The CH$_2$Cl$_2$ complex [Rh($^{\text{Bu}}$PONOP)(κ1-CICH$_2$Cl)]$^{\text{BARF}}_4$ is reported, that also acts as a useful synthon for other complexes such as N$_2$, CO and H$_2$ adducts; while the analogous PNP complex undergoes C–Cl activation.

Coordinatively and electronically unsaturated transition-metal pincer complexes, [M(pincer)], are key intermediates in alkane dehydrogenation processes,1 as well as other catalytic transformations.2 They have also played a major role in the elucidation of fundamental bond transformations, such as C–H, C–C and C–X breaking and making.3 Recently, Brookhart and co-workers reported the synthesis of transition-metal methane and ethane sigma complexes, by a low temperature solvent molecule.

Addition of Na[$^{\text{BARF}}_4$] to a CH$_2$Cl$_2$ solution of Rh($^{\text{Bu}}$PONOP)Cl$_2$, 4 results in the formation of orange [Rh($^{\text{Bu}}$PONOP)-(κ1-CICH$_2$Cl)]$^{\text{BARF}}_4$, 2 (Scheme 2). Filtration and removal of the solvent affords 2 in good isolated yield as a powder. Complex 2 can be recrystallised from CH$_2$Cl$_2$–pentane under an Ar atmosphere to give crystals suitable for an X-ray diffraction study. Under these conditions, orange 2 crystallises alongside the dinitrogen adduct, [Rh($^{\text{Bu}}$PONOP)(κ1-N$_2$)]$^{\text{BARF}}_4$, 3, in an approximate 1 : 1 ratio (as measured by 31P NMR spectroscopy, vide infra). Single crystals of 2 suitable for an X-ray diffraction study were obtained by mechanical separation from orange/brown 3.4 Presumably the exogenous N$_2$ comes from trace (1–2 ppm) levels of N$_2$ present in the argon, as has been noted previously,5 and is driven by relative solubilities of

Addition of Na[$^{\text{BARF}}_4$] to a CH$_2$Cl$_2$ solution of Rh($^{\text{Bu}}$PONOP)Cl$_2$, 4 results in the formation of orange [Rh($^{\text{Bu}}$PONOP)-(κ1-CICH$_2$Cl)]$^{\text{BARF}}_4$, 2 (Scheme 2). Filtration and removal of the solvent affords 2 in good isolated yield as a powder. Complex 2 can be recrystallised from CH$_2$Cl$_2$–pentane under an Ar atmosphere to give crystals suitable for an X-ray diffraction study. Under these conditions, orange 2 crystallises alongside the dinitrogen adduct, [Rh($^{\text{Bu}}$PONOP)(κ1-N$_2$)]$^{\text{BARF}}_4$, 3, in an approximate 1 : 1 ratio (as measured by 31P NMR spectroscopy, vide infra). Single crystals of 2 suitable for an X-ray diffraction study were obtained by mechanical separation from orange/brown 3.4 Presumably the exogenous N$_2$ comes from trace (1–2 ppm) levels of N$_2$ present in the argon, as has been noted previously,5 and is driven by relative solubilities of

Addition of Na[$^{\text{BARF}}_4$] to a CH$_2$Cl$_2$ solution of Rh($^{\text{Bu}}$PONOP)Cl$_2$, 4 results in the formation of orange [Rh($^{\text{Bu}}$PONOP)-(κ1-CICH$_2$Cl)]$^{\text{BARF}}_4$, 2 (Scheme 2). Filtration and removal of the solvent affords 2 in good isolated yield as a powder. Complex 2 can be recrystallised from CH$_2$Cl$_2$–pentane under an Ar atmosphere to give crystals suitable for an X-ray diffraction study. Under these conditions, orange 2 crystallises alongside the dinitrogen adduct, [Rh($^{\text{Bu}}$PONOP)(κ1-N$_2$)]$^{\text{BARF}}_4$, 3, in an approximate 1 : 1 ratio (as measured by 31P NMR spectroscopy, vide infra). Single crystals of 2 suitable for an X-ray diffraction study were obtained by mechanical separation from orange/brown 3.4 Presumably the exogenous N$_2$ comes from trace (1–2 ppm) levels of N$_2$ present in the argon, as has been noted previously,5 and is driven by relative solubilities of

Addition of Na[$^{\text{BARF}}_4$] to a CH$_2$Cl$_2$ solution of Rh($^{\text{Bu}}$PONOP)Cl$_2$, 4 results in the formation of orange [Rh($^{\text{Bu}}$PONOP)-(κ1-CICH$_2$Cl)]$^{\text{BARF}}_4$, 2 (Scheme 2). Filtration and removal of the solvent affords 2 in good isolated yield as a powder. Complex 2 can be recrystallised from CH$_2$Cl$_2$–pentane under an Ar atmosphere to give crystals suitable for an X-ray diffraction study. Under these conditions, orange 2 crystallises alongside the dinitrogen adduct, [Rh($^{\text{Bu}}$PONOP)(κ1-N$_2$)]$^{\text{BARF}}_4$, 3, in an approximate 1 : 1 ratio (as measured by 31P NMR spectroscopy, vide infra). Single crystals of 2 suitable for an X-ray diffraction study were obtained by mechanical separation from orange/brown 3.4 Presumably the exogenous N$_2$ comes from trace (1–2 ppm) levels of N$_2$ present in the argon, as has been noted previously,5 and is driven by relative solubilities of

Addition of Na[$^{\text{BARF}}_4$] to a CH$_2$Cl$_2$ solution of Rh($^{\text{Bu}}$PONOP)Cl$_2$, 4 results in the formation of orange [Rh($^{\text{Bu}}$PONOP)-(κ1-CICH$_2$Cl)]$^{\text{BARF}}_4$, 2 (Scheme 2). Filtration and removal of the solvent affords 2 in good isolated yield as a powder. Complex 2 can be recrystallised from CH$_2$Cl$_2$–pentane under an Ar atmosphere to give crystals suitable for an X-ray diffraction study. Under these conditions, orange 2 crystallises alongside the dinitrogen adduct, [Rh($^{\text{Bu}}$PONOP)(κ1-N$_2$)]$^{\text{BARF}}_4$, 3, in an approximate 1 : 1 ratio (as measured by 31P NMR spectroscopy, vide infra). Single crystals of 2 suitable for an X-ray diffraction study were obtained by mechanical separation from orange/brown 3.4 Presumably the exogenous N$_2$ comes from trace (1–2 ppm) levels of N$_2$ present in the argon, as has been noted previously,5 and is driven by relative solubilities of

Addition of Na[$^{\text{BARF}}_4$] to a CH$_2$Cl$_2$ solution of Rh($^{\text{Bu}}$PONOP)Cl$_2$, 4 results in the formation of orange [Rh($^{\text{Bu}}$PONOP)-(κ1-CICH$_2$Cl)]$^{\text{BARF}}_4$, 2 (Scheme 2). Filtration and removal of the solvent affords 2 in good isolated yield as a powder. Complex 2 can be recrystallised from CH$_2$Cl$_2$–pentane under an Ar atmosphere to give crystals suitable for an X-ray diffraction study. Under these conditions, orange 2 crystallises alongside the dinitrogen adduct, [Rh($^{\text{Bu}}$PONOP)(κ1-N$_2$)]$^{\text{BARF}}_4$, 3, in an approximate 1 : 1 ratio (as measured by 31P NMR spectroscopy, vide infra). Single crystals of 2 suitable for an X-ray diffraction study were obtained by mechanical separation from orange/brown 3.4 Presumably the exogenous N$_2$ comes from trace (1–2 ppm) levels of N$_2$ present in the argon, as has been noted previously,5 and is driven by relative solubilities of

Addition of Na[$^{\text{BARF}}_4$] to a CH$_2$Cl$_2$ solution of Rh($^{\text{Bu}}$PONOP)Cl$_2$, 4 results in the formation of orange [Rh($^{\text{Bu}}$PONOP)-(κ1-CICH$_2$Cl)]$^{\text{BARF}}_4$, 2 (Scheme 2). Filtration and removal of the solvent affords 2 in good isolated yield as a powder. Complex 2 can be recrystallised from CH$_2$Cl$_2$–pentane under an Ar atmosphere to give crystals suitable for an X-ray diffraction study. Under these conditions, orange 2 crystallises alongside the dinitrogen adduct, [Rh($^{\text{Bu}}$PONOP)(κ1-N$_2$)]$^{\text{BARF}}_4$, 3, in an approximate 1 : 1 ratio (as measured by 31P NMR spectroscopy, vide infra). Single crystals of 2 suitable for an X-ray diffraction study were obtained by mechanical separation from orange/brown 3.4 Presumably the exogenous N$_2$ comes from trace (1–2 ppm) levels of N$_2$ present in the argon, as has been noted previously,5 and is driven by relative solubilities of

Addition of Na[$^{\text{BARF}}_4$] to a CH$_2$Cl$_2$ solution of Rh($^{\text{Bu}}$PONOP)Cl$_2$, 4 results in the formation of orange [Rh($^{\text{Bu}}$PONOP)-(κ1-CICH$_2$Cl)]$^{\text{BARF}}_4$, 2 (Scheme 2). Filtration and removal of the solvent affords 2 in good isolated yield as a powder. Complex 2 can be recrystallised from CH$_2$Cl$_2$–pentane under an Ar atmosphere to give crystals suitable for an X-ray diffraction study. Under these conditions, orange 2 crystallises alongside the dinitrogen adduct, [Rh($^{\text{Bu}}$PONOP)(κ1-N$_2$)]$^{\text{BARF}}_4$, 3, in an approximate 1 : 1 ratio (as measured by 31P NMR spectroscopy, vide infra). Single crystals of 2 suitable for an X-ray diffraction study were obtained by mechanical separation from orange/brown 3.4 Presumably the exogenous N$_2$ comes from trace (1–2 ppm) levels of N$_2$ present in the argon, as has been noted previously,5 and is driven by relative solubilities of
2 and 3; as in neat CD$_2$Cl$_2$ under the same Ar atmosphere 2 does not go onto to form 3 to the detection limit of 31P1H NMR spectroscopy. The solid-state structure (Fig. 1A) shows a pseudo square planar cationic [Rh(31PONOP)]$^+$ centre coordinated in the fourth position by a CH$_2$Cl$_2$ molecule. The Rh–Cl1 distance [2.350(2) Å] is significantly shorter than reported for related [RhCp*(PMe$_3$)(Ph)(κ3-ClCH$_2$Cl)][BAR$_4$]$_2$, 2.512(2) Å, and [RhCp*(PMe$_3$)(Me)(κ3-ClCH$_2$Cl)][BAR$_4$], 2.488(1) Å $^{Cp^* = \eta^5-C_5Me_5}$. Complex 2 adds to the relatively small number of CH$_2$Cl$_2$ complexes that have been crystallographically characterised, and in particular CH$_2$Cl$_2$ adducts of pincer, or closely related, complexes.

Although the short Rh–Cl distance might suggest a stronger interaction in 2, in solution (vide infra) rapid exchange between solvent and bound CH$_2$Cl$_2$ occurs. The two C–Cl distances in the bound solvent molecule are similar, 1.710(8) [C22–Cl1] and 1.758(7) [C22–Cl2] Å, although the distal C–Cl bond is the slightly longer of the two. This is in contrast to other reported CH$_2$Cl$_2$ complexes in which the bound C–Cl bond is longer.

Complex 2 is stable in the solid-state under an Ar atmosphere, and in solution (CD$_2$Cl$_2$) for at least 1 week. In the 31P1H NMR spectrum (CD$_2$Cl$_2$) a single resonance is observed at δ 204.5 J(RhP) 136 Hz. These data are identical to those previously reported by Brookhart and co-workers for the complex tentatively characterised as [Rh(31PONOP)(CH$_2$Cl$_2$)][BAR$_4$]$_2$, i.e. 2. The 1Bu groups are observed as a single environment in the 1H NMR spectrum. The bound CH$_2$Cl$_2$ ligand is not observed, even at –80 °C in the 13C1H NMR spectrum, presumably as it is undergoing fast exchange with the solvent. The electrospray ionisation mass spectrum of 2 using N$_2$ as a desorption gas showed only 3 as the molecular ion.

Complex 2 is a useful synthon for the preparation of other pincer complexes (Scheme 3). Addition of H$_2$ to a CD$_2$Cl$_2$ solution of 2 forms the previously reported dihydrogen complex [Rh(31PONOP)(κ3-H$_2$)][BAR$_4$]$_2$ $^\delta$(H) = –8.27, lit. –8.26. Addition of N$_2$ forms the new complex [Rh(31PONOP)(κ1-N$_2$)][BAR$_4$]$_2$, 3, for which a solid-state structure is shown in Fig. 1B. This demonstrates an end-on bound, monomeric, N$_2$ adduct [N–N, 1.063(5); Rh–N$_2$, 1.967(3) Å]. The 31P1H NMR spectrum displays a single environment at δ 211.0 J(RhP) 132 Hz, while in the IR spectrum the N–N stretch is observed at 2201.9 cm$^{-1}$. The N–N bond length is very similar (albeit a little shorter) than that in free N$_2$ [1.09 Å], suggesting only a small degree of activation. Complex 3 can also be compared with previously reported [Rh(31PONOP)(κ1-N$_2$)][OTf] which shows a slightly longer N–N bond, a shorter Rh–N bond and a more red-shifted N–N stretch: 1.116(4), 1.898(3) Å, and 2153 cm$^{-1}$ respectively; suggesting greater N$_2$ activation for this more electron rich pincer ligand. This greater metal-based basicity in the 31P1PONOP complexes is reflected in the CO stretching frequencies of the corresponding CO-adducts: [Rh(31PONOP)(CO)][BAR$_4$]$_2$, 4 [2020 cm$^{-1}$] and [Rh(31PONOP)(CO)][BAR$_4$] [1982 cm$^{-1}$].

Complex 4 was prepared by adding CO to a CH$_2$Cl$_2$ solution of 2, further demonstrating the utility of complex 2 in synthesis.

The difference in electron-donating power of the 31P1PONOP versus 31PONOP ligands can also been shown by the attempted synthesis of the CH$_2$Cl$_2$ adduct of the [Rh(31PONOP)]$^-$ fragment, analogous to complex 2. Rather than simple coordination, this resulted in a number of products as measured by 31P1H NMR spectroscopy. Analysis of single crystals suitable for an X-ray
diffraction study, obtained from recrystallisation of the reaction mixture, demonstrated co-crystallisation of two complexes $[\text{Rh}^{(R)}\text{PONOP}]\left(\kappa^1\text{CICH}_{2}\text{Cl}\right)[\text{BARF}_4]$, 5, and $[\text{Rh}^{(R)}\text{PONOP}](\text{HCl})[\text{BARF}_4]$, 6, in an approximate 50:50 ratio (Scheme 4); for which the solid-state structure of 5 is shown in Fig. 1C. Because of this co-crystallisation the metrical data associated with 5 should be treated with caution. The 1H NMR spectrum of these crystals showed a broad hydride signal at $\delta = 15.48$ (relative integral relative to [BARF]$_4$) of -0.5 H which is assigned to 6. Given the number of products formed we are reluctant to speculate on mechanism of formation of 6, but protonation of 5 by trace acid arising from other decomposition pathways could form 6. Addition of H$_2$ to this mixture of 5 and 6 in CH$_2$Cl$_2$ afforded mixture of products, from which $[\text{Rh}^{(R)}\text{PONOP}](\text{H})[\text{BARF}_4]$ could be identified as the major species present.16

Conclusions

The CH$_2$Cl$_2$ complex $[\text{Rh}^{(R)}\text{PONOP}]\left(\kappa^1\text{CICH}_{2}\text{Cl}\right)[\text{BARF}_4]$ has been isolated, confirming its formation in the decomposition of the corresponding alkane adduct at low temperature, itself formed from protonation of an alkyl precursor.7 Synthesis has been achieved by an alternative halide-abstraction route in CH$_2$Cl$_2$ solvent, starting from a readily available chloride precursor. This complex, with its weakly bound CH$_2$Cl$_2$ ligand, also acts as a useful synthetic for other complexes such as N$_2$, CO and H$_2$ adducts. The corresponding PNP ligand complex undergoes C–Cl activation to form a mixture of products, highlighting the difference in electron donating properties of these two ligands.

Acknowledgements

The EPSRC for funding (EP/K035908/1) and Dr Adrian Chaplin for the initial synthesis of complex 5.

Notes and references

† Crystal data: (2) Rh$_5$P$_3$O$_6$NCl$_4$C$_9$H$_{17}$C$_2$H$_4$BF$_{20}$, Monoclinic (C2/c), $a = 16.999(5)$ Å, $b = 18.171(6)$ Å, $c = 39.825(10)$ Å, $\alpha = \gamma = 90^\circ$, $\beta = 96.458(2)^\circ$, volume = 12 224.4(5) Å3, $Z = 8$, $\omega = 0.7073$ Å, $\mu = 0.53$ mm$^{-1}$, 16 021 independent reflections [R(int) = 0.029], $R_1 = 0.0814$, wR$_2 = 0.1692$ [I > 2σ(I)].

CCDC: 1044745; (5/6) Rh$_5$P$_3$NCl$_4$C$_9$H$_{17}$C$_2$H$_4$BF$_{20}$: Rh$_5$P$_3$NCl$_4$C$_9$H$_{19}$C$_2$H$_4$BF$_{20}$, Monoclinic (P2$_1$/c), $a = 13.8327(2)$ Å, $b = 23.4907(2)$ Å, $c = 20.1031(2)$ Å, $\alpha = \gamma = 90^\circ$, $\beta = 97.5982(11)^\circ$, volume = 6 475.59(4) Å3, $Z = 2$, $\mu = 1.51480$ Å, $\mu = 3.83$ mm$^{-1}$, 12 215 independent reflections [R(int) = 0.031], $R_1 = 0.0483$, wR$_2 = 0.1183$ [I > 2σ(I)].

