = Cl, Br
and I) is only 0.01 V for the addition of a second TMS group
therefore the inductive effect of these substitutents may not be

This journal is © The Royal Society of Chemistry 2015
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Table 2 Electrochemical and highest occupied molecular orbital ener-
gies for 1Cl-5Cl, 1Br-5Br, 11-5I, 1H-5H and 1SIP-5SIP”

Evps HOMO Eups HOMO
Compound \%) (eV) Compound (\%] (eV)
1C1 —-0.42 -3.732 41 —-0.36 —-3.868
2Cl1 -0.59 -3.537 51 —0.46 -3.741
3Cl —-0.45 —-3.694 1H —-0.50 —-3.838
4Cl1 —-0.44 -3.747 2H -0.71 -3.616
5Cl —-0.54 —-3.545 3H —-0.50 -3.789
1Br —-0.38 -3.788 4H —-0.53 -3.706
2Br -0.55 -3.561 5H —0.62 —-3.638
3Br -0.41 -3.741 1SIP 0.26 —-7.218
4Br —-0.40 -3.787 2SIP 0.06 —6.958
5Br -0.50 -3.665 3SIP 0.25 —-7.125
1I —-0.34 -3.836 4SIP 0.26 —-7.073
21 -0.51 -3.625 5SIP 0.20 —-6.997
31 -0.37 -3.781

“Solutions were ca. 0.1 mM of the complex in THF containing 0.5 M
[NBu",][BF,] as the electrolyte for 1Cl-5Cl, 1Br-5Br, 11-5I and 1H-5H
and ca. 0.1 mM of 1I-5I in MeCN containing 0.1 M [NBu",][BF,] as the
electrolyte for 1SIP-5SIP. The working electrode was glassy carbon
and potentials are reported against the Fc'/Fc redox couple at
ambient temperature. The HOMO energies are derived from the DFT
analyses (see below) and are in the gas-phase with no solvent-shell
correction.

Normalised Current (a. u.)

T T
0.4 -0.2 0.0 0.2 0.4

Potential / V (vs. Fc"/ Fc)

Fig. 7 Cyclic voltammograms showing OX for (a) [Fe(Cp')(Cl)(dppe)],
(b) [Fe(Cp")(Br)(dppe)l, (c) [Fe(Cp"))(dppe)]l and (d) [Fe(Cp')(H)(dppe)]
(Cp' = Cp (black), Cp* (violet), Cp’ (blue), Cp” (green), Cp™ (red)). In THF
containing ["Bu4N][BF4] (0.5 M) as supporting electrolyte, at 0.1 V st
(except 4H, at 1 V s™). Currents are normalised to I5 for clarity. Typical
currents obtained from CV experiments for [Fe(Cp')(X)(dppe)l com-
pounds are shown in Fig. S2} for 1Cl, as are designations of OX, OX/,
OX" and RED for 1Cl-5Cl, 1Br—5Br, 11-5I and 1H-5H used in Table S1.f

transferred effectively to the redox centre, which is reflected by
only minor changes in the energies of the HOMO orbitals of
the Cp’ and Cp” derivatives of 1Cl, 1Br, and 1I.

The electrochemistry of the separated ion pairs, [Fe(Cp')-
(NCMe)(dppe)][1] (Cp" = Cp, Cp*, Cp’, Cp", Cp") was studied by

This journal is © The Royal Society of Chemistry 2015
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cyclic and square wave voltammetries and the results of these
investigations are presented in Table 2 and Fig. S1.} The separ-
ated ion pairs were generated in situ by dissolving the corres-
ponding [Fe(Cp")(T)(dppe)] (Cp" = Cp, Cp*, Cp, Cp”, Cp“)
compound in MeCN containing 0.1 M [NBu",][BF,] as the sup-
porting electrolyte. Analysis of these solutions showed an
absence of redox chemistry associated with [Fe(Cp')(I)(dppe)]
indicating that the equilibrium exclusively favours the for-
mation of the separated ion pair under these conditions. We
confirmed the electrochemistry obtained by this method was
that associated with a separated ion pair in MeCN solution by
dissolving crystals of 2SIP in MeCN containing 0.1 M [NBu",]-
[BF,] and repeating the electrochemical experiment; the
results of this experiment are essentially identical to those
obtained starting from [Fe(Cp*)(I)(dppe)] (Fig. S1t). The displa-
cement of iodide from coordination at the metal centre into
the outer sphere significantly complicates the electrochemistry
of these compounds since both iodide and [Fe(Cp")(NCMe)-
(dppe)]” exhibit oxidation chemistry in the range of potentials
from ca. 0 to +0.5 V. Fig. S1f shows the cyclic voltammetry of
the separated ion pairs and [NBu",][1]. The electrochemistry of
iodide gives two oxidation processes (—0.02 and +0.31 V) and a
broad reduction, centred around ca. —0.6 V and these may rep-
resent electrochemical processes resulting from components
of an [I"]/[L}/[157] equilibrium.*® The electrochemistry of [Fe-
(Cp")(NCMe)(dppe)]’ (Cp' = Cp, Cp*, Cp’, Cp”, Cp") appears as
a redox couple in the range of potentials between +0.06 V
(Cp*) and +0.26 V (Cp and Cp”). These potentials are consist-
ent with results of square wave voltammetry (+0.01 V) for the
process designated OX (Table S17). The nature of the electron
transfer process in these compounds is difficult to determine
given the presence of OX’, a process we assign to iodide oxi-
dation, however it is noted that the separation between Ej and
ES for OX in [Fe(Cp')(NCMe)(dppe)]" (Cp' = Cp, Cp*, Cp’, Cp”,
Cp") compounds (0.09-0.10 V at 0.1 V s™*) is greater than that
for the decamethylferrocene couple (0.07 V) used as the
internal standard and this suggest that the process is not
simply diffusion controlled. For 2SIP, the electron donating
effect of the five methyl groups shift OX to a more negative
potential than others in the series and result in OX over-
lapping with OX'. For the other members of the series OX over-
laps with the second oxidation process of the iodide anion.
Redox potentials for the separated ion pair complexes are con-
siderably more positive (ca. 0.5 V) than those of their [Fe(Cp')-
(D(dppe)] precursors since oxidation involves the loss of an
electron from an already cationic species ie. the [Fe(Cp')-
(MeCN)(dppe)]**”* redox couple however these potentials
are significantly lower than those obtained previously for the
16-electron cationic complex [Fe(Cp*)(dppe)][PFq]*° (0.64 V vs.
Fc'/Fc in THF) ¢f: 0.06 V for [Fe(Cp*)(NCMe)(dppe)] in MeCN.

Mossbauer studies

The Mossbauer parameters at 80 K for all of the compounds
are collected in Table 3. The isomer shift (I.S.) and quadruple
splitting (Q.S.) values for all compounds are fully
consistent with derivatives of iron(u)-cyclopentadienyl in a
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Table 3 Mdssbauer data for compounds 1Cl-5Cl, 1Br-5Br, 1I-5I,
1SIP-5SIP and 1H-5H at 80 K?

Compound LS. (mms™") Q.S. (mms™) H.W.H.M. (mms™")
1Cl 0.44 1.92 0.13
2C1 0.48 2.04 0.15
3Cl 0.46 1.88 0.13
4Cl 0.48 1.73 0.13
5Cl 0.50 2.08 0.15
1Br 0.44 1.94 0.13
2Br 0.50 2.10 0.14
3Br 0.47 1.84 0.12
4Br 0.48 1.70 0.13
5Br 0.53 2.00 0.14
11 0.43 1.89 0.12
21 0.52 2.09 0.13
31 0.45 1.85 0.13
41 0.49 1.69 0.12
51 0.53 1.95 0.13
1SIP 0.39 2.01 0.14
2SIP 0.42 2.00 0.13
3SIP 0.39 1.91 0.14
4SIP 0.44 1.86 0.14
5SIP 0.45 1.97 0.13
1H 0.26 1.91 0.13
2H 0.25 1.92 0.13
3H 0.26 1.70 0.14
4H 0.28 1.71 0.16
5H 0.27 1.96 0.15

“1.S. = isomer shift; Q.S. = quadrupole splitting; H.W.H.M = half-width
at half-maxima with errors <+0.01 mms™".

piano-stool geometry."*'**® As expected the LS. decreases

and the Q.S. is invariant on raising the temperature from 80 to
298 K.*"**> On changing halide from chloride to bromide to
iodide and on varying substituents on the cyclopentadienyl
ligand there are only slight changes in L.S. and Q.S. When
halide is replaced by acetonitrile to form a separated ion
pair there is a slight decrease in I.S. but a much larger
decrease is observed when halide is replaced by hydride; this
can be attributed to the higher o-donor ability of the hydride
ligand increasing the relative electron density at the iron
centre.

UV-Vis spectroscopic studies

The UV-vis spectra of all the complexes were recorded in THF
solutions at two different concentrations (1.25 mM and
0.0125 mM) to enable observation of all the relevant tran-
sitions without interference from solvent overtones. Theore-
tical UV-vis spectra have also been plotted from time
dependant DFT (TD-DFT) calculations. The representative
experimental and calculated UV-vis spectra of 2Cl are illus-
trated in Fig. 8. At dilute concentration an intense band is
observed at 40816 cm™' (¢ = 20300 M™' ecm™') in the UV
region, and at higher concentrations relatively weak bands can
be observed in the visible region at 16 502 (¢ = 221 M™' cm™)
and 18587 cm™" (¢ = 352 M™' em™'). By comparison of these
experimental data with the combined total of the calculated
data it can be seen that they are in good agreement, and that
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Fig. 8 (a) UV-vis spectra of 2Cl at 1.25 mM and 0.0125 mM (insert) in

THF solution. (b) Predicted UV-vis spectrum of 2Cl showing the individ-
ual electronic transitions and the combined total in the gas phase.

the calculations are a good approximation of the experimental
spectra. With this in hand it is then possible to assign these
absorptions from the calculated spectra, and calculations
suggest that the band at 40 816 cm™", is a result of n-x* tran-
sitions in the aromatic carbon systems; and the bands in the
visible region can be predominantly ascribed to metal-ligand
charge transfer (MLCT) from the Fe 3d orbitals to the phenyl
rings and the Cp* ligand.

The UV-vis spectra for the bromide and iodide series of
complexes present similar observations as found in the spectra
of the chloride series where variation of the Cp ligands has an
effect on the absorptions observed in the visible region (see
ESIf for further spectra). However, there is no obvious trend in
the electronic absorptions observed upon change in halide
across the series, therefore we can conclude that the Fe to Cp
MLCT bands are the dominant features in the visible region
and the halide has very little effect on the absorptions,
Table 4. Although one notable feature is the value of the
extinction coefficient for the n-n* transitions in the bromide
complexes (1Br-5Br) are on average larger than their chloride
and iodide counterparts. For example the n—n* transition in
4Br at 41152 cm ™' has a molar absorptivity of 46300 M~

This journal is © The Royal Society of Chemistry 2015
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Table 4 Experimental (in THF solution) and calculated (in gas phase) UV-vis absorptions and extinction coefficients for 1Cl-5Cl, 1Br-5Br, 11-5I,

1SIP-5SIP and 1H-5H?

Compound 1Cl1 2Cl1 3Cl 4Cl 5Cl
Experimental/ecm™" (¢/M ™" cm™) 17 007 (247) 16 502 (221) 16978 (376) 15500 (191) 15000 (113)
19 880 (307) 18587 (352) 19417 (463) 18903 (339) 18148 (183)
40323 (21 000) 40 816 (20 300) 41152 (15 000) 39682 (13 200) 39682 (21 900)
Theoretical/cm™ 16200 (478) 15900 (1340) 16 400 (1170) 16 600 (1460) 15 400 (412)
18 400 (1150) 17 600 (1650) 19100 (1310) 18 400 (1340) 18 500 (1580)
37100 (9590) 39200 (22 600) 35300 (11 500) 35600 (11 500) 35500 (11 300)
Compound 1Br 2Br 3Br 4Br 5Br
Experimental/cm™ (¢/M™* cm™) 16155 (200) 15456 (156) 15 898 (389) 15 898 (334) 15456 (271)
19960 (391) 18587 (283) 19417 (617) 18939 (621) 18 051 (425)
40000 (21 900) 41152 (46 300) 41152 (30200)
Theoretical/cm™* 15300 (577) 16200 (921) 16 600 (1310) 15 400 (1260)
18600 (1030) 18 400 (1320) 19200 (1390) 18900 (1450) 18200 (1810)
36900 (8390) 34800 (11 100) 34800 (11 100) 34500 (9930) 34700 (10 300)
Compound 11 21 31 41 51
Experimental/cm™" (¢/M~" cm™") 16 000 (134) 15106 (264) 15 848 (199) 15000 (172) 14 500 (202)
20120 (238) 18519 (500) 19569 (421) 19 048 (445) 18051 (448)
40323 (19 100) 40 486 (25 000) 40 486 (25 900) 40 486 (19 100) 40323 (21 000)
Theoretical/cm™ 15 800 (219) 15 400 (441) 15 500 (556) 16 300 (1140) 15000 (949)
19200 (982) 18200 (1090) 18 800 (1180) 19100 (1360) 18 500 (1880)
34500 (7060) 33400 (10 300) 34000 (10 700) 34300 (10 700) 35000 (10 900)
Compound 1SIP 2SIP 3SIP 4SIP 5SIP
Experimental/cm™" (¢/M ™" cm ™) 16000 (95) 15 244 (160) 15015 (123) 14 514 (221)
20202 (392) 18553 (368) 20921 (658) 19120 (391) 18 083 (491)
24500 (552) 22750 (809) 40323 (25 300) 23000 (458) 22500 (715)
40323 (22 900) 40323 (32 700) 40000 (26 700) 40000 (28 100)
Theoretical/cm™ 21200 (1180) 19900 (705) 21300 (1440) 21000 (1530) 21400 (1050)
25100 (1170) 25400 (2030) 26000 (1530) 27 600 (1800) 26900 (1830)
32700 (10 900) 32500 (11 900) 32400 (10 600) 31900 (10 100) 33800 (12 100)
39600 (12 400) 37600 (14 900) 38700 (15 700) 38100 (12 500) 38500 (12 200)
Compound 1H 2H 3H 4H 5H

Experimental/cm ™ (¢/M ™" cm

Theoretical/cm™

1)

39683 (27 900)

20600 (3640)

28011 (2760)
39 841 (27 900)
16 400 (1190)

24000 (805)
40161 (8730)

20200 (3550)

24096 (1660)
39683 (14 200)

23474 (2610)
39683 (20 500)

17900 (2190)

27300 (1050)
37700 (13 600)

21600
26 400
31300

“Epsilon is quoted to 3 significant figures.

em™* which is at least twice as large as the analogous tran-

sition in 4Cl of £ = 13200 M™" cm™" at 39682 cm ™', and 41 of
£=19100 M' cm™" at 40 486 cm™".

IR spectroscopic studies

The IR spectra of all the complexes studied in this work were
recorded as Nujol mulls. The IR spectra of 1H-2H contain
bands at 1845, 1844, 1849, 1854 and 1872 cm™" respectively
and these absorptions can be assigned to the v,y stretching
absorptions for the terminally bonded metal hydride. All these
bands are very weak, and are comparable to the vg._y reported
for other structurally authenticated iron terminal hydride com-
plexes containing the dppe ligand which span the range
1833-1919 cm™'.2%3%3* The only other example of an iron
hydride complex with both dppe and cyclopentadienyl ligands
with which to compare is [Fe(Cp*)(H)(dppe)][PFs] that has a
comparable band at 1869 cm™*.*3

This journal is © The Royal Society of Chemistry 2015

2520
1210

(
E

18 600 (2590
(
(
(5950

26700 (1790)
36700 (12 300)

25600 (2130)
36 400 (12 600)

22900 (2110)
27200 (1620)
36 000 (15 700)

(

(
20300 (3430)

(

(

[N NN}

DFT calculations

We have undertaken DFT calculations for 1CI-5Cl, 1Br-5Br,
1I-5I, 1SIP-5SIP and 1H-5H to provide a qualitative descrip-
tion of the structure and bonding within these complexes and
to provide a framework to interpret the electrochemical pro-
perties of these compounds. The DFT calculations reproduce
the magnitude of the crystallographically determined bond
lengths and the interbond angles of these complexes to within
~0.05 A and ~1.5°, respectively. We therefore conclude that
the calculations afford reliable qualitative descriptions of the
electronic manifolds of 1CI-5Cl, 1Br-5Br, 1I-51, 1SIP-5SIP and
1H-5H.

The frontier orbital manifolds of 1CI-5Cl, 1Br-5Br and
1I-5I are similar with the HOMO, HOMO-1 and HOMO-2
orbitals in each compound possessing dominant Fe character
derived from the 3d orbitals that form the ¢, set in Oy, sym-
metry (for representative frontier orbitals see Fig. 9).** These
orbitals are non-bonding with respect to c-interactions but can
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Fig. 9 Frontier Kohn Sham molecular orbitals of 1Cl: (a) HOMO, (b) HOMO-1, (c) HOMO-2. The models were orientated such that the Fe—X vector
corresponded to the z-axis and, looking down the Fe—X vector, the left and right Fe-P bonds were aligned along the x and y axes, respectively.
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Fig. 10 Plot of HOMO energy vs. E; for 1Cl-5Cl, 1Br—5Br and 11-5I.

exhibit n-interactions with X = Cl, Br, I. Thus, in each 1CI-5Cl,
1Br-5Br and 1I-51 the HOMO possess Fe and X character
(61.9-74.0% and 10.7-24.9%, Table S3f) and for a homo-
geneous series with a fixed cyclopentadienyl-derived ligand the
contribution to the HOMO typically varies as I > Br > Cl as
would be expected from the n-donor ability for each halogen
donor. These calculations are in broad agreement with those
accomplished previously for CpFe(dpe)X (dpe = 1,2-diphospino-
ethane; X = Cl, Br, 1).>® The energies of the HOMO orbital for a
fixed Cp ligand and E: for the oxidation process (see
above) show clear trends as X is varied (Fig. 10). Thus, the
energy of the HOMO varies as Cl > Br > I with a reduction
potential order of Cl < Br < I. Thus, for a fixed cyclopenta-
dienyl-derived ligand complexes with X = Cl are more readily
oxidised to their cationic counterparts and this observation is
borne out by the relative energies of the HOMO orbitals in this
series of compounds. The variation in energy of the HOMO
with X-ligand appears counterintuitive given the percentage
X-ligand character in the HOMO and the relative n-donor abil-
ities of the halide donors. This inverse halide order has been
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noted previously,®® and has been ascribed to the ionic nature
of the Fe-X bond, in which the X-ligand may be viewed as
acting as a point negative charge that destabilizes the ¢,, set of
orbitals which results in an inverse of the energy order
expected from n-donor effects alone.*>>°

Conclusions

To conclude, we have reported the synthesis of three iron(u)
halide dppe complexes, and their utility in preparing a range
of cyclopentadienyl derivatives. In all, we describe the syn-
thesis of twenty five iron cyclopentadienyl dppe complexes as
either halide (Cl, Br, I), separated ion pair, or hydride deriva-
tives, thus providing a cohesive and reliable approach to the
preparation of such molecules. This report has enabled a com-
prehensive structural and spectroscopic benchmarking study,
providing a detailed understanding of the electronic structure
of these compounds in one common framework. The M0ss-
bauer studies suggest that the bonding is these complexes is

This journal is © The Royal Society of Chemistry 2015


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5dt00704f

Open Access Article. Published on 17 July 2015. Downloaded on 11/2/2025 1:30:22 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Dalton Transactions

predominantly ionic. Nevertheless, it is evident that the cyclo-
pentadienyl and X-ligands modulate the electronic structure
and redox properties of iron. Surprisingly, it is clear that
although the cyclopentadienyl substituents do influence the
redox properties of the iron centre, their influence is modest,
and does not follow the trend that might be anticipated. In the
pantheon of cyclopentadienyl ligands, taking CsHs as the refer-
ence point, the pentamethyl and di-tert-butyl variants are
usually described as better donor and poorer acceptor ligands,
whereas the silyl-substituted variants are often viewed as
poorer donors and better acceptor ligands. This should result
in pentamethyl and di-tert-butyl cyclopentadienyl ligands
leading to more electron rich iron centres whereas the silyl-
substituted variants should give more electron deficient iron
centres. However, on the basis of the electrochemical data pre-
sented here although the alkyl-cyclopentadienyls do fit this
trend, this view is clearly overly simplistic where the silyl-sub-
stituted variants are concerned since their behaviour more
closely resembles that of CsHs. This observation helps to
codify the unpredictability of cyclopentadienyl-substituent
effects on the redox potentials of transition metal complexes
for a widely employed ligand class. The identity of the
X-ligand, however, has a substantial and direct effect on the
redox properties of the iron centre, which reflects the potential
n-donor capcacity of the halides and their direct negative point
charge to iron; indeed for the halides there is an essentially
linear electrochemical relationship on moving from CI to Br to
I and these studies support the notion of hydride as a strong
donor ligand. The complexes reported in this study could find
extensive utility in molecular wire and metal-metal bond
chemistry, where control of redox properties is important; the
data presented here provide a database that enables the selec-
tion of a particular iron complex with an appropriate reduction
potential for a given application. We are currently investigating
the utility of the iron-hydride complexes presented here for the
synthesis of uranium-iron bonds by alkane or amine elimin-
ation routes.

Experimental
General experimental details

All manipulations were carried out using standard Schlenk
techniques or an MBraun UniLab glovebox, under an atmos-
phere of dry nitrogen. THF, toluene, hexane and diethyl ether
were dried by passage through activated alumina towers and
degassed before use and then were stored over potassium
mirrors (except THF which was stored over activated 4 A mole-
cular sieves). Acetonitrile and dichloromethane were distilled
from CaH, and stored over 3 A (DCM) or 4 A (MeCN) activated
molecular sieves. Benzene-ds was dried over potassium, dis-
tilled, degassed and stored under nitrogen. The compounds
CpH*,*"*? KCp*>® CsHs(SiMe;),>* KCsH4(SiMe;),>*  CsHy-
(SiMe;),,>* KCsH;(SiMe3),,>* CsHy(“Bu),,> KCsHj("Bu),,> and
[FeCl,(dppe)]”>® were synthesised according to published pro-
cedures. The compounds LiCp, NaCp and KCp were purchased
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from Sigma Aldrich and were used without any further purifi-
cation. Compounds II, III, 2Cl, 1I, and 1H have previously
been reported and are well characterised, the syntheses
described for these compounds below are for completeness
and to report any additional characterisation.

NMR spectra were recorded on either a Bruker DPX300
spectrometer [operating at 300.1 MHz (*H), 75.5 MHz (**C{'H})
and 121.5 MHz (*'P{'H})] or a Bruker DPX400, AV400 spectro-
meter [operating at 400.2 MHz (‘H), 100.6 MHz {**C{'H}),
162.0 MHz (*'P{'H}) and 79.5 MHz (**Si{1H})]. Chemical shifts
are quoted in ppm and are relative to TMS (*H, "*C{'H} and
*9Si{'H}) and external 85% H;PO, (*'P{'H}). IR spectra were
recorded on a Bruker Tensor 27 FTIR spectrometer, where
samples were prepared in the glovebox using a Nujol mull
between two KBr discs. UV-Vis/NIR spectra were recorded on a
Perkin Elmer LAMBDA 750 spectrometer. Data were collected
in THF in 1 cm path length quartz cuvettes which were pre-
pared in the glovebox. Elemental microanalyses were carried
out by Mr Stephen Boyer at the Microanalysis Service, London
Metropolitan University, UK or Dr Tong Liu, University of Not-
tingham. Mossbauer spectra were recorded in a zero magnetic
field at 80 K or 298 K on an ES-Technology MS-105 Mossbauer
spectrometer with a 25 MBq *>’Co source in a rhodium matrix
at ambient temperature. Spectra were referenced against a
25 pm iron foil at 298 K and spectrum parameters were
obtained by fitting with Lorentzian lines. Samples were pre-
pared by grinding with boron nitride before mounting.

Preparation of [FeBr,(dppe)], II

THF (40 mL) was added to a mixture of FeBr, (3.45 g,
16.0 mmol) and dppe (6.43 g, 16.0 mmol) at room temperature
and then refluxed overnight. The mixture was filtered, the
solids washed with toluene and dried in vacuo to yield a light
green solid in excellent yield (9.28 g, 94%).

Preparation of [Fel,(dppe)], III

THF (40 ml) was added to a mixture of Fel, (5.00 g,
16.0 mmol) and dppe (6.43 g, 16.0 mmol) at room temperature
and stirred for 18 hours. The mixture was filtered and the
solids were dried in vacuo to yield a yellow solid in excellent
yield (10.8 g, 95%).

General preparative method for 1CI-5Cl, 1Br-5Br, 1I-5I

Toluene (20 ml) was added dropwise to a mixture of
FeX,(dppe) (where X = CI, Br or I) and MCp' (where M = Li, K
or Na, Cp = CsHs;, M K, Cp CsMes, CsH,y(SiMe;),
CsH;(SiMes), or CsHz("Bu),) in a 1:1 molar ratio at —78 °C
with stirring, the resultant mixture was allowed to warm to
room temperature slowly over 18 hours. The mixture was fil-
tered and the solids washed with toluene (2 x 5 ml), the vola-
tiles were removed in vacuo and the resulting solids were
recrystallized from the minimum amount of toluene with
storage at —30 °C, with the exception of 1Cl which is best
recrystallized from a DCM/hexane layer (1 : 3 ratio) with storage
at —30 °C. The black crystals were isolated by filtration,
washed with hexanes (2 x 1-2 mL) and dried in vacuo.
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1CL: I (2.63 g, 5.0 mmol) and LiCp (0.36 g, 5.0 mmol), yield:
1.75 g, 66%. Anal. calc’d for C;,H,oFeClIP,: C, 67.11; H, 5.27%.
Found: C, 66.85; H, 5.16%. "H NMR (C4Ds, 298 K): 5y 2.29 (m,
4H, CH,), 4.28 (s, 5H, CsHj), 7.01-8.23 (m, 20H, Ar-H). *C{'H}
NMR (C¢Dg, 298 K): 6c 27.65 (t, CH,, “Jep = 81 Hz), 76.94
(CsHs), 127.88 (Ar-C), 128.22 (Ar-C), 128.90 (Ar-C), 129.60 (Ar-
C), 132.31 (t, Ar-C, *Jcp = 18 Hz), 134.62 (t, Ar-C, >Jcp = 18 Hz),
142.31 (Ar-C), 142.67 (Ar-C). *'P{'"H} NMR (C¢Ds, 298 K): dp
111.31. FTIR v/em ™" (Nujol): 1403 (s), 861 (s), 694 (s), 667 (s)
651 (s), 588 (s), 529 (s) 518 (s), 491 (s), 462 (s) and 438 (s). UV-
vis (THF): Amax/em ™" (¢/mol™ em™) 17 007 (247), 19 881 (307),
40323 (21 000). Mossbauer (80 K, mm s™') LS. = 0.44, Q.S. =
1.92. CV (298 K, THF, [NBu,"][[BF,], 1 mM) E;, = —0.42 V.

2ClL: I (2.63 g, 5.0 mmol) and KCp* (0.87, 5.0 mmol), yield:
2.28 g, 73%. "H NMR (CgDg, 298 K): 8y 1.40 (s, 15H, CH;), 2.75
(m, 4H, CH,), 7.00-8.05 (m, 20H, Ar-H). "*C{'"H} NMR (C¢Ds,
298 K): 8¢ 30.2 (CH,), 83.60 (CsH3), 131.3-140.2 (Ar-C). *'P{'H}
NMR (CeDg, 298 K): 8p 91.6. FTIR v/em™" (Nujol): 1483(w),
1432 (s), 1091 (s), 1068 (W), 1027 (m), 787 (W), 471 (s), 694 (vs),
658 (s), 616 (W), 528 (vs), 519 (w), 484 (vs), 450 (w) and 428 (s).
UV-vis  (THF): Apa/em™  (¢/mol™ em™) 16502 (221),
18 587 (352), 40 816 (20 300). Mossbauer (80 K, mm s ') LS. =
0.48, Q.S. = 2.04. CV (298 K, THF, [NBu,"|[[BF,], 1 mM) E;, =
-0.59 V.

3Cl: I (1.05 g, 2.0 mmol) and KCsH,(SiMe;) (0.35 g,
2.0 mmol), yield: 0.66 g, 48%. Anal. calc’d for C33H;,FeClP,Si:
C, 65.13; H, 5.95%. Found: C, 64.85; H, 6.12%. '"H NMR
(CDCly, 298 K): 8 0.08 (s, 9H, CHj), 2.39 (m, 4H, CH,), 4.09 (t,
2H, CH), 4.31 (t, 2H, CH), 7.27-8.14 (m, 20H, Ar-H). "*C{'H}
NMR (CDCl3, 298 K): §¢ 1.03 (SiCH3), 27.20 (CH,), 68.95 (CH),
77.25 (CSiMe;), 88.78 (CH), 127.86 (Ar-C), 127.97 (Ar-C),
129.12 (Ar-C), 129.41 (Ar-C), 132.29 (Ar-C), 134.24 (Ar-C). *'P-
{"H} NMR (CDCl;, 298 K): §p 93.9. *°Si{*H} (CDCl;, 298 K): 5g;
—21.94. FTIR v/em™" (Nujol): 1658 (s), 1433 (s), 1304 (m), 1245
(s), 1180 (s), 1158 (s), 1070 (s), 1041 (s), 900 (s), 871 (s), 817 (s),
737 (s), 697 (s) 669 (s), 645 (s), 635 (s), 609 (s), 530 (s), 520 (s),
489 (s), 452 (s), 436 (s) and 424 (s). UV-vis (THF): Aya/cm
(e/mol™ ecm™) 16978 (376), 19417 (463), 41152 (15000).
Mossbauer (80 K, mm s™') LS. = 0.46, Q.S. = 1.88. CV (298 K,
THF, [NBu,"][[BF,], 1 mM) E;;, = —0.45 V.

4Cl: 1 (0.53 g, 1.0 mmol) and KCsH;(SiMe;), (0.25 g,
1.0 mmol), yield: 0.36 g, 51%. Anal. calc’d for C;,H,45FeClP,Si,:
C, 63.56; H, 6.49%. Found: C, 60.26; H, 6.61%. '"H NMR
(CDCly, 298 K): 8y 0.25 (s, 18H, CH3), 2.75 (m, 4H, CH,), 4.31
(d, 2H, CH), 4.85 (s, 1H, CH), 7.25-7.94 (m, 20H, Ar-H). *C
{"H} NMR (C¢Ds, 298 K): 8¢ 0.04 (CH3), 28.95 (t, CHy, Jcp =
36 Hz), 77.04 (CH), 81.43 (CSiMe3), 102.97 (CH), 127.74 (Ar-C),
129.29 (Ar-C), 133.38 (Ar-C), 134.33 (Ar-C), 140.13 (Ar-C). *'P-
{"H} NMR (CgDg, 298 K): dp 93.6. *’Si{'"H} (CDCl;, 298 K): Js;
—2.79. FTIR v/em™" (Nujol): 1434 (s), 1401 (s), 1251 (s), 1188
(s), 1156 (s), 916 (s), 883 (s), 834 (s), 762 (8), 751 (s), 738 (s), 696
(s), 661 (s), 632 (s), 616 (s), 598 (s), 530 (s), 518 (s), 485 (s), 459
(s), 443 (s) and 426 (s). UV-vis (THF): Apad/em " (e/mol™ em™)
15500 (191), 18904 (339), 39683 (13 200). Mossbauer (80 K,
mm s ') LS. = 0.48, Q.S. = 1.73. CV (298 K, THF, [NBu,"][[BF,],
1 mM) Eyjp = —0.44 V.
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5CL I (1.05 g, 2.0 mmol) and KCs;H;(‘Bu), (0.43 g,
2.0 mmol), yield: 0.76 g, 57%. Anal. calc’d for C39H,5FeClP,: C,
70.23; H, 6.80%. Found: C, 70.39; H, 6.72%. "H NMR (CDCl;,
298 K): &y 0.94 (s, 18H, CHj;), 2.26 (s, 4H, CH,), 3.14 (s, 2H,
C=CH), 3.99 (d, 1H, C=CH), 7.30-7.68 (m, 20H, Ar-H). *C
{'"H} NMR (C¢Ds, 298 K): 6c 1.18 (CH3), 31.25 (CH,), 61.21
(CH), 63.14 (CH), 76.27 (C'Bu), 109.55 (CMej;), 126.12 (Ar-C),
129.00 (Ar-C), 130.15 (Ar-C), 134.34 (Ar-C), 139.80 (Ar-C). *'P
{'"H} NMR (CDCl;, 298 K): §p 85.6. FTIR v/cm™" (Nujol): 1433
(s), 1183 (s), 1160 (s), 937 (s), 919 (s), 875 (s), 833 (s), 748 (s),
694 (s), 671 (s), 648 (s), 636 (s), 616 (s), 528 (s), 517 (s), 508 (s),
489 (s), 475 (s) and 438 (s). UV-vis (THF): Apa/cm ™" (e/mol™
em™') 15000 (114), 18149 (183), 39 683 (21 900). Mossbauer
(80 K, mm s) LS. = 0.50, Q.S. = 2.08. CV (298 K, THF, [NBu,"}-
[[BF,], 1 mM) Ey), = —0.54 V.

1Br: II (1.23 g, 2.0 mmol) and KCp (0.21 g, 2.0 mmol),
yield: 0.52 g, 68%. Anal. Calc’d for C3;H,oP,FeBr: C, 62.13;
H, 4.88%. Found: C, 62.25; H, 5.03%. "H NMR (C¢Ds, 298 K):
Sy 2.40 (m, 4H, CH,,), 4.28 (s, 5H, CH), 7.01-8.23 (m, 20H,
CH). "*C{'H} NMR (C¢Dy, 298 K): ¢ 76.64 (CH), 128.57 (Ar-C),
129.37 (Ar-C), 131.97 (Ar-C), 134.43 (Ar-C). *'P{'H}
NMR (C¢Ds, 298 K): dp 98.2. FTIR v/em™" (Nujol): 1433 (s),
1179 (s), 1156 (s), 861 (s), 846 (s), 831 (s), 812 (s), 787 (s),
743 (s), 727 (s), 694 (s), 669 (s), 652 (s), 588 (s), 528 (s), 518 (s
489 (s) and 461 (s). UV-vis (THF): Apna/cm ™" (¢/mol™ ecm™
16 155 (200), 19960 (392). Mossbauer (80 K, mm s ') LS.
0.44, Q.S. = 1.94. CV (298 K, THF, [NBu,"|[BF,], 1 mM) E,,, =
-0.38 V.

2Br: II (1.23 g, 2.00 mmol) and KCp* (0.35 g, 2.00 mmol),
yield: 0.40 g, 30%. Anal. Calc’d for C3sH39P,FeBr: C, 64.60; H,
5.87%. Found: C, 64.52; H, 6.02%. "H NMR (C¢Ds, 298 K): 5y
1.58 (s, 15H, CHj), 2.35 (m, 4H, CH,), 7.11-7.40 (m, 20H, Ar-
H). PC{"H} NMR (C¢Ds, 298 K): 8¢ 11.24 (CHj;), 31.90 (CH,),
83.30 (CH), 127.09 (Ar-C), 127.18 (Ar-C), 128.68 (Ar-C), 129.08
(Ar-C), 134.45 (t, Ar-C, ¥cp = 20 Hz), 135.00 (t, Ar-C, YJcp =
16 Hz), 140.20 (Ar-C), 140.50 (Ar-C). *'P{'H} NMR (C¢Ds,
298 K): 8p 95.0. FTIR v/em™" (Nujol): 1432 (s), 1179 (s), 1153
(s), 1067 (s), 865 (s), 740 (s), 699 (8), 662 (8), 617 (s), 528 (s), 490
(s), 468 (s) and 433 (s). UV-vis (THF): Apmax/cm ™" (e/mol™" ecm™)
15455 (157), 18587 (284), 40 000 (21 900). Mossbauer (80 K,
mm s~ LS. = 0.52, Q.S. = 2.09. CV (298 K, THF, [NBu,"][[BF,],
1 mM) Eyj, = —0.55 V.

3Br: II (1.23 g, mmol) and KCsH,(SiMe;) (0.35 g, 2.0 mmol),
yield: 0.52 g, 39%. Anal. Calc’d for C;,H;3¢P,SiFeBr: C, 60.82;
H, 5.55%. Found: C, 61.95; H, 5.40%. "H NMR (CeDs, 298 K):
Sy 0.39 (9H, s, CH3), 2.41 (m, 4H, CH,), 3.29 (d, 2H, CH), 5.15
(d, 2H, CH), 7.02-8.18 (m, 20H, Ar-H). “C{'H} NMR (C¢Ds,
298 K): ¢ 0.15 (CH3), 27.93 (t, CH,, Jcp = 76 Hz), 70.42 (CH),
86.86 (CH), 128.68 (Ar-C), 129.34 (Ar-C), 132.39 (Ar-C), 134.51
(Ar-C). *'P{"H} NMR (C¢Ds, 298 K): p 95.9. **Si{'"H} NMR
(CeDs, 298 K): 8s; —2.3. FTIR v/em ™" (Nujol): 1245 (s), 1180 (s),
1154 (s), 914 (s), 885 (s), 831 (s), 740 (s), 659 (s), 655 (s), 635 (),
532 (s), 517 (s), 482 (s) and 455 (s). UV-vis (THF): Apa/cm ™"
(e/mol™" em™) 15898 (390), 19417 (618). Mossbauer (80 K,
mm s~ ') LS. = 0.47, Q.S. = 1.84. CV (298 K, THF, [NBu,"][[BF,],
1 mM) Eyjp = —0.41 V.

—
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4Br: II (1.23 g, 2.0 mmol) and KCsH;(SiMes), (0.50 g,
2.0 mmol), yield: 0.69 g, 46%. Anal. Calc’d for Cs;H,5P,Si,-
FeBr: C, 59.76; H, 6.10%. Found: C, 59.85; H, 5.91%. 'H NMR
(CeDe, 298 K): 8y 0.22 (s, 18H, CH3), 2.35 (m, 4H, CH,), 4.02 (s,
2H, CH), 5.43 (s, 1H, CH), 7.08-7.40 (m, 20H, Ar-H). "*C{'H}
NMR (CgDs, 298 K): 6¢ 0.41 (CHj3), 29.45 (CH,), 78.61 (CH),
81.12 (CH), 101.60 (Ar-C), 127.56-134.67 (Ar-C). >'P{'"H} NMR
(CeDg, 298 K): 8p 90.2. *°Si{"H} NMR (CeDg, 298 K): dg; —2.6.
FTIR v/em™ (Nujol): 1432 (s), 1366 (s), 1331 (s), 12580 (s),
1238 (s), 1187 (s), 1161 (s), 1068 (s), 1051 (s), 968 (s), 956 (s),
923 (s), 887 (s), 833 (s), 751 (s), 733 (s), 692 (s), 656 (s), 629 (s),
611 (s), 585 (), 532 (s), 519 (s), 483 (s), 448 (s), 438 (s) and 425
(s). UV-vis (THF): Apa/em ' (e/mol™ cm™) 15898 (334),
18939 (622), 41 152 (46 300). Mossbauer (80 K, mm s~ ') LS. =
0.49, Q.S. = 1.69. CV (298 K, THF, [NBu,"|[[BF,], 1 mM) E;/, =
—0.40 V.

5Br: II (1.23 g, 2.0 mmol) and KC;H;(‘Bu), (0.42 g,
2.0 mmol), yield: 0.79 g, 56%. Anal. Calc’d for Cs3oH,5P,FeBr:
C, 65.82; H, 6.38%. Found: C, 65.67; H, 6.36%. "H NMR (C4Ds,
298 K): &y 1.26 (s, 18H, CHj;), 2.23 (m, 4H, CH,), 3.39 (s, 2H,
CH), 5.29 (s, 1H, CH), 7.12-7.27 (m, 20H, Ar-H). ">C{"H} NMR
(CeDe, 298 K): ¢ 1.17 (CH3), 31.54 (t, CH,, Jep = 278 Hz),
60.93 (CH), 80.63 (CH), 107.06 (Ar-C), 127.88 (Ar-C), 129.01
(Ar-C), 134.26 (Ar-C). *'P{'"H} NMR (CcDe, 298 K): &p 82.7.
FTIR v/em ™" (Nujol): 1659 (s), 1433 (s), 1286 (s), 1251 (s), 1187
(s), 1160 (s), 1047 (s), 998 (s), 934 (s), 919 (s), 872 (s), 843 (s),
832 (s), 791 (s), 741 (s), 691 (s), 664 (s), 655 (s), 642 (s), 615 (8),
528 (s), 482 (s), 450 (s) and 428 (s). UV-vis (THF): Apa/cm™"
(e/mol™ em™) 15456 (271), 18051 (425), 41152 (30200).
Mossbauer (80 K, mm s™') LS. = 0.53, Q.S. = 1.95. CV (298 K,
THF, [NBu,"][[BF,], 1 mM) E;;, = —0.50 V.

1L II (1.42 g, 2.0 mmol) and NaCp (0.16 g, 2.0 mmol),
yield: 0.84 g, 67%. "H NMR (CeDs, 298 K): 6y 2.60 (m, 4H,
CH,), 4.30 (s, 5H, CsH;), 6.99-8.05 (m, 20H, Ar-H); *'P{'H}
NMR (Cg¢Dg, 298 K): 8p 99.1. UV-vis (THF): Apad/em™" (e/mol™
em™!) 16 000 (69.2), 20120 (219), 40323 (19 300). Mossbauer
(80 K, mm s™") LS. = 0.43, Q.S. = 1.89. CV (298 K, THF, [NBu,"]-
[[BF,], 1 mM) Eyj, = —0.34 V.

2L: II (0.71 g, 1.0 mmol) and KCp* (0.17 g, 1.0 mmol),
yield: 0.46 g, 64%. Anal. calc’d for C;6HjoFeIP,: C, 60.36; H,
5.49%. Found: C, 60.26; H, 5.37%. "H NMR (C¢Dg, 298 K): dy
1.17 (s, 15H, CHj), 2.50 (m, 4H, CH,), 6.82-8.14 (m, 20H, Ar-
H); PC{"H} NMR (C¢Dq, 298 K): 5c —11.24 (CH,), 31.90 (t, CH,)
83.30 (HC=C) 128.81 (p-Ar-C), 129.48 (m-Ar-C), 133.14 (0-Ar-
C), 134.73 (i-Ar-C); *"P{'"H} NMR (C¢Ds, 298 K): 5p 95.0. FTIR
vlem™ (Nujol): 1179 (s), 1153 (s), 1069 (s), 893 (s), 863 (s), 739
(s), 699 (s), 660 (s), 618 (s), 527 (s), 518 (s), 490 (s), 468 (s), 451
(s) and 431 (s). UV-vis (THF): Apax/em™" (¢/mol™" em™) 15 106
(264), 18 518 (500), 40 486 (35 000). Mossbauer (80 K, mm s~ )
LS. = 0.52, Q.S. = 2.09. CV (298 K, THF, [NBu,"|[[BF,], 1 mM)
E15 =—0.51V.

3L I (0.71 g, 1.0 mmol) and KCsH,(SiMe;) (0.18 g,
1.0 mmol), yield: 0.26 g, 36%. Anal. calc’d for C;,H;,FelP,Si:
C, 56.84; H, 5.19%. Found: C, 57.50; H, 5.18%. "H NMR (C4Ds,
298 K): &y 0.38 (s, 9H, CH;), 2.57 (m, 4H, CH,), 3.45 (s, 2H,
CH), 5.14 (s, 2H, CH), 6.99-8.14 (m, 20H, Ar-H). "*C{"H} NMR
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(CeDs, 298 K): 6¢ 0.59 (SiCH3), 28.78 (t, CH,, “Jep = 84 Hz),
71.71 (CH), 81.94 (t, CSiMes, *Jcp = 8 Hz), 86.50 (CH), 127.63
(Ar-C), 127.73 (Ar-C), 128.58 (Ar-C), 129.32 (Ar-C), 132.35 (t,
Ar-C, *Jcp = 16 Hz), 132.90 (t, Ar-C, *Jcp = 32 Hz) 134.48 (t, Ar-
C, YJep = 16 Hz), 139.33 (t, Ar-C, *Jcp = 24 Hz), 139.74 (t, Ar-C,
*Jcp = 20 Hz) 142.00 (t, Ar-C, “Jep = 52 Hz), 142.33 (t, Ar-C, Jcp
= 52 Hz). >'P{'"H} NMR (C¢Ds, 298 K): 8p 96.8. *°Si{'H} (C¢Ds,
298 K): 8g; —1.79. FTIR v/em™" (Nujol): 1482 (w), 1431 (s), 1308
(w), 1243 (m), 1156 (m), 1096 (m), 1069 (sh), 1037 (sh), 1026
(W), 999 (W), 900 (W), 890 (w), 833 (s), 741 (s), 693 (vs), 661 (s),
632 (m), 617 (sh), 566 (w), 518 (vs), 485 (s) and 436 (s). UV-vis
(THF): Apa/em ™" (e/mol™ ecm™) 15848 (199), 19569 (421),
40486 (25 900). Mossbauer (80 K, mm s™') LS. = 0.45, Q.S. =
1.85. CV (298 K, THF, [NBu,"|[[BF,4], 1 mM) E;,, = —0.37 V.

4I: 1 (0.71 g, 1.0 mmol) and KCsH;(SiMe;), (0.25 g,
1.0 mmol), yield: 0.41 g, 52%. Anal. calc’d for Cz;H,5FelIP,Si,:
C, 56.21; H, 5.74%. Found: C, 56.30; H, 5.65%. "H NMR (C¢D,
298 K): 8y 0.24 (s, 18H, CHj;), 2.50 (m, 4H, CH,), 4.04 (s, 2H,
CH), 5.56 (s, H, CH), 6.95-8.28 (m, 20H, Ar-H). C{"H} NMR
(CeDs, 298 K): 8¢ 0.70 (SiCH3), 30.46 (CH,), 79.00 (CH), 79.61
(CH), 101.70 (CSiMe;) 127.70 (Ar-C), 127.94 (Ar-C), 128.55 (Ar-
C), 129.51 (Ar-C), 133.14 (t, Ar-C, *Jcp = 16 Hz), 134.73 (t, Ar-C,
’Jcp = 16 Hz). *'P{'H} NMR (C¢Dg, 298 K): 8p 92.3. *°Si{'H}
(CeDs, 298 K): 85; —2.34. FTIR v/em ™" (Nujol): 915 (s), 886 (s),
696 (s), 661 (s), 635 (s), 532 (s), 517 (s), 484 (s) and 454 (s). UV-
vis (THF): Apax/em ™ (e/mol™ em™) 15 500 (172), 19 048 (445),
40486 (19 100). Mossbauer (80 K, mm s~ ') LS. = 0.49, Q.S. =
1.69. CV (298 K, THF, [NBu,"|[[BF,4], 1 mM) E;,, = —0.36 V.

56 II (0.71 g, 1.0 mmol) and KCs;H;("Bu), (0.22 g,
1.0 mmol), yield: 0.37 g, 49%. Anal. calc’d for C3oH,sFelP,: C,
61.76; H, 5.98%. Found: C, 61.65; H, 6.06%. 'H NMR (C4Ds,
298 K): 8y 1.29 (s, 18H, CHj;), 2.50 (m, 4H, CH,), 3.45 (s, 2H,
CH), 5.38 (s, H, CH), 6.95-8.36 (m, 20H, Ar-H). C{"H} NMR
(CeDs, 298 K): ¢ 21.20 (CMe;), 31.91 (t, CH, “Jop = 132 Hz),
62.69 (CH), 83.77 (CH), 104.20 (C'Bu), 127.41 (Ar-C), 128.32
(Ar-C), 129.09 (Ar-C), 133.57 (Ar-C), 134.64 (Ar-C), 140.26 (Ar-
C), 140.57 (Ar-C). *'P{"H} NMR (C¢Dq, 298 K): §p 80.5. FTIR
vlem™ (Nujol): 1157 (s), 880 (s), 842 (s), 738 (s), 696 (s), 657
(s), 528 (s), 517 (s), 489 (s) and 467 (s). UV-vis (THF): Apa/cm™"
(e/mol™" em™) 14500 (202), 18051 (448), 40323 (210 000).
Mossbauer (80 K, mm s™') LS. = 0.53, Q.S. = 1.95. CV (298 K,
THF, [NBu,"|[[BF,], 1 mM) E;, = —0.46 V.

General preparative method for 1SIP-5SIP

To a solution of 1CI-5Cl in MeCN (10 ml), TMSI (1:1 molar
ratio) was added dropwise at —30 °C with stirring, the mixture
was allowed to warm to room temperature slowly over
18 hours. Volatiles were removed in vacuo to yield red solids
which were recrystallized from the minimum amount of MeCN
with storage at —30 °C to afford red crystals. The crystals were
isolated by filtration and dried in vacuo.

1SIP: 1Cl (0.46 g, 0.8 mmol) and TMSI (0.12 mL, 0.8 mmol),
yield: 0.35 g, 65%. Anal. calc’d for C33H;,FeINP,: C, 57.67; H,
4.69; N, 2.04%. Found: C, 57.50; H, 4.78; N, 2.18%. 'H NMR
(CDCl;, 298 K): 8y 0.08 (s, 3H, CHj), 2.02 (s, 3H, CHj), 2.18 (m,
4H, CH,), 4.41 (s, 5H, CsH;), 7.31-7.86 (m, 20H, Ar-H). "*C{'H}
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NMR (CDCl;, 298 K): 8¢ 6.25 (CHj3), 28.22 (t, CH,, “Jep = 88
Hz), 78.87 (CsHs), 129.10 (t, Ar-C, *Jcp = 20 Hz), 129.26 (t, Ar-
C, YJcp = 18 Hz), 130.48 (Ar-C), 130.72 (Ar-C), 131.22 (t, Ar-C,
2Jep = 20 Hz), 132.72 (t, Ar-C, *Jcp = 20 Hz), 134.06 (N=CMe),
136.49 (t, Ar-C, YJcp = 80 Hz), 136.90 (t, Ar-C, YJcp = 80 Hz). >'P
{"H} NMR (CDCl;, 298 K): dp 97.9. FTIR v/em™" (Nujol): 2266
(s), 1432 (s), 1175 (s), 1157 (s), 1073 (s), 998 (s), 951 (s), 919 (s),
873 (s), 859 (s), 836 (s), 812 (s), 748 (s), 712 (s), 699 (s), 672 (s),
648 (s), 617 (s), 532 (s), 520 (s), 496 (s) 454 (s), 440 (s) and
429 (s). UV-vis (THF): Apax/em ™" (e/mol™" em™) 16 000 (95.4),
20202 (392), 24500 (553), 40323 (22900). Mossbauer (80 K,
mm s7') LS. = 0.39, Q.S. = 2.01. CV (298 K, MeCN, [NBu,"}-
[[BF4], 1 mM) Ey;, = 0.26 V.

2SIP: 2Cl1 (0.62 g, 1.0 mmol) and TMSI (0.14 mL, 0.8 mmol),
yield: 0.57 g, 75%. Anal. calc’d for C3gH,,FeINP,: C, 60.26; H,
5.59; N, 1.85%. Found: C, 60.36; H, 5.46; N, 1.86%. '"H NMR
(CDCl;, 298 K): 8y 1.32 (s, 15H, CH;), 2.17 (s, 3H, CH3), 2.18
(m, 4H, CH,) 7.39-7.61 (m, 20H, Ar-H). *C{"H} NMR (CDCl;,
298 K): ¢ 7.13 (CH3), 9.89 (CH3) 28.57 (t, CH,, “Jcp = 78 Hz),
87.21 (CsMes), 128.56 (t, Ar-C, Jcp = 18 Hz), 129.09 (t, Ar-C,
Jop = 18 Hz), 130.66 (Ar-C), 130.87 (Ar-C) 132.34 (t, Ar-C, Jcp =
18 Hz), 133.34 (t, Ar-C, Jcp = 21 Hz). *'P{'H} NMR (CDCl;,
298 K): 5p 89.9. FTIR v/cm™" (Nujol): 2248 (s), 1403 (s), 1156
(s), 949 (s), 890 (s), 861 (s), 786 (s), 759 (s), 742 (s), 695 (s), 661
(s), 640 (s), 528 (s), 516 (s), 483 (s) and 456 (s). UV-vis (THF):
Imax/em ™ (e/mol™" em™) 15244 (161), 18553 (369), 22750
(810), 40 323 (32 700). Moéssbauer (80 K, mm s™') LS. = 0.42, Q.
S. =2.00. CV (298 K, MeCN, [NBu,"][[BF,], 1 mM) E;/, = 0.06 V.

3SIP: 3Cl (1.14 g, 1.8 mmol), and TMSI (0.25 mlL,
1.8 mmol), yield: 0.47 g, 36%. Anal. calc’d for C3sH,oFeINP,Si:
C, 56.93; H, 5.31; N, 1.84%. Found: C, 54.54; H, 5.30; N,
2.08%. 'H NMR (CDCl;, 298 K): 6y 0.25 (s, 9H, CH;), 2.03 (s,
3H, CH3), 2.61 (m, 4H, CH,), 4.31 (d, 2H, CH) 4.85 (s, 2H, CH),
7.38-7.86 (m, 20H, Ar-H). *C{"H} NMR (CDCl;, 298 K): d¢
-0.53 (CH;) 6.81 (CHj;), 28.45 (t, CH,, ‘Jcp = 80 Hz), 71.06
(CH), 72.77 (CH), 74.79 (CH), 88.29 (CH) 129.08 (t, Ar-C, *Jcp =
20 Hz), 129.30 (t, Ar-C, *Jcp = 20 Hz), 130.70 (Ar-C), 130.80
(Ar-C), 131.72 (t, Ar-C, }Jcp = 20 Hz), 132.72 (t, Ar-C, *Jcp = 18
Hz), 134.61 (NCMe), 136.24 (t, Ar-C, “Jop = 76 Hz), 136.65 (t,
Ar-C, YJep = 88 Hz). *'P{"H} NMR (CDCl;, 298 K): &p 95.3. *°Si
{"H} (CDCl;, 298 K): ds; —3.12. FTIR v/em™" (Nujol): 2268 (s),
1165 (s), 1065 (s) 1031 (s), 950 (s), 899 (s), 871 (s), 832 (s), 746
(s) 698 (s), 674 (s), 616 (s) 527 (s), 517 (s), 490 (s), 455 (s). UV-
vis (THF): Apa/em™ (g/mol™ em™) 20920 (658), 40323
(25 300). Mossbauer (80 K, mm s™') LS. = 0.39, Q.S. = 1.91. CV
(298 K, MeCN, [NBu,"][[BF,], 1 mM) E;, = 0.25 V.

4SIP: 4Cl (0.35 g, 0.5 mmol) and TMSI (0.14 mL, 1.0 mmol),
yield: 0.27 g, 64%. Anal. calc’d for Cs3oH,gFeINP,Si,: C, 56.32;
H, 5.82; N, 1.68%. Found: C, 56.66; H, 5.69; N, 1.63%. "H NMR
(CDCl;, 298 K): 85 —0.13 (s, 18H, CH3), 1.77 (s, 3H, CHj), 2.51
(m, 4H, CH,), 4.46 (d, 2H, CH) 4.85 (s, 1H, CH), 7.46-7.84 (m,
20H, Ar-H). C{"H} NMR (CDCl;, 298 K): ¢ 0.03 (CH3) 7.79
(CH3), 29.18 (t, CH,, YJep = 72 Hz), 83.91 (CH), 84.41 (CH),
98.48 (CSiMes), 129.13 (t, Ar-C, *Jcp = 18 Hz), 129.36 (t, Ar-C,
Jep = 18 Hz), 130.77 (Ar-C), 130.83 (Ar-C) 130.83 (Ar-C),
132.36 (t, Ar-C, >Jop = 18 Hz), 133.29 (t, Ar-C, }Jcp = 18 Hz),
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135.67 (NCMe), 136.58 (Ar-C). *'P{"H} NMR (CDCl;, 298 K): p
89.1. *°si{"H} (CDCl;, 298 K): ds; —2.76. FTIR v/em™" (Nujol):
2273 (s), 1432 (s), 1193 (s), 1178 (s), 1079 (s), 944 (s), 914 (s),
896 (s), 873 (s), 832 (s), 751 (s), 700 (s), 675 (s), 649 (s), 632 (s),
526 (s), 513 (s), 493 (s) and 436 (s). UV-vis (THF): Apa/cm ™"
(e/mol™" em™) 15015 (124), 19120 (392), 23 000 (458), 40 000
(26 700). Mossbauer (80 K, mm s ') LS. = 0.44, Q.S. = 1.86. CV
(298 K, MeCN, [NBu,"][[BF,], 1 mM) E;, = 0.26 V.

5SIP: 5CI (0.30 g, 1.0 mmol) and TMSI (0.14 Ml, 1.0 mmol),
yield: 0.55 g, 69%. Anal. calc’d for C,;H,gFeINP,: C, 61.59; H,
6.05; N, 1.75%. Found: C, 61.42; H, 5.84; N, 1.73%. 'H NMR
(CDCl;, 298 K): 6y 0.80 (s, 18H, CH3), 2.02 (s, 3H, CH;), 2.18
(m, 4H, CH,), 4.11 (s, 2H, CH), 4.78 (s, 1H, CH), 7.28-7.80 (m,
20H, Ar-H). C{"H} NMR (CDCl;, 298 K): §¢ 2.65 (CH3), 8.29
(CH3), 31.21 (t, CH,, YJep = 88 Hz), 70.31 (CH), 74.89 (CH),
109.72 (C'Bu), 129.10 (Ar-C), 129.35 (Ar-C), 130.51 (Ar-C),
130.64 (Ar-C) 132.29 (Ar-C), 133.14 (Ar-C), 136.43 (NCMe),
137.43 (t, Ar-C, Jcp = 60 Hz), 137.80 (t, Ar-C, Jcp = 60 Hz). *'P
{'"H} NMR (CDCl;, 298 K): p 84.6. FTIR v/em™" (Nujol): 2267
(s), 1432 (s), 1411 (s), 1364 (s), 1293 (s), 1248 (s) 1179 (s), 1164
(s), 1127 (s), 998 (s), 951 (s), 923 (s), 892 (s), 866 (s), 758 (s), 741
(s), 716 (s), 701 (s), 678 (s), 654 (s), 520 (s), 505 (s), 471 (s) and
438 (s). UV~vis (THF): Apa/em ™" (e/mol™ ecm™) 14 514 (221),
18 083 (491), 22500 (716), 40 000 (28 100). Mossbauer (80 K,
mm s™') LS. = 0.45, Q.S. = 1.97. CV (298 K, MeCN, [NBu,"}-
[[BF,], 1 mM) Ey/, = 0.20 V.

General preparative method for 1H-5H

THF (10 ml) was added dropwise to a mixture of 1CI-2Cl and
LiAlH, (1:5 molar ratio) at —78 °C with stirring, the suspen-
sion was allowed to warm to 0 °C and stirred for a further
3 hours. At 0 °C degassed deionised water was added dropwise
until the evolution of gas ceased and the volatiles were
removed in vacuo to yield orange solids which were extracted
and recrystallized from hexanes to afford orange crystals. The
crystals were collected by filtration and dried in vacuo.

1H: 1Cl (0.56 g, 1.0 mmol) and LiAlH, (0.19 g, 5.0 mmol),
yield: 0.41 g, 73%. 'H NMR (C¢Ds, 298 K): 6;; —15.94 (t, 1H,
FeH, *Jpy = 72 Hz) 1.87 (2H, CH,), 2.10 (m, 4H, CH,), 4.31 (s,
5H, CsHs), 7.16-7.97 (m, 20H, Ar-H). “C{'H} NMR (C¢Ds,
298 K): 8¢ 33.02 (t, CHy, ‘Jep = 60 Hz), 75.47 (CH), 127.21 (Ar-
C), 128.48 (Ar-C), 133.27 (Ar-C), 132.90 (t, Ar-C, */cp = 40 Hz),
133.27 (t, Ar-C, *Jcp = 16 Hz), 133.92 (t, Ar-C, >cp = 20 Hz),
139.33 (t, Ar-C, %Jop = 36 Hz), 140.11 (t, Ar-C, }Jcp = 28 Hz),
141.85 (Ar-C), 142.23 (Ar-C). *'"P{'"H} NMR (C¢Dg, 298 K): 5p
111.6. FTIR v/em™" (Nujol) 1845 (s), 1621 (w), 1584 (w), 1301
(w), 1260 (w), 1087 (s), 1065 (w), 1027 (w), 812 (w), 740 (w), 695
(vs), 672 (s), 530 (vs), 493 (s), 474 (w) and 439 (w). UV-vis
(THF): Amadem ™ (e/mol™ em™) 39683 (27 900). Mossbauer
(80 K, mm s™*) LS. = 0.26, Q.S. = 1.91. CV (298 K, THF, [NBu,"J-
[[BF,], 1 mM) E;, = —0.50 V.

2H: 2Cl (0.62 g, 1.0 mmol) and LiAlH, (0.19 g, 5.0 mmol),
yield: 0.40 g, 68%. Anal. calc’d for CzsHyoFeP,: C, 73.22; H,
6.83%. Found: C, 73.34; H, 6.85%. "H NMR (C4Ds, 298 K): 6y
-16.66 (t, 1H, FeH, *Jpy; = 80 Hz) 1.73 (15H, CHj), 1.84 (m, 4H,
CH,), 7.08-7.91 (m, 20H, Ar-H). ">C{"H} NMR (C¢Ds, 298 K): 5¢

This journal is © The Royal Society of Chemistry 2015
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11.35 (CH3), 33.02 (t, CH,, YJep = 64 Hz) 84.88 (CMe;), 127.21
(Ar-C), 127.43 (Ar-C), 132.89 (t, Ar-C, *Jcp = 36 Hz), 133.27 (t,
Ar-C, %Jcp = 16 Hz), 133.92 (t, Ar-C, *Jcp = 20 Hz), 138.89 (t, Ar—
C, ¥Jcp = 35 Hz), 139.93 (t, Ar-C, >/cp = 32 Hz) 140.11 (t, Ar-C,
Jop = 35 Hz), 141.85 (t, Ar-C, ‘Jcp = 68 Hz), 142.23 (t, Ar-C,
Yep = 68 Hz). *'P{"H} NMR (C¢Dg, 298 K): 8p 107.7. FTIR
vlem™ (Nujol): 1844 (s), 1153 (s), 1064 (s), 876 (s), 740 (s), 695
(s), 672 (8), 529 (s), 493 (s) and 474 (s). UV-vis (THF): Apa/ecm ™"
(e/mol™ em™) 28011 (2760), 39683 (27900). Mdssbauer
(80 K, mm s™") LS. = 0.25, Q.S. = 1.92. CV (298 K, THF, [NBu,"]-
[[BE,], 1 mM) Ej = —0.67 V, Ey/, = —0.71 V.

3H: 3Cl (1.01 g, 1.5 mmol) and LiAlH, (0.28 g, 7.5 mmol),
yield: 0.31 g, 35%. No satisfactory elemental analysis could be
obtained for 3H due to contamination of samples with free
dppe ligand. "H NMR (CeD, 298 K): 6y —15.31 (t, 1H, FeH,
2fon = 72 Hz), 0.35 (s, 9H, CH;), 1.92 (m, 4H, CH,), 4.22 (m,
4H, CH), 7.21-7.89 (m, 20H, Ar-H). “C{'H} NMR (C¢Dq,
298 K): ¢ 0.34 (CH3), 31.01 (t, CH,, YJcp = 92 Hz), 71.27 (CH),
72.91 (CH), 80.84 (CSiMe;), 127.69 (Ar-C), 128.32 (Ar-C),
132.14 (t, Ar-C, *Jep = 16 Hz), 132.82 (t, Ar-C, }Jcp = 16 Hz),
143.00 (Ar-C), 143.52 (Ar-C). *'P{'"H} NMR (C¢D, 298 K): dp
110.1. *°Si{'H} (C¢Ds, 298 K): dg; —4.77. FTIR v/em™" (Nujol):
1245 (s), 1160 (s), 1066 (s), 1036 (s), 969 (s), 918 (s), 903 (s), 872
(s), 862 (s), 834 (s), 813 (s), 743 (s), 693 (s), 675 (s), 646 (s), 627
(s), 525 (s), 499 (s), 468 (s), 437 (s) and 422 (s). UV-vis (THF):
Imax/em ™ (e/mol™" em™") 24000 (805), 40161 (8730). Moss-
bauer (80 K, mm s™') L.S. = 0.26, Q.S. = 1.70. CV (298 K, THF,
[NBu,"|[[BF,], 1 mM) E;;, = —0.50 V.

4H: 4Cl (1.37 g, 2.0 mmol) and LiAlH, (0.38 g, 10.0 mmol),
yield: 0.54 g, 41%. Anal. calc’d for Cs,H,sFeP,: C, 66.86; H,
6.98%. Found: C, 66.98; H, 7.05%. "H NMR (CeDs, 298 K): 6y
—16.54 (t, 1H, FeH, *Jpy = 72 Hz), —0.11 (s, 18H, CH3), 2.60 (m,
4H, CH,), 4.45 (d, 2H, CH), 4.88 (s, 1H, CH), 7.49-7.89 (m,
20H, Ar-H). "*C{'H} NMR (C¢Ds, 298 K): &¢ 0.43 (CH3), 31.25 (t,
CH,, YJcp = 88 Hz), 82.16 (CSiMe;), 83.71 (CH), 87.01 (CH),
127.51 (t, Ar-C, *Jcp = 16 Hz), 127.73 (t, Ar-C, *Jcp = 16 Hz),
128.40 (Ar-C), 128.50 (Ar-C), 132.31 (t, Ar-C, *cp = 18 Hz)
132.77 (t, Ar-C, ¥cp = 20 Hz), 146.94 (Ar-C). *'P{'H} NMR
(CeDs, 298 K): 5, 104.8. *’Si{"H} (C¢Ds, 298 K): s; —5.01. FTIR
vlem™ (Nujol): 1245 (s), 1184 (s), 1155 (s), 1074 (s), 968 (s),
924 (s), 911 (s), 864 (s), 832 (s), 742 (s), 696 (s), 669 (s), 634 (s),
522 (s), 494 (s), 479 (s), 444 (s) and 427 (s). UV-vis (THF): Amax/
em ™! (¢/mol™" em™") 24 096 (1660), 39 683 (14 200). Mossbauer
(80 K, mm s™) .S. = 0.28, Q.S. = 1.71. CV (298 K, THF, [NBu,"}-
[[BF,], 1 mM) Eyj, = —0.53 V.

5H: 5Cl (0.63 g, 1.0 mmol) and LiAlH, (0.19 g, 5.0 mmol),
yield: 0.46 g, 53%. Anal. calc’d for CsoH,sFeP,: C, 74.05; H,
7.33%. Found: C, 72.03; H, 7.15%. "H NMR (C¢Dg, 298 K): dy
—15.65 (t, 1H, FeH, *Jpy = 84 Hz) 1.19 (s, 18H, CH;), 1.98 (m,
4H, CH,), 4.05 (d, 2H, CH), 4.09 (s, 1H, CH), 7.17-8.02 (m,
20H, Ar-H). *C{'"H} NMR (C¢Ds, 298 K): 5 22.54 (CMe3;), 30.72
(CH3), 32.06 (CH,) 69.93 (CH), 71.17 (CH), 108.73 (C'Bu),
127.46 (Ar-C), 127.66 (Ar-C), 128.20 (Ar-C), 128.26 (Ar-C),
132.26 (t, Ar-C, ¥cp = 24 Hz) 132.65 (t, Ar-C, *Jcp = 16 Hz),
144.19 (Ar-C), 144.39 (Ar-C). *'P{"H} NMR (CcDs, 298 K): p
104.5. FTIR v/em™" (Nujol): 1431 (s), 1360 (s), 1198 (s), 1162
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(s), 1047 (2), 939 (s), 918 (s), 911 (s), 874 (s), 842 (s), 743 (s),
696 (s), 676 (s), 657 (s), 617 (s), 588 (s), 524 (s), 514 (s), 496 (s)
and 475 (s). UV-vis (THF): Ama/em™" (¢/mol™" ecm™) 23474
(2610), 39 683 (20 500). Mdssbauer (80 K, mm s™') LS. = 0.27,
Q.S. = 1.96. CV (298 K, THF, [NBu,"|[BF,], 1 mM) E,;, =
-0.62 V.

X-ray crystallographic details

Crystallographic data can be found in the ESI in cif format.f
Crystals were examined variously on: (a) a Bruker AXS CCD
area detector diffractometer operating at 90 K/150 K using
graphite-monochromated Mo Ka radiation (4 = 0.71073 A),
with intensities integrated from a sphere of data recorded on
0.3° frames by rotation of w, or (b) an Oxford Diffraction CCD
area detector diffractometer operating at 90 K using mirror-
monochromated Cu Ka radiation (1 = 1.5418 A) with intensities
integrated from a sphere of data recorded on 1° frames by
rotation of @. Cell parameters were refined from the observed
positions of all strong reflections in the data set. The struc-
tures were solved by either direct methods or heavy atom
method and refined by least-squares methods on all unique F*
values, with all non-H non solvent atoms being anisotropic.
The largest residual electron densities in final difference synth-
eses were close to heavy atoms unless stated otherwise.
Absorption correction was performed by multi-scan methods.
Criterion for observed reflections is I > 206(I) and weighting
scheme used is W = 1/[¢*(F,?) + (xP)* + yP] where P = (F,> +
2F.%)/3. Programs used for Bruker AXS were SMART (control),
SAINT (integration) and SHELXTL for structure solution and
refinement. Programs used for Oxford diffraction were Crysalis-
Pro CCD (control), CrysalisPro RED (integration), SHELXTL for
structure solution and refinement.’®

Cyclic voltammetry experimental details and ESI}

Electrochemical measurements were performed using an
Autolab PGSTAT20 potentiostat with a three-electrode configur-
ation consisting of a saturated calomel electrode (SCE) refer-
ence electrode, Pt wire secondary electrode and a glassy
carbon working electrode. All voltammograms were recorded
at ambient temperatures for solutions of the sample at ca.
1 mM in tetrahydrofuran (THF) or acetonitrile (MeCN) contain-
ing 0.5 M or 0.1 M [NBu",][BF,], respectively, as the supporting
electrolyte. Samples were prepared in a glove box and main-
tained under an argon atmosphere using Schlenk line tech-
niques during the experiment. All electrochemical potentials
were measured relative to SCE and were corrected for liquid-
junction potentials via the use of the [(n’-CsHs),Fe]"/[(n’
CsH;),Fe] ([CpyFe]/[Cp,Fe]) couple as an internal redox stan-
dard. When the potential of a redox process of the compound
of interest overlapped with that of the ([Cp,Fe]’/[Cp,Fe])
couple, either the [(n’°5-Mes),Fe]"/[(n>-CsMe;),Fe] or ([Cp,Co]'/
[Cp,Co]) couples was used as a standard. Under these circum-
stances, the redox processes of the compound were referenced
to the [Cp,Fe]'/[Cp,Fe] couple by an independent calibration
under identical conditions; E;, [Cp,Co]'/[Cp,Co] was —1.358 V
vs. [Cp,Fe]/[Cp,Fe] in THF at 1 V s~ (used for 4H only) and
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E1ps [(n°-CsMes),Fe] /[(n>-CsMes),Fe] was —0.505 V vs. [Cp,Fe]"/
[Cp,Fe] in MeCN at 0.1 V s* (used for 1SIP-5SIP).

DFT experimental and ESI}

Restricted gas-phase DFT calculations were performed using
the Amsterdam Density Functional (ADF) suite version 2012.01
with initial models of were derived from the X-ray crystal struc-
tures of 1Cl-5Cl, 1Br-5Br, 1I-5I, 1SIP-5SIP and 1H-5H.°">°
The DFT calculations employed a Slater-type orbital (STO) all-
electron triple-C-plus one polarization function basis set from
the ZORA/TZP database of the ADF suite for all atoms. The
scalar relativistic (SR) approach was used within the ZORA
Hamiltonian for the inclusion of relativistic effects. The calcu-
lations employed the local density approximation (LDA) with
the correlation potential due to Vosko et al.°® Gradient correc-
tions were performed using the functionals of Becke®' and
Perdew.®* Pictorial representations of the MOs were generated
using MOLEKEL®® and the orbital compositions were calcu-
lated using AOMIX.**
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